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Abstract— The class scheduling problem can be modeled by a 
graph where the vertices and edges represent the courses and the 
common students, respectively. The problem is to assign the 
courses a given number of time slots (colors), where each time 
slot can be used for a given number of class rooms.  The Vertex 
Coloring (VC) algorithm is a polynomial time algorithm which 
produces a conflict free solution using the least number of colors 
[9]. However, the VC solution may not be implementable because 
it uses a number of time slots that exceed the available ones with 
unbalanced use of class rooms. We propose a heuristic approach 
VC* to (1) promote uniform distribution of courses over the 
colors and to (2) balance course load for each time slot over the 
available class rooms. The performance function represents the 
percentage of students in all courses that could not be mapped to 
time slots or to class rooms. A randomized simulation of 
registration of four departments with up to 1200 students is used 
to evaluate the performance of proposed heuristic. 

Keywords- class scheduling, graph coloring, algorithms, vertex 
coloring, uniform distribution. 

I.  INTRODUCTION 

A classical problem in graph theory, the graph coloring 
problem is to color the nodes of an undirected graph with as 
few colors as possible, such that no two adjacent nodes share a 
color [1]. Graph coloring has many applications including map 
coloring, task scheduling, parallel computation, network 
design,etc. Here we are only concerned about the problem of 
course scheduling, where graph coloring can provide an 
algorithm which will prevent or at least minimize conflicting 
schedules. 

 There are many graph coloring algorithms which 
have all proved to be NP complete, such as the Saturation 
algorithm, the Recursive Largest First algorithm, Degree of 
Saturation Algorithm, Simulated Annealing algorithm, Greedy 
algorithm, and many others [1]. The application of computers 
to timetabling problems has a long and varied history. In 1967, 
the problem of course scheduling was applied to graph 
coloring. The vertices of the graph were ordered sequentially, 
according to degree and the graph was colored without using 
an upper limit on the number of colors [2]. In 1972 the 
problem of graph coloring proved to be NP complete [3]. In 
1995, a method using graph coloring was developed for 
optimizing solutions to the problem of graph scheduled, and 
was compared to an expert system which arrived at a partial 
solution and then performed simulated annealing to fill out the 
solution. The latter system did not schedule all courses, 

whereas the graph coloring method was found to be quicker 
and handles all hard constraints of the problem [4]. In 2005, 
the Robust Graph Coloring (RGC) problem on paths was 
studied, where given a red path and a blue path, with costs, for 
the same set of vertices, a 3-coloring is found on the blue path 
that minimizes the sum of the costs of the red edges whose 
ends have the same color. An exponential time algorithm, a 
randomized algorithm, and a greedy algorithm were proposed 
[5]. In 2007, an alternative graph coloring method was 
presented for university timetabling that incorporates room 
assignment during the coloring process [6].  

In 2008, the Koala graph coloring library was developed. It 
includes many practical applications of graph coloring, and is 
based on C++.  Future directions include efficiency 
improvements, implementation of graph class recognition, and 
better graph visualization algorithms [7]. In 2009, four 
learning automata-based approximation algorithms were 
proposed for solving the minimum vertex coloring problem 
(being NP-hard). The algorithms find the possible colorings of 
the graph and depending on the response from the 
environment, color sets are rewarded or penalized. Then the 
minimum coloring of the graph with the highest probability is 
found. The algorithm an improved efficiency [8]. 

The VC algorithm is a polynomial time algorithm which 
produces a conflict free solution using the least number of 
colors [9]. As there still may be conflicts in the scheduling of 
courses produced by VC due to limitations in the available 
time slots or class rooms, a proposed heuristic VC* is 
proposed to achieve more uniform distribution of courses 
among time slots and class rooms. Uniform distribution will 
ensure less conflict with regard to time and space limitations. 
Randomized simulation of registration data is used to assess 
the performance of proposed heuristics. 

