
Graph Coloring for Class Scheduling

Amal Dandashi
MSc Student

Department of Computer Science,
University of Balamand

Koura, Lebanon
amal_dandashi@hotmail.com

Mayez Al-Mouhamed
Department of Computer Engineering

King Fahd University of Petroleum and Minerals
31261 Dhahran,

Kingdom of Saudi Arabia
mayez@kfupm.edu.sa

Abstract— The class scheduling problem can be modeled by a
graph where the vertices and edges represent the courses and the
common students, respectively. The problem is to assign the
courses a given number of time slots (colors), where each time
slot can be used for a given number of class rooms. The Vertex
Coloring (VC) algorithm is a polynomial time algorithm which
produces a conflict free solution using the least number of colors
[9]. However, the VC solution may not be implementable because
it uses a number of time slots that exceed the available ones with
unbalanced use of class rooms. We propose a heuristic approach
VC* to (1) promote uniform distribution of courses over the
colors and to (2) balance course load for each time slot over the
available class rooms. The performance function represents the
percentage of students in all courses that could not be mapped to
time slots or to class rooms. A randomized simulation of
registration of four departments with up to 1200 students is used
to evaluate the performance of proposed heuristic.

Keywords- class scheduling, graph coloring, algorithms, vertex
coloring, uniform distribution.

I. INTRODUCTION

A classical problem in graph theory, the graph coloring
problem is to color the nodes of an undirected graph with as
few colors as possible, such that no two adjacent nodes share a
color [1]. Graph coloring has many applications including map
coloring, task scheduling, parallel computation, network
design,etc. Here we are only concerned about the problem of
course scheduling, where graph coloring can provide an
algorithm which will prevent or at least minimize conflicting
schedules.

 There are many graph coloring algorithms which
have all proved to be NP complete, such as the Saturation
algorithm, the Recursive Largest First algorithm, Degree of
Saturation Algorithm, Simulated Annealing algorithm, Greedy
algorithm, and many others [1]. The application of computers
to timetabling problems has a long and varied history. In 1967,
the problem of course scheduling was applied to graph
coloring. The vertices of the graph were ordered sequentially,
according to degree and the graph was colored without using
an upper limit on the number of colors [2]. In 1972 the
problem of graph coloring proved to be NP complete [3]. In
1995, a method using graph coloring was developed for
optimizing solutions to the problem of graph scheduled, and
was compared to an expert system which arrived at a partial
solution and then performed simulated annealing to fill out the
solution. The latter system did not schedule all courses,

whereas the graph coloring method was found to be quicker
and handles all hard constraints of the problem [4]. In 2005,
the Robust Graph Coloring (RGC) problem on paths was
studied, where given a red path and a blue path, with costs, for
the same set of vertices, a 3-coloring is found on the blue path
that minimizes the sum of the costs of the red edges whose
ends have the same color. An exponential time algorithm, a
randomized algorithm, and a greedy algorithm were proposed
[5]. In 2007, an alternative graph coloring method was
presented for university timetabling that incorporates room
assignment during the coloring process [6].

In 2008, the Koala graph coloring library was developed. It
includes many practical applications of graph coloring, and is
based on C++. Future directions include efficiency
improvements, implementation of graph class recognition, and
better graph visualization algorithms [7]. In 2009, four
learning automata-based approximation algorithms were
proposed for solving the minimum vertex coloring problem
(being NP-hard). The algorithms find the possible colorings of
the graph and depending on the response from the
environment, color sets are rewarded or penalized. Then the
minimum coloring of the graph with the highest probability is
found. The algorithm an improved efficiency [8].

The VC algorithm is a polynomial time algorithm which
produces a conflict free solution using the least number of
colors [9]. As there still may be conflicts in the scheduling of
courses produced by VC due to limitations in the available
time slots or class rooms, a proposed heuristic VC* is
proposed to achieve more uniform distribution of courses
among time slots and class rooms. Uniform distribution will
ensure less conflict with regard to time and space limitations.
Randomized simulation of registration data is used to assess
the performance of proposed heuristics.

 This paper is organized as follows. In section II, basic
of graph coloring are presented. In section III the VC is
described. Section IV contains an adaptation of VC to course
scheduling. In Section V we present the heuristic VC*.
Sections VI and VII present the objective function and the
evaluation, respectively. We conclude in section VII.

