### King Fahd University of Petroleum and Minerals Computer Engineering Department

# SOME RESEARCH DIRECTIONS IN MASSIVELY-PARALLEL COMPUTING

Dr. Mayez Al-Mouhamed

**Professor, Computer Engineering Department** 

### **Contents**

- Many-core Technology
- Many-core for Supercomputing
- **GPU Application to MRI**
- CUDA
  - > A Device Application
  - > Arrays of Parallel Threads
  - **Block IDs and Thread IDs**
- **Example of Matrix Multiplication** 
  - > Tiled Transformation
  - > Kernel
- G80 Model of Execution
  - **➤ G80: Thread Scheduling**
- **Performance (MM and Jacobi on FX 58000)**
- Conclusion: Research Directions

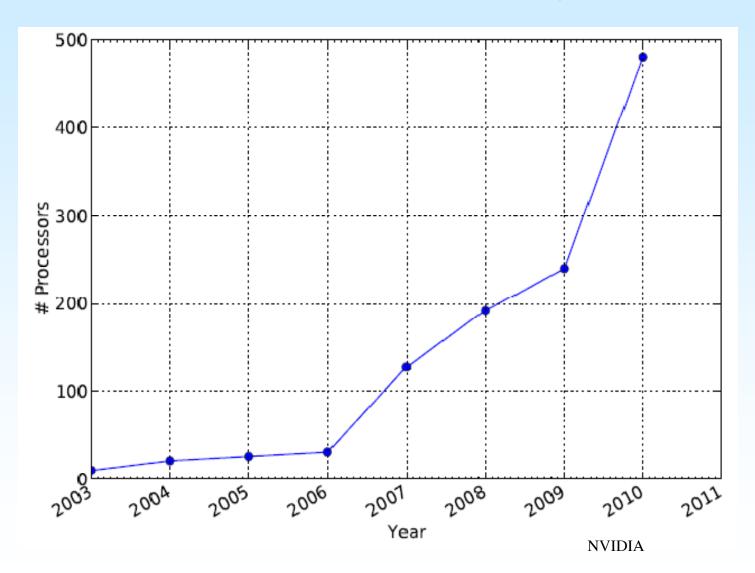
### Many-core Technology

- Programmable accelerators to improve performance for specific domains of applications (DSP, Games, etc)
- Discrete video processors have long been included to meet specialized needs of rendering images at video rates
- Under the pressures of the consumer gaming and professional workstation market, Graphical Processing Units (GPUs) have evolved to deliver ever-increasing amounts of performance
- The two primary vendors in GPU market, NVIDIA and ATI (part of AMD), felt the pressure to provide more programmable access to their processors.