 This paper is organized as follows. In section II, basic 
of graph coloring are presented. In section III the VC is 
described. Section IV contains an adaptation of VC to course 
scheduling. In Section V we present the heuristic VC*. 
Sections VI and VII present the objective function and the 
evaluation, respectively. We conclude in section VII. 

II. BACKGROUND 

In graph theory, graph coloring is an assignment of labels 
(colors) to elements of a loopless graph subject to certain 
constraints. It is a way of coloring the vertices of a graph such 
that no two adjacent vertices share the same color, called vertex 



coloring. For the specific course scheduling application, a color 
represents one time slot, which is allocated to a number of 
physical rooms. A vertex represents a course, while the edges 
between the vetices represents the common students between 
the courses. A proper m-coloring of a graph (G) is an 
assignment of a unique color to each vertex of G such that no 
two adjacent vertices are assigned the same color. The smallest 
number of colors needed to color G is known as it's chromatic 
number X(G). A graph that can be assigned a proper m-
coloring is called m-colorable, and it is m-chromatic if it's 
chromatic number is exactly m. The chromatic polynomial 
counts the number of ways a graph can be colored using no 
more than a given number of colors. A set of vertices in which 
all pairs of vertices share an edge make up a clique. Graphs 
with large cliques have high chromatic numbers but not vice-
versa. Graphs with high chromatic number must have high 
maximum  vertex degree. The degree of a vertex is the number 
of it's distinct edges [9]. 

For small problems, it does not matter which graph 
coloring algorithm is used as long as it solves the problem 
correctly. However, for many bigger problems the only known 
algorithms take so long to compute the solution that they are 
practically useless. A polynomial-time algorithm is one whose 
number of computational steps is always bounded by a 
polynomial function of the size of the input, thus it is actually 
useful in practice. The class of polynomial-time algorithms is 
denoted by P. For some problems, there are no known 
polynomial-time algorithms but they do have nondeterministic 
polynomial-time algorithms, denoted by NP. NP problems are 
such that any polynomial-time algorithm for them can be 
transformed, in polynomial-time, into a polynomial-time 
algorithm for every problem in NP. Such problems are called 
NP-complete [9]. The problem of trying to find a proper m-
coloring of the vertices of a graph, for any fixed integer m 
greater than 2, is known to be NP-complete [3].  

III. THE VERTEX COLORING ALGORITHM 

VC is a polynomial-time algorithm for producing an m-
chromatic solution for a graph. Dharwadker proves that every 
graph (G) with n vertices and maximum vertex degree ∆ must 
have chromatic number X(G) less than or equal to ∆+1 and that 
the algorithm will always find proper m-coloring of the 
vertices of G with m less than or equal to ∆+1 [9].  

Consider a loopless graph G, with n vertices that consists of 
a set of vertices V and a set of edges E, where each edge is an 
unordered pair of distinct vertices. The maximum degree of all 
vertices of G is denoted by ∆. Given graphs G and H, the 
Cartesian product GxH is defined as the graph whose set of 
vertices is V(G)xV(H) with an edge connecting vertex (u1,v1) 
with vertex (u2,v2), only if either u1=u2 and {v1,v2} is an 
edge in H or v1=v2 and {u1,u2} is an edge in G. A subset of 
vertices where every unordered pair of vertices is an edge is 
called a clique, denoted by Q. If all vertices of a graph form a 
clique, the graph is said to be complete and is denoted by Km, 
m being the number of vertices. A set of vertices where no 
unordered pair of vertices is an edge is an independent set S. A 
maximum independent set is an independent set with the 
largest number of vertices. The chromatic number X(G) of a 

graph is the minimum value of m for which there exists a 
proper m-coloring of the vertices of G.    

The algorithm starts with the Cartesian Lemma which 
allows the conversion of the problem of finding proper m-
coloring of the n vertices of a graph to the logically equivalent 
problem of finding an independent set S of size n in the 
Cartesian product GxKm. G with n vertices is m-colorable if 
and only if the Cartesian product GxKm has an independent set 
S of size n. Km being a clique, represents a color per vertex, for 
which each color will be assigned to each independent set in G 
[13]. For example, consider a graph Gn = {u1, u2, u3} which is 
m-colorable, and consider a clique Km= {v1, v2} as shown on 
Figure 1. 

