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Abstract:

This paper presents a Data-Distributed Execution approach that exploits interation-level parallelism
in loops operating over arrays. It performs data-dependency analysis, based on which arrays are
distributed over the different local memories. The code is then transformed to “follow” the data
distribution by spawning each loop on all PEs concurrently but modifying its boundary conditions so
that each operates mostly on the local sub-ranges of the data, thus reducing remote access to a
minimum. The approach has been tested on the EM-4 supercomputer by implementing several
benchmark programs. The experiments show that high speedup is achieved by automatic
parallelization of conventional Fortran-Like programs.
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Abstract

Thiz paper presents a0 Data-Disfeibiled  Frcenfion
(DO approach that exploits itertion-level paral-
telesin i loops operating over areays, [0 perloris dai a-
dependency analysis, hosed on which areays are dis-
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then vransTornaed T “Tollow™ the data distabuotion by
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ifving its boundary comditions so that eacl opertes
oty on the local subranges of the data, Ulins re-
dueing remote aceesses oo aindnn. The approac
D Deen tested on Lhe EM-1 supercompnter by hin-
pleventing several benelhmark programa, The s peri-
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matie parallelization of conventional Fortran-like pro-
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1 Introduction

Ihstributed meinory MM computers ave among the
st dliflicnlt to program., smee mdependent processes
of Lhrewls operating on theie own avemories ad com-
nnmcation wilh other processes through message or
rewole premory access nst be elliciently managed.

The abjective of 1his paper is to demonstrale that
the EM-1 innltiprocessor [1], Logether with an auto-
LG paralelization techmgue relferred to as DHE
(Data-Distribuyted  BExecation), which has originally
been developed in the context of coarse-grai dataflow
|:."], ollfer an eflicient cenmpking enviFomment in wlich
large portions of scienlific code can be parallelized ns-
g implicit parallelisim.

This paper s organized as follows, Ul M- ar-
clhatecinre and its juosg unportant characteristics are
theserilsecd tn Seetion 2. Section 3 peesents the prin-
ciple of DDE and the astual transformations applied
o pragranis to extract parattelisul. Section 4 presents
the resudts of the benclhmarks executed on the EM-4
and Section 5 concludes abont Lhis work.

2 The EM-4 I

The EAL-0 shstrilites] pnemeors XUMY supercompiter
[0, 3] s 80 PEs than are intereonmeeted wsing a di-
rred connecd tapology over an Chega netwaork. Dis -
prowstanl Featuees ape e j'urmf FINEE = 0w s COe e -
cerbeenn b5 il Lhe sappeart Tor el adyeg.

.J.':J il“l]“' i'!'il'il"'ll lll“l'ill”‘i‘r’llllll.l.',. |1 b= III:"'fI".‘-\"::lr:-' Lis
crvate threidks ael quickly swiel amwong them by us-
ing, the matehing of operands reauired by datallow [4].
For this, a d-stage nested papehne s wsed so that e
outer d-stage s = oased Tor the dalatlow ol aned the
inner 2siage 15 used nsequentind mode

Tl diest 1w sltages poerlornm Phes e it smabeling
[4]. Each operaml segiend s an enlry pointing to
a dvadie tnsteaction mothe eode sogmont A pointer
Frena the operand o the code segowent i< also creatd
breeause distinel operaml segments conld be simulia-
neonsly [mill!l!]g al the sanne vocde sl

Stage 1 Btclws the roale seginent pomted b oeach
wew packet, T stage 20 0F the leation ldeessisl Dy
the packet s conpty, the packet s storel in that loea-
Fiom el oo Turther actww s taken, 18 P hat locaknn
alpeady contains an operaml, 11 s macked eppty and
bath eperands are passed te the thind stage, that per-
forms the feteh and decodding of the imstrnetion.  Fi-
nally, the execation i pecfornied by 1he Tooeth stage.
The above eyele is yeqeeated il o imstenction inddi-
cates that sequential executbon = L0 cammenae, A
that B, no new packets are aceopled by slage |
Instead, stnge 3 conttones feicling subseguent instroe-
tions wml passing them to stage 1 far sxecntion in a
weriial von Newmmann sty le Tlis i condinies until
i ois explicitly tepminated by an insiraetion. Henes ghe
EM-4 15 capahle of switchiug between datasdreiven and
cotbrel-driven execution very sfficiently,

