A Compiler Address Transformation for Conflict-Free Access of
Memories and Networks

Mayez Al-Mouhamed(1) Lubomir Bic (2) and Hussam Abu-Haimed (3)

(1, 3) Department of Computer Engineering
King Fahd University of Petroleum and Minerals,
Dhahran 31261, Saudi Arabia (Email: mayez@ccse.kfupm.edu.sa)

(2) Department of Information and Computer Science
University of California
Irvine, CA 92717, USA.

Abstract: A method for mapping arrays into parallel memories so that to minimize serialization and
network conflicts for lock-step systems wall be presented. Each array is associated an arbitrary
number of data access patterns that can be identified following compiler data-dependence analysis.
Conditions for conflict-free access of parallel memories and network are derived for arbitrary power-
of-2 data patterns and arbitrary mutistage networks. We propose an efficient heuristic to synthesize
combined address transformation (NP complete) which applies to arbitrary linear patterns, arbitrary
multistage networks, and arbitrary number of power-of-2 memories. Our method can be
implemented us part of the address transformation (Xor and And) or through compiler emulation.
Performance of optimized storage schemes is presented for FFT, arbitrary sets of data patterns, non
power-of-2 stride access in vector processors, interleaving, and static row-column storages. Our
approach is profitable in all the above cases and provides a systematic method for converting array-
memo y mapping and network aspects of algorithms from one network topology to another.

A Compiler Address Transformation For Conflict-Free Access of
Memories and Networks

Mayez Al-Mouhamed

Comp. Eng. Dept.
King Fahd Univ,
Dhahran , Saudi Arabia

Abstract

A method for meapping arrays indo parallel mem-
ories so thal to minimize serialization and network
conflicts for lock-step systems will be presented. Bach
array iz associated an arbitrary number of data ac-
cess palierns that can be identified following compiler
data-dependence amalysis. Conditions for conflict-free
accass of pavallel memories and network are derived
'fo-r arbitrary power-of-2 data patferns and arbirary
mutistage networks. We propose an efficient heurtstic
to synihesize combined address {ransformation (NP-
complete) which applies o arbitrary linear patierns,
arbitrary mullistage networks, and arbitrary number
of power-of-2 memories. Our method can be imple-
mented as part of the address trensformation (Xor and
And) or through compiler emulation. Ferformance of
optimized slorage schemes is presented for FFT, ar-
bitrary sets of data patlerns, non potier-of-2 stride
access in weclor processors, imterleaving, ond static
rour-columint storages. OQur approach is profitable in all
the above cases and provides a sysiematic method for
coverting array=-memory mapping and neiwork aspects
of algorithms from one network topology to another.

1 Introduction

The serialization of memory accesses is a major
limiting factor in high performance SIMD computers,
Conflict-free access [2] to rows, columns, and diago-
nals of arrays was proposed on the basis of row ro-
tations. The drawbacks are the dependence on the
array size, the number of memories, and the complex
address transformation. The use of a prime number
of memories [5] significantly ontperforms interleaving
but requires expensive address translation.

Based on skew storage, X OR-schemes were pro-
posed |7, 4] for eliminating most of the above prob-

Lubomir Bic

Dept. of Info. and Comp. Se.
UC Irvine
Irvine, CA 92717

30

Hussam Abu-Haimed

Comp. Eng. Dept.
King Fahd Univ.
Dhahran, Sandi Arabia

lems. The scheme can be efficiently used for power-of-
2 strides but other sirides can also be accessed through
the use of few buffers at the memory inputs and out-
puts. The buffers reduce the effects of transient degra-
dation in pipelined memories.

Linear permutations [3, 6] for mutistage networks
have been studied by using non-singular (N3} matri-
ces. In most cases, conflict-free access to the network
is obtained for some fixed data templates. For row,
column, diagomals, and square blocks, a scheme [3]
based on composite linear permutations was proposed
for the Omega network.

Our objective is to find a storage scheme that
combines the constraints of composite patterns and
the network in synthesizing dynamic storages so that
memory and network contentions are minimized.

Sections 2 and 3 presents linear permutations and
storage schemes. Sections 4 and 5 presents proper-
ties of combined storages. Sections 6 and T present
one general example and application to FFT. Sections
8 and 9 present application to general patterns and

stride access, Section 10 concludes this work.