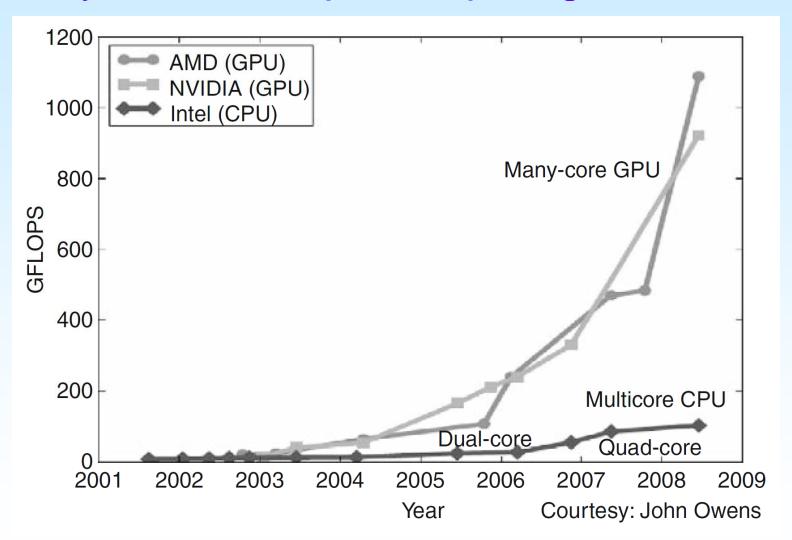
### Many-core Processors

- A market was emerging for general purpose computations on non-graphics data on the GPUs leading the way with a General Purpose GPU solution (GPGPU, capable of 100s GFLOPs)
- Programming heterogeneous platform (GPUs and CPUs):
  - NVIDIA introduced CUDA (Compute Unified Device Architecture) in 2007
  - AMD adopted OpenCL (Open Computing Language) in 2009
- GPU: use massive multithreading, fast context switching, and high memory bandwidth, and overlapping long-latency loads in stalled threads with computation in other threads (multiple streaming multiprocessors with potentially hundreds of cores)
- CUDA (ext. to C) is most widely used parallel programming framework for general purpose GPU computations.

### Many-core for Supercomputing



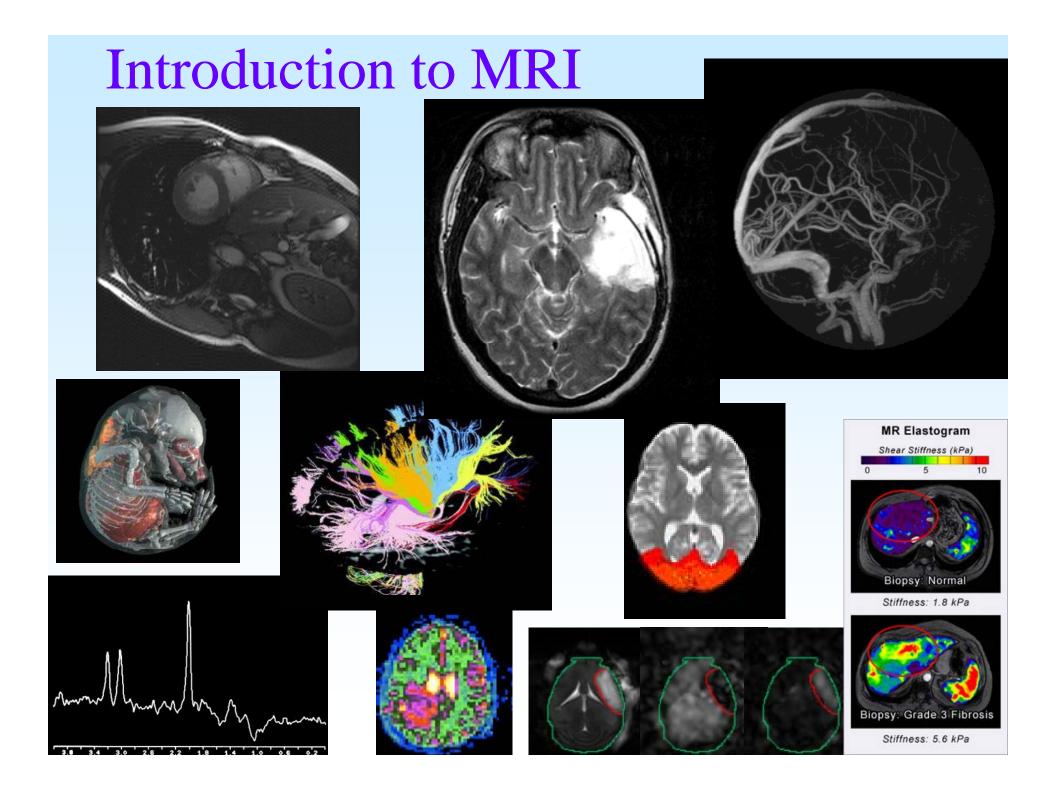
### Many-core for Supercomputing



# GPU Application to MRI

Justin Haldar University of Illinois at Urbana Champagn

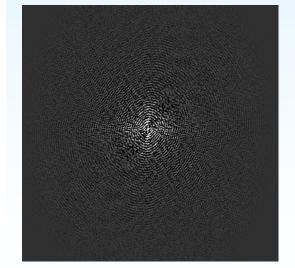
S. S. Stone, et al. "Accelerating Advanced MRI Reconstructions on GPUs." Journal of Parallel and Distributed Computing 68:1307-1318, 2008