 
Figure 1: Graph corresponding to Gn x Km 

The algorithm first constructs the Cartesian Product GxKm, 
then it searches for an independent set S of size n in the 
Cartesian product as shown on Figure 2. 

 
Figure 2: Subsets S1 and S2 

Set S1 is an independent set: for the vertices {u1,v1} and 
{u2,v2}, u1 ≠ u2, v1 ≠ v2. For the vertices {u1,v1} and 
{u3,v2},  u1 ≠ u3, v1 ≠ v2. For the vertices {u2,v2} and 
{u3,v2}, u2 ≠ u3 and while v2=v2, u2 and u3 don’t share an 
edge in G. Therefore they are properly m-colored with the 
assigned vertices of Km. Set S2, on the other hand is not an 
independent set: for the vertices {u1, v1} and {u1, v2}, u1=u1 
and v1 ≠ v2, the two vertices are dependent. In the above 
example, u1 is assigned colors v1, and u2 and u3 are assigned 
the color v2. G is properly 2-colored by the Cartesian product 
G3 x K2 [9]. This algorithm was implemented using C++. 

IV. GRAPH COLORING: STUDENTS' REGISTRATION CODE 

In order to implement the VC program to the problem of 
student conflict-free course scheduling, we have created a 
program named Graph Coloring (GC), using the Java 
programming language, which reads in information of students' 
and their respective registered courses for a given semester 
from a text file, and outputs this information in the form of a 
binary graph text file, in the format required by VC. 

The binary graph required as input by VC is an adjacency 
matrix of graph G. It is an nxn matrix with the entry in row u 



and column v equal to 1 if  u and v share an edge, otherwise the 
entry would equal 0. An example of a small (11x11) graph:  

The Bondy-Murty Graph:[9] 
11 

0   0   1   1   1   1   0   1   1   1   1 
0   0   1   1   1   1   0   1   1   1   1 
1   1   0   1   0   0   1   0   0   0   0 
1   1   1   0   0   0   1   0   0   0   0 
1   1   0   0   0   1   1   0   0   0   0 
1   1   0   0   1   0   1   0   0   0   0 
0   0   1   1   1   1   0   1   1   1   1 
1   1   0   0   0   0   1   0   1   0   0 
1   1   0   0   0   0   1   1   0   0   0 
1   1   0   0   0   0   1   0   0   0   1 
1   1   0   0   0   0   1   0   0   1   0 

 
This graph's coloring output is as follows: 
 

 
 

Figure 3: The Bondy-Murty Graph 

V. UNIFORM DISTRIBUTION ALGORITHM 

After running the VC program on the output graph file 
produced by the GC program, we have a result of proper 
coloring allocation to each course and its respective students. 
Each color represents one time slot with a set of rooms 
available in that time slot.  

The next problem to address is the number of colors (NC) 
allocated by the VC program with respect to the number time-
slots (NTS) available for use. For example, if we have a graph 
of 50 courses registered by a number of students, and this 
graph is run on the VC program, and was properly colored 
with 12 colors. Suppose that each color represents one time 
slot and an average of four available rooms in that time. So 
these four rooms are independent and can be run in parallel, 
which is why many courses share the same color.  

 

Colors C1 C2 C3 C4 

Number of Courses 4 3 1 7 

Number of available rooms 4 4 4 4 

TABLE I. 
 

The number of courses (NCO(C)) allocated to a particular 
time-slot (color) may be greater than, equal or below the 
number of available rooms (NRM)for use. For example, in the 
above example the color C2, having 4 rooms available for use, 
has only 3 courses allocated, thus one room will be unused. Or 

the color C4, having 4 rooms available for use, has 7 courses 
allocated to it, thus 3 of the courses will not have a room.  