2 Linear permutations and networks

In a multistage network, routing a source s
oo 8y to destination d = d,—q...ds consists of
finding a path of switches that connect s to d.

In an (¥, network, the position of the message at
the input is pose(s,d) = §n—1 ... 0. we can easily find
the position of the message at the output of the ith
stage:

Hn=—1

posils,d) = spei—1.. . 808ln—1 .. dn_ig1dn_i

We can similarly find the position of the message
for other metworks. A network input is denoted by
§ = ($n-1,...,8) € 5 and output is demoted by

d = (du-1,...,dn) € §. This applies t¢ n-stage net-
works. A linear permutationis a function M : § = §
for which earh source 3 € § maps into destination
d=Mi=(ds-1,...,ds) where d; iz a linear combi-
nation of the bits of & by using the logical AND and
XOR operators as the multiplication and addision, re-
spectively.

We wish to know under what condition an £1,, net-
work cin perform permutation M. We shall abbrevi-
ate pos;(s, Ms) to posi(s) which can be written as a
matrix product M[i]s:

pesi(a) = (fyoict eBpdn ot odnoi) = Mg myednoibnoicy ---!1]‘]
)
where M[i] is

a o 1 L]

. [i]
. ; . I
a]] 1
LE T Ty | LR e L Y | Wy
Up—im=1 dm—fm—i Fa—im=i=1 LITR)

2}

Where the (n—:) x{ matrix in the upper-left corner
is formed by 0s, the (n—i)%{n—1) matrixin the upper-
right corner is the identity, the ¢ x (n —) matrix in
the lowar-right corner will be denoted by Bli], and the
% 1 matrix in the lower-left corner will be denoted by

MI[i):

The permutation matrix M that gives the position

posn(s) = d = Ms of the message at the output of the
nebls stage is deflinal as follows:

Gpal n=1

(:

B] =i

M[i] = [3)

D, m—i

Bp_f,n=1 - LI el nmi=1 LT
Bp—i,n-1 By, =i Bpei,m=i=1 L]
fp—i=lm=1 Gy j—l,m=i Ta—i=la=i=1 - Tn=i=1,
8, n=1 [T— A m=i=1 an0

[4)

Note that Mi] is the { x i sub-matrixin the upper-
left cormer of M. We present a number of Theorems
that characterize permutations. The proof of these
Theorems can be found in[1].

Theorem 1 All inputs of the ith stage map one-lo-
one lo all outputs of the same stage if and ondy if M[i]
is NS.

531

We now charactenze linear permutations M which
the Omega network can perform. An n % n permu-
tation matrix M is said to be Strongly-Non-Singular
(SINS) if and only if its restriction M[i] is NS for arbi-
trary i, where1 €41 < n.

Theorem 2 A linear permuiation M defined over Z3
can be performed by 0, if and only if M is SN5 for
..

We generalize the ahove resnlt to an arhitrary net-
work that belongs to the class of dyramic, full access,
unique path, multistage networks.

Theorem 3 An arbifrery dynamic, [full aecess,
unigue path, multistage network () can achieve ar
hitrary linear permutation defined by an nx n boalean
malriz M if and only if M is SNS for .

Note that the position of sub-matrices M[i] can be
different for each type of network. For the Omega
network, the NS submatrices are located in the upper-
left. cormer of M. For the Baseline netwark, the N3
sub-matrices start at the lower-left corner of M.

We can define a permutation d = Ms & » which we
call Complement-Permulation, where r is a constant.

Theorem 4 An arbitrary complement-permatation
id = Madr paases @ muliintage netnork if and only of

M is SNS for the network.

It can also be proved that the set of all complement-

permutations assnciated with all SNS matrices M are

all distinct for any multistage network.

3 Characlerization of SINS malrices

We now evaluate the mumber £, of n ¥ n SNS ma-
trices. Since R, is identical for each type of network,
we use the notation for 11,,. It is obvious that £; = 1.
We define algorithm (H-2) that finds and assigns the
set of 2 x 2 matrices which are SNS

(s1) (0 9) (o) (B a)
and so Ry = 4. We now show that:

Theorem 5 The number of permutstionsd = Msdz

that an arbitrary n-stage multistage network con per-
form s T, = 2", where M 15 an n x n SN mairiz

and r is an n % 1 arbitrary vector.