# MRI Pipeline



Data Acquisition





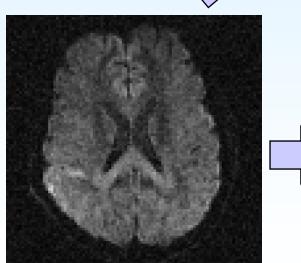


Image

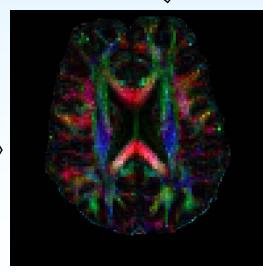
Reconstruction



**Interpretation** 







**Parameter** 

**Estimation** 

# MRI Pipeline



Data Acquisition

### Faster!

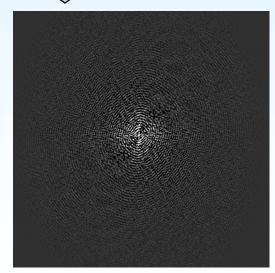
- Reduce scan time/image artifacts
- Immediate diagnosis and refinement

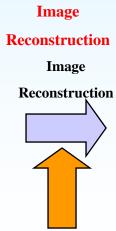


**Interpretation** 



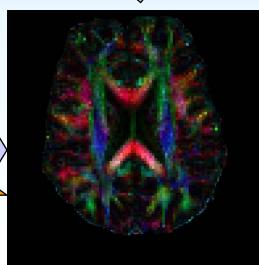
**GPU** 





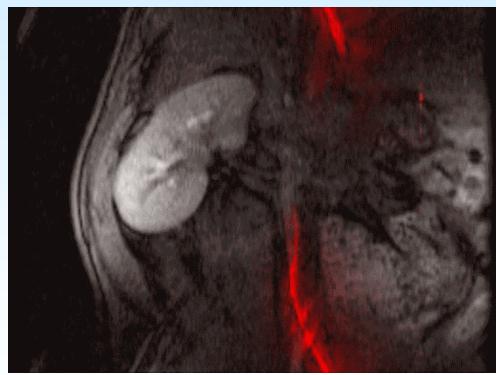
**GPU** 





## Example: Interventional MRI

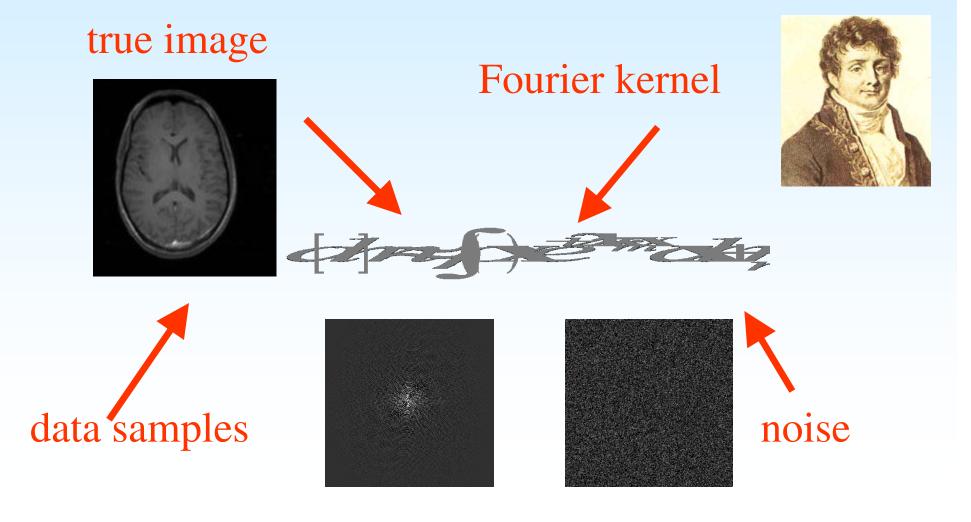


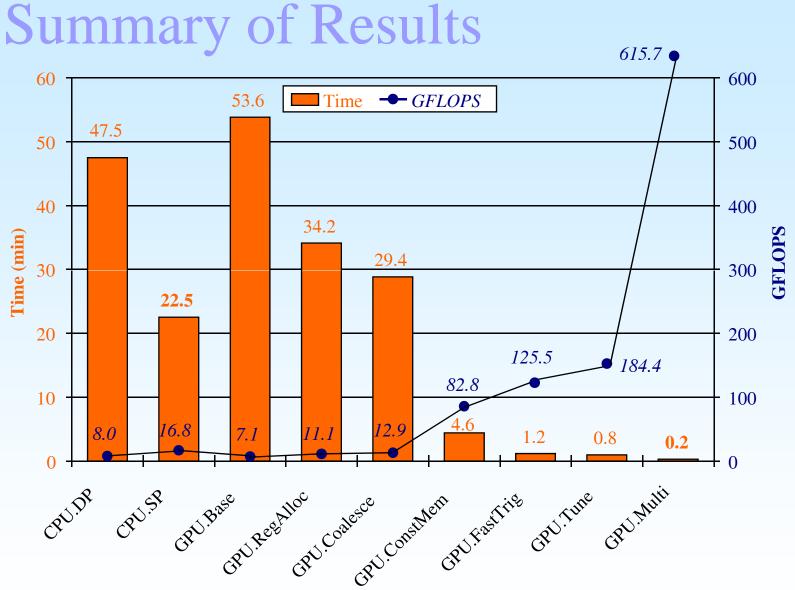


Real-time reconstruction is necessary to provide feedback to surgeon

## MRI data in Fourier Space

- Ignoring several effects, MRI image and signal are a Fourier transform pair and Matrix-Vector Multiplication
- Huge matrix data (2D: 34 GB, 3D: 2 PB)