II. BACKGROUND

In graph theory, graph coloring is an assignment of labels
(colors) to elements of a loopless graph subject to certain
constraints. It is a way of coloring the vertices of a graph such
that no two adjacent vertices share the same color, called vertex

coloring. For the specific course scheduling application, a color
represents one time slot, which is allocated to a number of
physical rooms. A vertex represents a course, while the edges
between the vetices represents the common students between
the courses. A proper m-coloring of a graph (G) is an
assignment of a unique color to each vertex of G such that no
two adjacent vertices are assigned the same color. The smallest
number of colors needed to color G is known as it's chromatic
number X(G). A graph that can be assigned a proper m-
coloring is called m-colorable, and it is m-chromatic if it's
chromatic number is exactly m. The chromatic polynomial
counts the number of ways a graph can be colored using no
more than a given number of colors. A set of vertices in which
all pairs of vertices share an edge make up a clique. Graphs
with large cliques have high chromatic numbers but not vice-
versa. Graphs with high chromatic number must have high
maximum vertex degree. The degree of a vertex is the number
of it's distinct edges [9].

For small problems, it does not matter which graph
coloring algorithm is used as long as it solves the problem
correctly. However, for many bigger problems the only known
algorithms take so long to compute the solution that they are
practically useless. A polynomial-time algorithm is one whose
number of computational steps is always bounded by a
polynomial function of the size of the input, thus it is actually
useful in practice. The class of polynomial-time algorithms is
denoted by P. For some problems, there are no known
polynomial-time algorithms but they do have nondeterministic
polynomial-time algorithms, denoted by NP. NP problems are
such that any polynomial-time algorithm for them can be
transformed, in polynomial-time, into a polynomial-time
algorithm for every problem in NP. Such problems are called
NP-complete [9]. The problem of trying to find a proper m-
coloring of the vertices of a graph, for any fixed integer m
greater than 2, is known to be NP-complete [3].

III. THE VERTEX COLORING ALGORITHM

VC is a polynomial-time algorithm for producing an m-
chromatic solution for a graph. Dharwadker proves that every
graph (G) with n vertices and maximum vertex degree ∆ must
have chromatic number X(G) less than or equal to ∆+1 and that
the algorithm will always find proper m-coloring of the
vertices of G with m less than or equal to ∆+1 [9].

Consider a loopless graph G, with n vertices that consists of
a set of vertices V and a set of edges E, where each edge is an
unordered pair of distinct vertices. The maximum degree of all
vertices of G is denoted by ∆. Given graphs G and H, the
Cartesian product GxH is defined as the graph whose set of
vertices is V(G)xV(H) with an edge connecting vertex (u1,v1)
with vertex (u2,v2), only if either u1=u2 and {v1,v2} is an
edge in H or v1=v2 and {u1,u2} is an edge in G. A subset of
vertices where every unordered pair of vertices is an edge is
called a clique, denoted by Q. If all vertices of a graph form a
clique, the graph is said to be complete and is denoted by Km,
m being the number of vertices. A set of vertices where no
unordered pair of vertices is an edge is an independent set S. A
maximum independent set is an independent set with the
largest number of vertices. The chromatic number X(G) of a

graph is the minimum value of m for which there exists a
proper m-coloring of the vertices of G.

The algorithm starts with the Cartesian Lemma which
allows the conversion of the problem of finding proper m-
coloring of the n vertices of a graph to the logically equivalent
problem of finding an independent set S of size n in the
Cartesian product GxKm. G with n vertices is m-colorable if
and only if the Cartesian product GxKm has an independent set
S of size n. Km being a clique, represents a color per vertex, for
which each color will be assigned to each independent set in G
[13]. For example, consider a graph Gn = {u1, u2, u3} which is
m-colorable, and consider a clique Km= {v1, v2} as shown on
Figure 1.

Figure 1: Graph corresponding to Gn x Km

The algorithm first constructs the Cartesian Product GxKm,
then it searches for an independent set S of size n in the
Cartesian product as shown on Figure 2.

Figure 2: Subsets S1 and S2

Set S1 is an independent set: for the vertices {u1,v1} and
{u2,v2}, u1 ≠ u2, v1 ≠ v2. For the vertices {u1,v1} and
{u3,v2}, u1 ≠ u3, v1 ≠ v2. For the vertices {u2,v2} and
{u3,v2}, u2 ≠ u3 and while v2=v2, u2 and u3 don’t share an
edge in G. Therefore they are properly m-colored with the
assigned vertices of Km. Set S2, on the other hand is not an
independent set: for the vertices {u1, v1} and {u1, v2}, u1=u1
and v1 ≠ v2, the two vertices are dependent. In the above
example, u1 is assigned colors v1, and u2 and u3 are assigned
the color v2. G is properly 2-colored by the Cartesian product
G3 x K2 [9]. This algorithm was implemented using C++.

IV. GRAPH COLORING: STUDENTS' REGISTRATION CODE

In order to implement the VC program to the problem of
student conflict-free course scheduling, we have created a
program named Graph Coloring (GC), using the Java
programming language, which reads in information of students'
and their respective registered courses for a given semester
from a text file, and outputs this information in the form of a
binary graph text file, in the format required by VC.