Proof We first find the number R, of n x n SNS
matrices and evaluate the number of permutationsd =
Ms @ a for all values of z.

Suppose we are given an arbitrary n x n matrix
M. Assume that M[i] is SNS. Then by performing
row and column operations, we can transform M such
that Af[i] is the identity matrix thus:

1 [I B T PR
] 1 EER T L T
M= o L]

1 [(5]
T i g
by b e By b ¢

We examine the matrix M[i+1]. We denote the entry
in the lower-right corner as ¢, the entries above ¢ as
g+ 4+ i1, and the eniries to theleft of cas by, . bi-y.
We can determine whether M[i+1)] is NS. If all o; and
b; are zero and ¢ in one, it is easily seen that M[f 4 1]
is NS. For the general case, the fact that M[i] is the
identity makes it easy to cancel the a;’s and b;’s using
row and column operations, M[i+1] will be NS if and
only if after these operationsc = 1. If a; = 1, add the
column containing b; to the column containing ¢ of
M. This changes o; to Zero and ¢ becomes ¢ @B b;.
Similarly, if #; = 1 and we add the row containing a;
te the row containing ¢ of M, this changes b; to zero
and ¢ becomes ¢ § a;j. These operations may affect
¢ as follows: 1) e does not change if a; = b; = 0 or
a;®b=1or2)cis flippedifa; =b; =1L

In the last case, both a; and bj are one. If we choose
to cancel ay first, the value of by = 1 s added to c,
changing it from a one to a zero, or vice-versa, If we
choose to cancel by first, the value of a; = 1 is added
to ¢, and ¢ is again changed. In all other cases, we
can cancel e; and b; without affecting c. The non-
singularity of M|[i 4 1] will therefore depend on two
factors: the initial value of ¢ and the number of Hips.
Counting the number of ways we get I flips, we find
that we can do so in 3* ways, There are i3*~! ways
we can get one flip, and (i — 1)3°7%/2 ways we can
get two flips. In general, the total number of ways is
simply =50 (;)3'~7.

If there are R; ways that M[i] can be NS, then there
are Ri¥ i (377 = Ri(3 +1)' = R4 ways that
M[i + 1] can be NS. Combining this with our value
for By we have By = 1 and R,y = R.4". There-
fore, we have B, = 4in—1m/2 — aln=1% For each
SNS matrix M, we can find 2™ distinct vectors for x.
Therefore, the number of permutations d = Ms& z is
T, = R, 2" =27, =

4 Combined storage schemes by using
SINS matrices

Consider an SIMD computer that consists of 2™
processing elements interconnected to 2" memories
through (1,. We assume that the data to be accessed
is a one dimensional array denoted by A = {a(i) : 0 <
i < 2% — 1} that is accessed by using a skew storage
scheme defined by d(i) = ®i, where @ is some boolean
matrix, and d(i) is the memory number where array
elerment a(i} is stored. Assume that the dimension of
Ais 2%, The binary of ¢ 15 vg _yig_q,...,vgig, Wwhere
Ug—1s.. - Vg are k canonical vectors of Zy,

Assume @ is to used for accessing power-of-2
strides, such as strides 1, 2, and 4 with n = 3. We
demote these patterns by Py, P, and P;. We may
choose matrix & as follows

cq €3 3 ©1 g iy

dg 1 1 1 @ o iy

afi) = (J.): (u 1 1 1). i1
dy 1 0 o 1 0 i

]

where ¢ denotes the jth column of ® and i is re-
stricted to its 5 least-significant bits. Each pattern
can be translated within the array which leads to ac-
cess different instances of that pattern. For each in-
stance of P;, the group of bits (i3,11,1p) takes all pos-
sible binary combinations and the remaining bits of
i are constant. Each power-of-2 pattern can entirely
be specified by some basis. Patterns Py, P, and Py
have bases P, = {va, vy, 1}, P = {vs, 2,11}, and
B = {wy, v3, 12}, respectively, where P, denotes the
basis of the ith pattern.