The direct matching may be viewed as a mechanism
{or thread i agement l[ﬂ [here munsee it l‘ll'L]L';ilL"h ollicienl
twans bor 1) execote sequences of coulral-deoven in-
structions (threads) ankil termination or reimiate mem-
ory reguest, and 2) quickly switeh to a new theead by
using divect malching. Suspended threads are then re-
grnined when the eemots data becomes available, This
approach is very useful to hide memory latency [5].

The Ed-1 can be progranuned using theee distinet
approaches: 1) a funetional prograom is compibed inte
a dataflow graph of strengly connected blocks, 2} Us-
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g o hibeaey of theemls e user spevifies theie oape-
peimg anel the dhisteibation of data stenetores, qd 3)
wsing the proposed tnplicit paralleliane with comvien-
tiomal banguages, This tast appreoach sl be presented
in the next section,

3 Data-Distributed Execution

The basie pliloscphy of DOE st disteibaste the -
ravs over W PES to mamimize e st of vt o
lata transter eeguiesed doring the exeention of coneir-
cent leesnls, Wor comsieler prestraanis wreitten ina con
ventional languege, sueh as Fortran ar Fortran-like ¢
conEtrrts,

Ab e e, eneh parallel loop b2 associnted with
twes [anpilios of theeads: 1) global threads (601 are
ereated by sub-dividigg (he vange of the parallel mer-
ator, and 2} partomg each G301 o loeal threads
(L) The G371 prosaote ionheeent pacllelisn and the
s provide the PEs the oppesrianity o bide peanole
menory aceess [ RMA) by perforiig contest switch-
g er reaky s,

3.1 Analysis and Restructuring

Dependence analysis 4] s used o dentify loop=carried-
e pendencres (LOTH that inlilan paralielizadion of the
fop and Jeasl 1o generation of & singe scalar tliread,
Gilabal threads will be created for loops having only
rf]“fﬂ-h"l{f "” ?'I{f ﬂ.’- I'JIJ p’l !rrJlr WéF s { [,l I]:l

Redlnetion of the graonle sige of LOTY toops s done
Ly rerooving paralledicalle code Tragient < nsing known
Lechiigues sueh that foep distrthafion anal paeliol poe-
e bezacteen, These Tragnents are inseried eloser (o
Hedr data producer of constnner that boedong te LIT
loaps with the same loop leadees. This conses im-
metliate relerences to Deeome :-i|l|:-_j:‘{'l ter telemtieal |r1u|1
comstrainis. Next, e domain of each array that is
edexed by Ve paratled lerator bulex is anplicichy dis
tributed across the PEs to yicld the least nober of
rerote oy aceesses. Panadlve a voling techivigae
allows linding the most lrequenlly used areay disteibu-
tion that becomes the global disteibation.

Kenanting [T) wultiple write to the same variable s
performed in onder to make the code obey the single
aasegrment principle, e allows a volue to be written
ouly onee, This eliminates possilile race conditions and
produces the correct resull reganlless of loop schedul-
e

3.2 Transformations for Parallelism

We will wse the generic program example in Figure |
to illustrate the creation of global and local threads.
The fiest step s to replace all avcay deliniftions {luve
L) by a eall to an allocatef) fanction, which, at ran
Litne, perforing a distributed allocation of the aray

Sequential Coda:

1 int ADTD, BOIOD;

2 for (1 = 0; i € nl; i++)

3 for {j = 0; j <€ n2; 44}

4 alilijl=some comp{B[i1[i],..);

Transformed Code:

A = allocate(ROW,...):

B allocate(ROW,...);

for (p = 0; p < NHOPEz; p++t
fork(pelpl, 1loop, ...);