Ideally, we need to favor a uniform distribution (UD) of 
courses with respect to colors, in order to avoid conflicts and 
to maximize the use of available room/time slots. The 
following Heuristics H-1 and H-2 were developed to favor 
uniform and balanced distribution of time slots and rooms. 

We define a heuristic H-1 that operates on the solution 
provided by VC with the objective to promote uniform 
distribution of courses over the colors. Heuristic H-1 applies 
when the NC allocated by the VC program is the maximum 
NTS available for use, and if the NCO(C) allocated to a 
particular color C exceeds the number of available rooms NRM 
for use in that color, ex: C4 having one time slot and 4 
available rooms, has 7 courses allocated to it. Only 4 of these 
courses can take place due to limited rooms. The extra 3 
courses cannot be assigned to any other color with an extra 
slot since they would create a conflict.  

A formal description of heuristic H1 is as follows. H1 starts by 
allocating NTS time slots to the top colors or group of courses 
(SAlloc) that have the highest student contingency. SAlloc is 
being the set of colors that are allocated time slots. 
Unallocated colors are included is a set SNalloc. The courses 
that have been colored by: (1) an allocated color but having a 
set of courses exceeding the number of room NRM , or (2) an 
unallocated color, are assigned to the allocated time slot that 
has the least conflict edges among all allocated colors that 
have a number o courses below the number of available rooms 
NRM . Intuitively, H-1 identifies the number of conflict edges 
(common students) between each of the 3 courses and the rest 
of the colors with a free room slot. Start with the largest class. 
Chose the color with the least conflict edges with the course, 
and in order to favor more uniform distribution, drop the 
number of students that conflict. Then assign the course to the 
color chosen.  

We define a heuristic H-2 that operates on the solution 
provided by VC with the objective to balance course load for 
given time slots over the available classrooms. Intuitively, H-2 
find all extra courses, group them into independent sets, where 
each set of courses are independent of each other and may be 
taken in the same time (same color). Sort the sets of courses in 
descending order according to weight. Color the highest 
priority set of courses with remaining new colors. If the NCO 
allocated to a new color > the amount of available room for 
use in this color, repeat Heuristic 1. If the number of extra 
classes < the number of remaining colors, then there is no 
problem as all courses will have received a color. If not all 
extra courses received a new color (not enough colors), then 
go to Heuristic 1. 

A formal description of heuristic H2 is as follows. 
Heuristic H-1 applies when the number of colors, each 
consists of a group of courses, is below the number of time 
slots (NC =< NTS) but some colors have a number of courses 
that exceeds the number of available rooms NRM. For each 
color, the courses in excess of NRM which have the lowest 
contingency are allocated to one of the remaining time slots 
(NC =< NTS).  



Using the previously defined heuristics H-1 and H2, we 
proposed algorithm VC* that (1) promote the uniform 
distribution of courses over the time slots (colors) and (2) 
balance the course load for a given time slot over the available 
classrooms. VC* operates as follows: (1) run VC over the 
problem, if (NC < NTS) then apply H-2, else apply H-1. 

VI. OBJECTIVE FUNCTION 

Here we define the objective function. VC solution uses NC 
time slots (colors) and each time slot is used for NCO(C) 
courses. In the following we build two sets of courses A and B 
for each solution that will be used to evaluate the objective 
function of the solution. N is the number of students. 
 
Set A is defined by all the colors that could not be mapped to 
some time slot as only NTS  color can be mapped to time slots. 
A can be constructed by sorting the colors in descending 
degrees D(C), i.e. number of students for all courses in a given 
time slot. The top NTS colors are mapped to available time 
slots. The remaining colors fall into A. Set B is defined by all 
the courses for all colors that could not be assigned class 
rooms. For each color, the top NCR courses are mapped to 
available class rooms. The remaining courses fall into B. 
The performance function represents the percentage of 
dropped students (PDS) in all courses which could not be 
mapped to time slots or to class rooms. In other words:   
 