Generally, the data dependences in the program
dictate the data pattern that must must be accessed
by each PE in order to honor the dependence. The
array af.,.) shown in Figure 1 must be accessed by
different data patterns depending on the dependence
in the loop {on top of each array). Each of the cases
{a) to (d) shows the partitioning of the array by a
data pattern whose instances correspond to the shown
frames. The component of the basis for each pattern
are pointed by arrows in the address vector for each
partitioning of the array. Therefore, an array must be
accessed by a number of distinet data patterns which
can be identified following compiler dependence anal-
ysis. Finding the access patterns for an array can be
a compiler decision that can be taken once the data
dependence analysis is complete.

The union of all pattern bases is {vo,..., 13}, Gen-
erally, the storage matrix @ should then be an n x p
matrix, where p is the number of distinct canonical

1#_'] afuf-Flafl-k, o}

B{g=Fla - 4.) —=

: j

:l r r 1) :]I ‘__.__._ |- Jnlj

(@) blahblhly (B) hkehhblhl
bttt tt
afLjyeFiall- 2k, 0.} 4 Py

WE=EA] - 4] -
012346587012 34687T

slfi=Fiaf- &, B ¥

01234 68 T0 1 234687

T T T
L

Figure 1: Patterns dependences requiring: row access
{(a), column access (b), block access (c), and row-stride
access (d)

vectors in the union of all pattern bases, When ac-
cessing P, function d{i) = ®i can be decomposed into
the following sum:

oz &

1
dfi) = (ﬂ
1

53

-
e=o 2
f —
P
& e
f—
=1
o
R -1

(5)

where Mp, is the left-hand matrix of the sum and
the right-hand term is constant () when accessing Fy.
Mp, is said to be & restricled fo patiern P, Equa-
tion 3 is a complement-permutation whenever Mp, is
SNS. The processors numbers (g, 81, ..., 87) are iden-
tified with the values taken by (éz,d1,40), (i3,82,81)
and (i4,i3,iz) during an access to some instance of
By, P, and P, respectively. The permutation matri-
ces associated with Py and Py are:

L |

S R | ty &3
1 1 0 1 1 1
Mg, = 1 o 1 Mp, = o 1 0
o 0 1 1 0 o

The product Mp, i also takes all possible binary val-
ues because Mp, is NS which causes the elements of
P, be distributed over the memories. Network align-
ment is guarantee for 1y because Mp, , Mp,, and Mp,
are SNS for f1y. Thus the storage scheme defined by
@ 1s network contention-free as well as free of memory
conflicts.

5 Storage schemes and multistage net-
works

The problem of finding a linear storage scheme
which allows conflict-free and network-contention-free
access for a given set of patterns is tractable for p = 2,
but NP-complete for p > 2. The problem of finding
an assignment of vectors in Z5 such that the matri-
ces corresponding to all tuples are SNS is called non-
singular satisfialility (NSS). It is proved that NSS is
NP-complete for n > 3 [1].

We present an efficient algorithm for finding a linear
storage scheme for a given pattern set. The idea is to
construct the storage matrix & one row at a time, from
top to bottom. We assume that, for each pattern, the
matrix & p,[j] is SNS and attempt to construct the row
P,_; . so that each $5,[f + 1] is SNS. We use the idea
from the proof of Theorem 5, in the construction of
algorithm (H-n) which is as follows

1. Determine the upper two rows of the matrix.

2. Create each remaining row, working from top to
bottom.
Foriin 2 ton =1 loop:

(a) For each pattern P; do:

i. Obtain a matrix &pd by reducing the
matrix ®p; to the identity in its upper-
left corner, using only row operations.
Use the ith column of this matrix to
determine the equation associated with
this pattern.

ii.

(b) Solve the system of simultaneous equations.
Assign entry ®,_;_ i the value .

The time complexity of this algorithm is O(n?).
Since there are potentially several alternatives at
Steps 1 and (b), one possibility is to use backtrack-
ing to exhaustively search for a solution.