9 void ideap(...) |

10 1b = max(0, getmy-starvi(al});

11 ub = min{nil, getmy_end a(A}};

o = G

12 for (1 = 1b; i < ub; i++} |

13 for {j = 0; j < n2; j++) {

14 fnrkfself_]:e, j_'loap,...};

15 |

18 woid jleopl...)} |

17 valua=zome _comp{read array(E,i,3),..);
18 write array(A,i,j,value};

19 )

Figure 1: Program transformation

Iy semding requests Lo all PEs to allorales their own
loeal subeanges {lines G-0), The type of distrilation
= determined, for eacl arvay, based on the preceding
program analysis.  Given an array, A, consider each
aceesz AfdL J] withio a loop. I this is a singly nested §
|rm|::‘|-. or A r|l“.-§1m| ||:||;}|T I'|'|"I|| II f HE3 ijlllt']' ;'Il(lﬂ:‘(. 1-||1'|'| “Ii’lrk
the aceess as a colmmn aceess. Next, b counts Lhe
muniher of loops with row versus colinn accesses andd
choose the distribution having the highest fregueney.

In Figure 1, the parameter ROW ndicates that the
arrays aee Lo be distributed row-major, that is, each
PE will be regpons=ible for a certain sulbrange of the
inalex &,

To implement DDE, each loop is started on all PEs
concurrently so that each PE aperates on a different
subrange of the original loop. For nested loops it is first
necessary b determine the loop nest that controls the
array distribution. [n most cases, all arrays accessed
within a given loop will have been distributed along the
same dimension. [n this case, the wnlex along which
the arvays were distributed detecmines the loop level
to be distributed. In the rare cases where not all ar-
rays accessod within a given loop have been distributec
along the same dimension, we count the number of ar-
vay accesses along each dimension and select the most
feequently used one to determine the loop level to be
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whist pilonteal.

In Fignre 1 both arrays were dist rilbuted row-imajor
andd hewvee Ve @b (line 2] was elusen Tor distrbo-
tion, 1 las been translormesd tuto the Tunetion called
i daopl) (line 9) aml s spawned on all PEs using e
b shwen on lies 7 %0 This loop exeontes on P28,
Phind s e master PPE,

T make cach PE aperate ona dilferent subrange,
Hoe eoede to ot the loead lowier and upper bounds
(b arle) Tor the distribted Toogeis imsected (lines 10-11).
s coder, pelereed toas Che Range Felfe oo aceesses e
losuder of the areay the Ioop operates on and, from
Pl recordesd disteilsaiion anformalion, computes 1w
loseal subrange,  Vhe functions g fanigstart () aml
sped o gee e L) vepresent the metrieval of the starting
and ending i_imdier s, which are different for each PE.
These are then combined wsing the mar aned mer fone-
tioms with the houndaries of the original loop. in this
ease, e values 0 and ol respectively,

It s meeessary 1o inerease the level of parallelism
withio each 11 by Joeally spawning the iterations of
the next onter nest as separnte s This s analo-
gonis Lo Lhe previons transfornstion exeept that Uie
P'E specified by the fark() prionitive is the loeal PE.
The jdoap becomes o separate Tinetion (lines 16-149)
and is spawned for each j on the PE as a local thread
(line 14).

The linal transformation is to replace cach reference
to an array clement by o eall to the readarray]) or
wedte citereg ) Tunetion, which determines the loeation
of the given element (local or remate) and perforos
the acecss. Given an areay Afnna,. .0, assune that
the array s to be distributed along a given dimension
e W interprel nyg as a binary number and use the
leading & bits ax the PE number and the remaining
hits as the local index. The number & is determined
hy righe-shifting ng until the eesul is smaller than the
total number of PEs. The number & is then stored i
the array header amd vsed by the aceess functions,

Programs are optimizged by inlining the inserted
functions, notably the readarvray and write array,
anel moving of invariant caile autside of the loops. “The
schedule, n“:illhiug from the insertion of the various
lork and barrier primitives, is also improved by mov-
ing loops that do not necd to wail for a particular bar-
rier in front of thal barrier. Henee a form of a greedy
schedule is implemented,

4 Results

This section presents the results of applying the pro-
posed DDE approach to: 1} the conduction loop of the
SIMPLE benchmark, and 2) the matrix multiply, and
running the code on the EM-d.