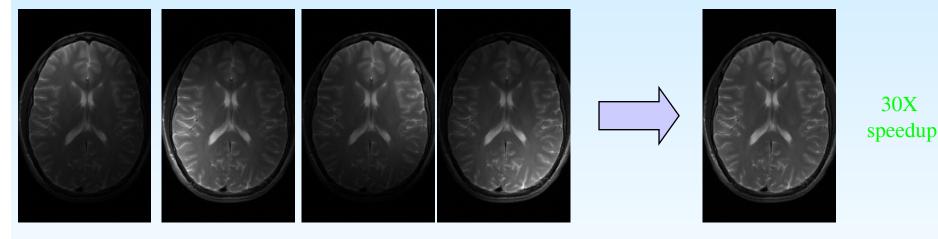




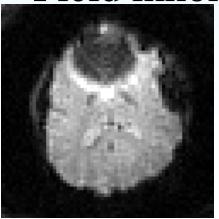
S. Stone et al., J Parallel Distrib Comput 68:1307-1318, 2008.

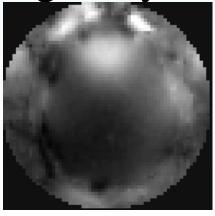
### MR Reconstruction

- Parallel Imaging
  - Data acquired with multiple spatially diverse sensors

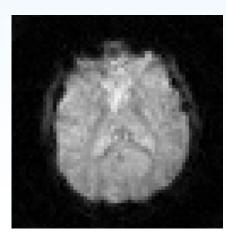


Field inhomogeneity correction









95X speedup

## GPUs in MRI

- Common MRI computations have been accelerated by ordersof-magnitude using GPUs
  - Enables more practical use of advanced reconstruction algorithms to reduce scan time/image artifacts
  - Key primitives: 3D convolution, 3-D histogram, sparse/Toeplitz matrix-vector multiplication, sparse CG solver, and FFT
- Current challenge: To develop a common, modular framework for GPU reconstruction of MR data (and other imaging modalities)
  - Single framework for multi-core CPUs and many-core GPUs
  - Automatic tuning and selection for each primitive