6 Example

We illustrate the algorithm by an example with p =
3. Suppose we are given patterns Py, Py, Py, and Py
so that their bases are:

P,
Py

{W!l‘r'ls!rﬁ}s 132 E{“ﬂ-!"‘mt"l}

{ws, 24,03}, B = {ry,v5,m}

We construct the upper two rows of @ using algorithm
H-2. For each $p,, we wish to ensure that the 2 x 2

Figure 2: Finding the first two rows by coloring

sub-matrix in its upper-left corner is SNS. We can ac-
complish this by constructing a matrix for the reduced
pattern set:

P
P

Ll

{stl}! P; = {1’31-“2]'
{vs,v4}, 15: = {v4, 03}

Note that P! is just B; with the lowest ordered vector
removed. The vectors appearing first in some pattern
basis P! are X = {vs,vy,v3,v2 }. The vectors appear-
ing only second in some pattern are ¥ = {#}. Fi-
nally, vy does not appear first or second and thus can
be assigned any value. The conflict graph, with one
possible coloring, is shown in Figure 2.

The upper two rows of & have been determined.
We let ... &g be the values in the lowest row:

Vs owg vy vz v Up

1 1 1 1 @ 1
= (1 ot 1 2 1 1)

¥p Ty Ty Ty ¥ Tp

We must now ensure that each 3 x 3 matrix that cor-
responds (o some pattern is NS. 3o considering an in-
stance of Py, we must assign r9, 1, and g in such a
way that the matrix

vz oty th
1 o 1
gp,= [0 1 1
#F#3 T Iy

is NS. The fizst step is to get the identity matrx in
the wpper right 2 x 2 sub-matrix by using only row op-
erations. This requirement is satisfied for $p,. Using
Theorem 5, we have b =21, b = &5, e =g, o = 1,
and ay = 1.

Matyix @ p, will be NS, and thus SNS, if e= 1 and
the number of pairs a; = by = 1 is even, or if ¢ = 0
and the number of pairs a; = b; = 1 is odd. Since
the values of the a's are fixed, we can express this as
a linear equation over Z,, that is by & b, Se = 1. Or,
intermsof s 2e P o1 Fre = 1.

5ad

Now consider $p,:

b I

1 1 [}
Gpj = 1 o 1
ry ¥]

We need to get the identity matrix in the upper-left
2 % 2 sub-matrix, using only row operations. We
achieve this by adding row 1 to row 2 and, next, we
add row 2 to row 1. We denote this reduced matrix
% p, according to the format of theorem 5:

e

vy w4

. 1o 1
bp, = a1 1
Fy ®y I

For & p, to be NS, we must have rg@xotha; = 1. The
remaining conditions for #p, and $p, are zgFz3 =1
and x4 & xy & 1) = 1, respectively.

One solution for this system of simultaneous equa-
tions izt

xg =0, w3 =1, mp=0, x3=0 =xg=0, xg=1
So the final matrix is:
vp omy U3 vy iy ony
1 1 1 1 1] 1
= 1 e 1 o 1 1)
1 6 o 0o 1 0

All these permutations can be achieved in an {13
network without conflicts.

T Application to FFT

In the following we present one implementation of
a 16-point FFT over 16 memories/PEs. Data input
a(i), data output b(i), and intermediate values of b(i)
are stored into memory m;, where 0 € 4,j < 15. The
complement-permutation for Ny (Figure 3) is Py (i) =
It + cg, where oy = (1000}, cg = (0100}, ez = (D010},
and g = (0001) which is is valid only for 9.

A 16-input DBaseline network is defined by By
Eyol 1E2 a;i Esoy . E;, where E; is the ith stage, This
implies that the position of a message, issued at s =
S3808] 50, is pos) = S3898) "535 sy = liﬁ_arsszﬁ’.z_l posg =
dydysgd;, and posy = dsdad;dy at the output of the
stapes. Note that T is pot SNS for By, Matrix M =
My is SNS for B, if and enly if all square submatrices
on the anti-diagonal are NS, Te guarantee conflict-free
access to the network and the memories we need AM; to
be an SNS matrix for the target network. The square
sub-matrices within the frames shown in Figure 4 are
to be chosen as NS, Matrix M = M, is SNS far By if
and only if all the framed sub-matrices are NS,