4.1 SIMPLE

SIAPLE is o well-known beneliarek progean (8] tha
simulates the belavior of a Duid in a sphese, using the
Laggrangian Formmlation.

La this expeerirent, we lave considered the comdi -
feenar funetion which s the waio o west dillicult preor-
tion o parallelize, “he eode consists al a0 pombser off
singly aned gy nested loops iterating over several
2-17 arrays,

The vesulting parallelisim prodile is shown o Figire
2. Tl mensueed speedup was G5 and he average wlle
tinne was 5005, Tle extracted pacallelism was nenrly
77 dhormg st of the eomputation time, This paral-
lolism profile s exeellent beeanse PRy and twao otler
PEs - those holding the boundary rows  wepe idle
turing most of the compautation tione.

A0.00

a0

&5 00 | l
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I5.00

=T O}
15.00

100
.00

000 000 Mee 0N s0m 000 #0000
Figure 2

The drops in parallelismn, resulting from barriers
that could not be masked by other work, were steep,
narrow, and few in number. The shape of the drop isa
clear indication of the EM-4's superior commmunication
network.

The small number of the drops amd the fact that
they o not extend all the way down to a single PE is
an indication of the available parallelism in a typical
acientific application, There were suflicient numbers of
independent loops that could be run concurrently and
thus mask the effect of much of the idle tinwe resulting
form barriers.
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4.2  Matrix Multiply

Using, Ve DYYE appracli, we bave paralleliasd e -
ple triply-pested loop of the et mliply, Tlieee
t'xlu‘l'iuu'u!a were earried ont Tor matrx sizes (mali-
plos of TH) of 797, 18 aud 3165 pespeetively, The
pacallelisen profile for the second experiinen (Figaee
B) s pepresentative of those of the other experinents,
The olstaimed specdups were 7.5, 8060 and 01 for each
of e abowe il rix siges, respuel |'r-'|1|

The resulting spucdap is gquite podest, even swhen
the matrix size bs large. However, the speceup ol
Cainedd by s manmal parallehzation was also low el
lemes the pesult jnddieates that e amomatie paral-
lelization approach performs very well,

The parallelisi profile of the matrix muoltiply al-
goritho [ Figure 3) shows a pronowneed Leailing edge
that eanses sowe loml pobalance, This s sureprising
Bevanse of the regularity of the problem, the disiri-
Baetiene, and the arcliteeture. The trailing edge takes
upe o the order ol 2004 of the 1otal computation aml
aeeonils of st of e ddle time (1L7%9) il
Fosr Lhis ;rl'ulﬂl'lu. Tl dalbes i eonilad e elomiimatod ol
mwweinory synchronizgation were available on the EAL-,
O her comnputation conld then partially overlap with
e mmateix mulvigly loop,
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Figure 3

5 Conclusions

There are many real world applications that a hyhrid
machine like the EM-4 could exploit without requiring

the Babor-inensive sl ereor-proue 1ask of sl par-
allelizntion,  Signilicant speedup can b aclieved o=
i.IIH Fortran-like IR T it plernte over I.'Lrg- il
slruclhnres

Amtomtne pacallelization will, of conrse, pal clim-
pate Pl peed for the looman invalvement as was e
caseowith the meatrix noleipdy, where automatie -
allelizatiom of a given algorithm vielded only szl
spevilup, Wenee, e proposed approach is ondy one
conpient ol a |::|r.-||h-| |1hl!.‘;l'rlllllllillu enviriannenl,
whicl st take into consuleration e user, e lan-
guage. the compiler, the architeetare, amd thee varions
l.|t"".'!'|U|-llil‘I|l ol
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