The binary graph required as input by VC is an adjacency
matrix of graph G. It is an nxn matrix with the entry in row u

and column v equal to 1 if u and v share an edge, otherwise the
entry would equal 0. An example of a small (11x11) graph:

The Bondy-Murty Graph:[9]
11

0 0 1 1 1 1 0 1 1 1 1
0 0 1 1 1 1 0 1 1 1 1
1 1 0 1 0 0 1 0 0 0 0
1 1 1 0 0 0 1 0 0 0 0
1 1 0 0 0 1 1 0 0 0 0
1 1 0 0 1 0 1 0 0 0 0
0 0 1 1 1 1 0 1 1 1 1
1 1 0 0 0 0 1 0 1 0 0
1 1 0 0 0 0 1 1 0 0 0
1 1 0 0 0 0 1 0 0 0 1
1 1 0 0 0 0 1 0 0 1 0

This graph's coloring output is as follows:

Figure 3: The Bondy-Murty Graph

V. UNIFORM DISTRIBUTION ALGORITHM

After running the VC program on the output graph file
produced by the GC program, we have a result of proper
coloring allocation to each course and its respective students.
Each color represents one time slot with a set of rooms
available in that time slot.

The next problem to address is the number of colors (NC)
allocated by the VC program with respect to the number time-
slots (NTS) available for use. For example, if we have a graph
of 50 courses registered by a number of students, and this
graph is run on the VC program, and was properly colored
with 12 colors. Suppose that each color represents one time
slot and an average of four available rooms in that time. So
these four rooms are independent and can be run in parallel,
which is why many courses share the same color.

Colors C1 C2 C3 C4

Number of Courses 4 3 1 7

Number of available rooms 4 4 4 4

TABLE I.

The number of courses (NCO(C)) allocated to a particular
time-slot (color) may be greater than, equal or below the
number of available rooms (NRM)for use. For example, in the
above example the color C2, having 4 rooms available for use,
has only 3 courses allocated, thus one room will be unused. Or

the color C4, having 4 rooms available for use, has 7 courses
allocated to it, thus 3 of the courses will not have a room.

Ideally, we need to favor a uniform distribution (UD) of
courses with respect to colors, in order to avoid conflicts and
to maximize the use of available room/time slots. The
following Heuristics H-1 and H-2 were developed to favor
uniform and balanced distribution of time slots and rooms.

We define a heuristic H-1 that operates on the solution
provided by VC with the objective to promote uniform
distribution of courses over the colors. Heuristic H-1 applies
when the NC allocated by the VC program is the maximum
NTS available for use, and if the NCO(C) allocated to a
particular color C exceeds the number of available rooms NRM
for use in that color, ex: C4 having one time slot and 4
available rooms, has 7 courses allocated to it. Only 4 of these
courses can take place due to limited rooms. The extra 3
courses cannot be assigned to any other color with an extra
slot since they would create a conflict.

A formal description of heuristic H1 is as follows. H1 starts by
allocating NTS time slots to the top colors or group of courses
(SAlloc) that have the highest student contingency. SAlloc is
being the set of colors that are allocated time slots.
Unallocated colors are included is a set SNalloc. The courses
that have been colored by: (1) an allocated color but having a
set of courses exceeding the number of room NRM , or (2) an
unallocated color, are assigned to the allocated time slot that
has the least conflict edges among all allocated colors that
have a number o courses below the number of available rooms
NRM . Intuitively, H-1 identifies the number of conflict edges
(common students) between each of the 3 courses and the rest
of the colors with a free room slot. Start with the largest class.
Chose the color with the least conflict edges with the course,
and in order to favor more uniform distribution, drop the
number of students that conflict. Then assign the course to the
color chosen.

We define a heuristic H-2 that operates on the solution
provided by VC with the objective to balance course load for
given time slots over the available classrooms. Intuitively, H-2
find all extra courses, group them into independent sets, where
each set of courses are independent of each other and may be
taken in the same time (same color). Sort the sets of courses in
descending order according to weight. Color the highest
priority set of courses with remaining new colors. If the NCO
allocated to a new color > the amount of available room for
use in this color, repeat Heuristic 1. If the number of extra
classes < the number of remaining colors, then there is no
problem as all courses will have received a color. If not all
extra courses received a new color (not enough colors), then
go to Heuristic 1.

A formal description of heuristic H2 is as follows.
Heuristic H-1 applies when the number of colors, each
consists of a group of courses, is below the number of time
slots (NC =< NTS) but some colors have a number of courses
that exceeds the number of available rooms NRM. For each
color, the courses in excess of NRM which have the lowest
contingency are allocated to one of the remaining time slots
(NC =< NTS).

Using the previously defined heuristics H-1 and H2, we
proposed algorithm VC* that (1) promote the uniform
distribution of courses over the time slots (colors) and (2)
balance the course load for a given time slot over the available
classrooms. VC* operates as follows: (1) run VC over the
problem, if (NC < NTS) then apply H-2, else apply H-1.