Pyli=lghtey Polllmighop Pyllmigecy Ppllmlyhcy

et

WA RNALIS ol e
NN T AN =
CNHRRYY T

apﬂnmhuu-'ﬂiﬂ

Valalqly

iyl

Figure 3: Permutations for FFT over 4

1000 X X
M. [0 100 M. [1000
=10 010 e=lo100
x x x[x] vy Y]
K?I X
Y Y| Yy ¥
M3=1nnc 'z z 2|
z[z z 2] ww

Figure 4: Non-singular macrices for By

We apply algorithm H-n 1o pos; = M;s for finding
the sub-matrices which should be SNS. Dencte by oy,
the complement vector for By which ccrresponds she
ey in the £}, To find the vectors vy, for {1, we have
Peli) = Ii + ex which can be written as Fi(i) =
M7IMi 4o = MY Mi 4 Mey) = MY Mi 4+ 1)
which implies that v, = Meg. For By, wa have Pi(i] =
Midn, = M{id4e,) which means that eizher of Mijag
of M{i + cp) can be used to access element FFT(i +
2% madulo N). One possiblesolution for achisving the
four complement-permutations pe(i) = Mi @ oy, for
1< k<d4and<i< 15 that is faund hy algarithm

H-n is
1
1
u)
o

and thre¢ complement vectors that are

1) () (1)

=

I
-
-
(==

=X -
. -

515

3

Spaiksiimo
L L L. Ltk

-

g T

FFTI} FFT(8) FFT{ed) FFT(I+2) FFT+1)

Figure 5: Permutations required for FFT over By

The permutations py(i) = Mi®c, are shownin Fig-
ure 5, where the columns labeled (FFT) and (M) de-
note the data elements and memory-PE numbers, re-
spectively., T'he tth data element is mapped to memory
Mi. Each data element iz mapped tc a unique memory
because M is N5. All the complement-permutations g
are conflict-free for By because M is also SNS.

This example shows how one can convert linesr
permutztions for implementing FFT from one nes-
work to another. The benefit of our approach is to
re-allocete the data so that the needed permutations
become achievable for each multistage network.

8 General patterns

Testing algorithm H-n is carried on for arhitrary
sets of data patterns, Weiterated H-n until a network-
contention-free XOR-scheme was found, or the limit
of ten backtracking tries was exceeded. The studied
range of memories (V = 2®*)is 8 < N < 256 and
the number of patierns p ranges from 3 to 16. One
hundred cases were generated for each combination of
these parameters.

The average number of clocks achieved by the XOE-
scheme found by using H-n is displayed in Figure 6.
Our scheme finds solutions requiring nearly one clock
access for small numbers of patterns and mederate
numbers of processors. The access time increases
smoothly with increasing either the number of memo-
ries or the number of patterns.

For the same patterns, interleaving causes the ar-
erage access time to be 6 to 26 fold that found by H-n
when the number of memories ranges from 8 to 253.
The static row-column-diagonals [3] scheme has an ar-
erage access time that is 4 to 7 fold the that found by
H-n.

2 T T T T T T
FT Padd —=
Bt -
Paipl -
28 b -
4k
Pl
® T
|
148
14 F
12
i
i i L

Nt of Ptina
Figure G: Average number of
network access

clocks for memory-

e

s T orvlicrae.

"

gkt
| | a \-

1 i i L i 5
o - an - e apa

L]
Figure 7: Sohi's maximum conflicts

9 Optimizing for stride access

In the following we examine finding storage schemes
for accessing arbitrary strides in vector processors.

Algorithm H-n can find optimum combined ad-
dress transformations for arbitrary groups of power-
of-2 strides [1]. Conflict-free access to arbitrary strides
is harder to achieve in the general case. However, the
use of specific linear storage schemes that minimize
the degree of sequentialization in accessing arbitrary
stride provide useful throughput in vector computers.

Harper [4] and Sohi [7] showed that high memory
thronghput can be achieved when few buffers are used
at the memory inputs and cutputs. The buffers reduce
the effects of transient degradation in pipelined mem-
ories. In this case, Sohi selected an XOR matrix that
allows higher throughput than those obtained by us-

ing interleaving or row-rotation. Nerton [ﬁ] proposed
B M e mTes TEINA TITHD emcem Tl men s e
iy hPl:L]llL SUCHTIIE 10T LIE LDGvI=Iu O P AL DL LIRLME

b6

M Confi

L] L] 8
it

Figure & Norton's maximum conflicts

The linear storage schemes selected by Sohi and Nor-
ton for 8 memaories are:

1 1 1 1 1 0 1 01]
Mepi=| ! 0 @ 1 1 1 1 1 o 0 1 @
1 ¢ 1 0 0 1 1 1 0 0 1

1 1 1
Masrten = o 1o
a o 1 1 o

)
1
1
Sohi's matrix bas equal number of ones in each row
and any group of 3 successive columns form a N§ ma-
trix. The latter condition allows conflict-free access
to power-of-two strides but can also be used for ar-
bitrary strides. Sohi’s matrix is a particular case of
complement-permutations that can be found by using
Algorithm H-n. We present two schemes denoted by
Myray and Moong which are:

o 1 1 1 1 ¢ 1 o o @ 1 1
M?"P' = 1 1 ¢« 1 0 ¢ o 1 1 1 1 0
TP ¢ ¢ 0 1 1 1 1 0 1 ©°O 0

i1 1 6 0 1 0 0 1 t 1 1
Megwa=| 0 1 0o 0 1 0 1 1 1 0 1 0
1 o 0 0 1 1 1 o 0 1 o 0

These schemes can be easily generalized because
their basis matrices (3 x 3) that appear in their right
hand side are known as the Gray and Conditional-
Ezchange transformations. The remainder of these
matrices can be constructed by row rotation of the
basis matrix.

To compare these schemes we used the degree of
conflict which is the maximum number of cycles re-
quired to access a given stride with random origin ad-
dress. A stride access is defined by the sequence of
addresses a,a + s,a + 28,...,a + (2" — 1)s, where a
is the {:urigin1 & is the stride, and 2™ is the number of

]lll—l.l.ll.'ll‘.b

i J\MMM

iR

18

1

. M L L
- L o 120
B

Figure 10: Conditional-exchange maximum conflicts

" n
[} 1 & Lo

The origin was set randomly for each run and the
results averaged over 100 runs. Figures 7, 8, 9, and
10 show the plots of the degree of conflict versus the
stride (1 < & < 128) for Myohis Mrortons Mgray:
and M .n4, respectively. All these schemes are fun-
damentally equivalent. Norton's scheme has many
peaks which reach a degree of conflict of 5. Sohi's
scheme achieves similar performance to that of the
Gray scheme and has less fluctuation than the others.
The Conditional-Exchange matrix achieves the lowest
peak conflict,

10 Conclusion

Given an arbitrary set of power-of-2 data patterns,
we have addressed the problem of finding compiler
address transformations for storing arrays in paral-
lel memories so that any instance of A pattern can he
memory conflict-free and accessed without contention

537

through an arbitrary multistage network. To auto-
mate the above process we proposed & compiler oper-
ator for synthesizing combined storages for arbitrary
sets of power-of-2 data patterns so that memory and
network conflicts are minimized. Algorithms such as
FFT and sorting written for a given network can be
converted with simple address emulation to other net-
works. Some of the results may also apply to sec-
ondary memory organization.

11 acknowledgment

Thanks to the Research Committee and the Col-
lege of Computer Science and Engineering, King Fahd
University of Petroleum and Minerals, Dhahran, Saudi
Arabia, for partially supporting this research.

References

[1] M. Al-Mouhamed and L. Bic. Combining lin-
ear data patterns for accessing parallel memories
through arbitrary multistage networks. To appear
in JEEE Trans. on Porallel and Distr. Sys., 1995,

[2] K. Batcher. The multidimensional access memory
in STARAN. IEEE Transactions on Computers,

C-26:174-177, Feb 1977.
R. V. Boppana and C. 5. Raghavendra. Efficient

storage schemes for arbitrary size square matrices
in parallel processors with shuffle-exchange net-
works. In Proceedings of the International Confer-
ence on Parallel Processing, pages 365-368, 1991,

3]

[4] D. T. Harper III. Block, multistride vector, and
FFT accesses in parallel memory systems. IEEE
Transactions on Parallel and Distributed Systems,

2(1):43-51, Jan 1991.

D. Lawrie and C.R. Vora. The prime memory
system for array accesses. JEEE Transactions on
Computers, C-31{12):435-442, May 1982.

5]

A. Norton and E. Melton. A class of boolean lin-
ear transformations for conflict-free power-of-two
stride access. In Proceedings of the Iiternational
Conference on Parallel Processing, pages 247-254,
1987.

G. 5. Sohi. High-bandwidth interleaved mem-
ories for vector processors-A simulation study.
IEEE Transactions on Computers, 42(1):34-44,
Jan 1993.

[6]

[7