PDS  =  ( {C in A U B} NST(CO: CO in C)  ) / N 
 

VII. EVALAUTION 

To generate registration data, we used a randomized 
simulation to evaluate the performance of proposed algorithm 
VC*. For this we consider the courses from four departments, 
where each department has N/4 students. Each course has on 
the average 10 students which means there are, on the average, 
N/40 courses for each department.  The total number of courses 
should not exceed the number room-time-slots (N/40 =< NTS * 

NRM ) which allows finding the NRM when NTS is reasonably 
selected (NTS =<10). Each student registers 3 courses (60%) 
from his department and two courses (40%) from another 
department. The number of students N is taken as 400, 600, 
800, 1000, and 1200. The student course registration follows a 
uniform distribution. Each of the above random generation 
define one instance of the registration data. For each problem 
instance we run VC and VC*. Each performance point P(VC) 
or P(VC*) in the plot shown below results from averaging 10 
problem instances.  

Figure 4 shows the percentage of dropped students (PDS) 
for (1) VC solution, (2) VC with heuristic H1, (3) VC with 
heuristic H-2, and (4) VC*. Results confirm that the PDS out 
the native VC solution can easily become unacceptable as the 
PDS may exceed 10% of total enrollment. Moreover, PDS 
quasi linearly increases with problem size. While H-2 has 
shown to produce a marginal improvement over VC solution, 
H-1 seems to have useful impact in matching the solution with 
the resource. Overall, VC* benefits from combining H-1 and 

H-2 and achieved the least PDS which is within 3.22% for the 
studied cases, i.e. reducing the PDS of VC by about 65%.  

 

 
Figure 4: Percentage of dropped students for (1) VC solution, (2) VC with 
heuristic H1, (3) VC with heuristic H-2, and (4) VC*. 

VIII. CONCLUSION 

The Vertex Coloring (VC) algorithm produces solutions 
that may not be implementable Class Scheduling due to the use 
of a number of time slots that exceed the available ones with an 
unbalanced use of class rooms.  A randomized simulation of 
registration of four departments with up to 1200 students is 
used to evaluate the performance of proposed heuristic. Results 
confirm that the percentage of dropped students PDS out the 
native VC solution can easily become unacceptable as the PDS 
may exceed 10% of total enrollment. VC* achieved the 
significantly lower PDS which is within 3.22% for the studied 
cases, i.e. reducing the PDS of VC by about 65%. Although 
graph coloring may not eliminate all existing conflicts, it 
greatly reduces them and significantly improves usage of 
available resources. The VC* is proposed to the Balamand 
University as a tool to facilitate student registration.  

REFERENCES 
[1] W. Klotz, "Graph Coloring Algorithms," Mathematic- Bericht 5, TU 

Clausthal, 2002. 

[2] D.J.A. Welsh, and M.B. Powell, "An Upper Bound for the Chromatic 
Number of a Graph and it's Application to Timetabling Problems," 
Comp. Jrnl. 10, 1967. 

[3] R.M. Karp, "Reducibility among Combinatorial Problems In Complexity 
of Computer Computations," In Complexity of Computer Computations, 
Plenum Press, New York 1972. 

[4] S.K. Miner, S. Elmohamed, and H.W. Yau, "Optimizing Timetabling 
Solutions using Graph Coloring," NPAC, Syracuse University, 1995.  

[5] R.L. Bracho, J.R. Rodriguez, and F.J. Martinez, "Algorithms for Robust 
Graph Coloring on Paths," ICEEE, and CIE, Mexico, Sept 2005.  

[6] T.A. Redl, "University Timetabling via Graph Coloring: An Alternative 
Approach," University of Houston, Houston, 2007.  

[7] T. Dobrolowski, D. Dereniowski, and L. Kuszner, "Koala Graph 
Coloring Library: an Open Graph Coloring Library for Real World 
Applications," IT, Gdansk, Poland, May 2008.  

[8] J.A. Torkestani,  and M.R. Meybodi, "Graph Coloring Problem Based 
on Learning Automata," ICME, 2009.  

[9] A. Dharwadker, "The Vertex Coloring Algorithm,"  unpublished, 2006.

 