VI. OBJECTIVE FUNCTION

Here we define the objective function. VC solution uses NC
time slots (colors) and each time slot is used for NCO(C)
courses. In the following we build two sets of courses A and B
for each solution that will be used to evaluate the objective
function of the solution. N is the number of students.

Set A is defined by all the colors that could not be mapped to
some time slot as only NTS color can be mapped to time slots.
A can be constructed by sorting the colors in descending
degrees D(C), i.e. number of students for all courses in a given
time slot. The top NTS colors are mapped to available time
slots. The remaining colors fall into A. Set B is defined by all
the courses for all colors that could not be assigned class
rooms. For each color, the top NCR courses are mapped to
available class rooms. The remaining courses fall into B.
The performance function represents the percentage of
dropped students (PDS) in all courses which could not be
mapped to time slots or to class rooms. In other words:

PDS = ({C in A U B} NST(CO: CO in C)) / N

VII. EVALAUTION

To generate registration data, we used a randomized
simulation to evaluate the performance of proposed algorithm
VC*. For this we consider the courses from four departments,
where each department has N/4 students. Each course has on
the average 10 students which means there are, on the average,
N/40 courses for each department. The total number of courses
should not exceed the number room-time-slots (N/40 =< NTS *

NRM) which allows finding the NRM when NTS is reasonably
selected (NTS =<10). Each student registers 3 courses (60%)
from his department and two courses (40%) from another
department. The number of students N is taken as 400, 600,
800, 1000, and 1200. The student course registration follows a
uniform distribution. Each of the above random generation
define one instance of the registration data. For each problem
instance we run VC and VC*. Each performance point P(VC)
or P(VC*) in the plot shown below results from averaging 10
problem instances.

Figure 4 shows the percentage of dropped students (PDS)
for (1) VC solution, (2) VC with heuristic H1, (3) VC with
heuristic H-2, and (4) VC*. Results confirm that the PDS out
the native VC solution can easily become unacceptable as the
PDS may exceed 10% of total enrollment. Moreover, PDS
quasi linearly increases with problem size. While H-2 has
shown to produce a marginal improvement over VC solution,
H-1 seems to have useful impact in matching the solution with
the resource. Overall, VC* benefits from combining H-1 and

H-2 and achieved the least PDS which is within 3.22% for the
studied cases, i.e. reducing the PDS of VC by about 65%.

Figure 4: Percentage of dropped students for (1) VC solution, (2) VC with
heuristic H1, (3) VC with heuristic H-2, and (4) VC*.

VIII. CONCLUSION

The Vertex Coloring (VC) algorithm produces solutions
that may not be implementable Class Scheduling due to the use
of a number of time slots that exceed the available ones with an
unbalanced use of class rooms. A randomized simulation of
registration of four departments with up to 1200 students is
used to evaluate the performance of proposed heuristic. Results
confirm that the percentage of dropped students PDS out the
native VC solution can easily become unacceptable as the PDS
may exceed 10% of total enrollment. VC* achieved the
significantly lower PDS which is within 3.22% for the studied
cases, i.e. reducing the PDS of VC by about 65%. Although
graph coloring may not eliminate all existing conflicts, it
greatly reduces them and significantly improves usage of
available resources. The VC* is proposed to the Balamand
University as a tool to facilitate student registration.

REFERENCES
[1] W. Klotz, "Graph Coloring Algorithms," Mathematic- Bericht 5, TU

Clausthal, 2002.

[2] D.J.A. Welsh, and M.B. Powell, "An Upper Bound for the Chromatic
Number of a Graph and it's Application to Timetabling Problems,"
Comp. Jrnl. 10, 1967.

[3] R.M. Karp, "Reducibility among Combinatorial Problems In Complexity
of Computer Computations," In Complexity of Computer Computations,
Plenum Press, New York 1972.

[4] S.K. Miner, S. Elmohamed, and H.W. Yau, "Optimizing Timetabling
Solutions using Graph Coloring," NPAC, Syracuse University, 1995.

[5] R.L. Bracho, J.R. Rodriguez, and F.J. Martinez, "Algorithms for Robust
Graph Coloring on Paths," ICEEE, and CIE, Mexico, Sept 2005.

[6] T.A. Redl, "University Timetabling via Graph Coloring: An Alternative
Approach," University of Houston, Houston, 2007.

[7] T. Dobrolowski, D. Dereniowski, and L. Kuszner, "Koala Graph
Coloring Library: an Open Graph Coloring Library for Real World
Applications," IT, Gdansk, Poland, May 2008.

[8] J.A. Torkestani, and M.R. Meybodi, "Graph Coloring Problem Based
on Learning Automata," ICME, 2009.

[9] A. Dharwadker, "The Vertex Coloring Algorithm," unpublished, 2006.