#### Future work:

- Continued optimization, scaling of reconstruction algorithms
- GPU implementation of MR parameter estimation
- Support for integration into production MRI pipelines

### CUDA - C

- Integrated host+device app C program
  - Serial or modestly parallel parts in host C code
  - Highly parallel parts in device SPMD kernel C code

Serial Code (host)

Parallel Kernel (device)
KernelA<<< nBlk, nTid >>>(args);

Serial Code (host)

Parallel Kernel (device)
KernelB<<< nBlk, nTid >>>(args);

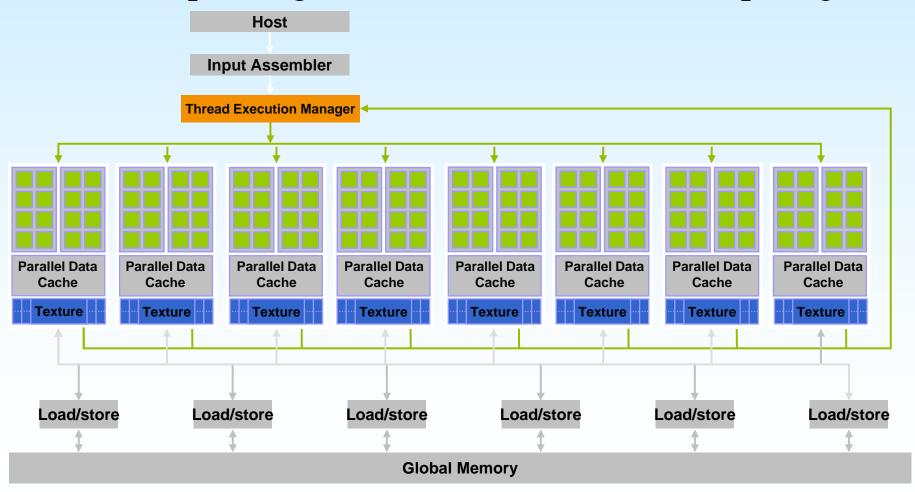
© David Kirk/NVIDIA and Wen-mei W. Hwu Urbana, Illinois, August 10-14, 2009

## **CUDA** Devices and Threads

- A compute device
  - Is a coprocessor to the CPU or host
  - Has its own DRAM (device memory)
  - Runs many threads in parallel
  - Is typically a GPU but can also be another type of parallel processing device
- Data-parallel portions of an application are expressed as device kernels which run on many threads
- Differences between GPU and CPU threads
  - GPU threads are extremely lightweight
    - » Very little creation overhead
  - GPU needs 1000s of threads for full efficiency
    - » Multi-core CPU needs only a few

## G80 CUDA mode – A **Device** Example

- Processors execute computing threads
- New operating mode/HW interface for computing



## CUDA Extends C

- Declspecs
  - global, device, shared, local, constant
- Keywords
  - threadIdx, blockIdx
- Intrinsics
  - \_\_syncthreads
- Runtime API
  - Memory, symbol, execution management
- Function launch

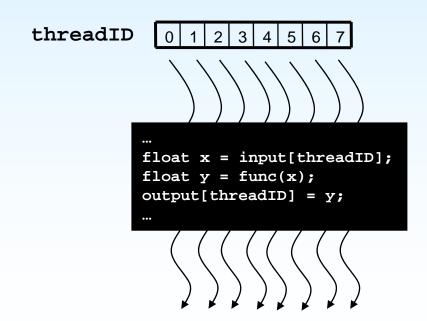
```
__device__ float filter[N];
 _global___ void convolve (float *image)
  shared float region[M];
 region[threadIdx] = image[i];
  syncthreads()
  image[j] = result;
// Allocate GPU memory
void *myimage = cudaMalloc(bytes)
```

// 100 blocks, 10 threads per block

convolve<<<100, 10>>> (myimage);

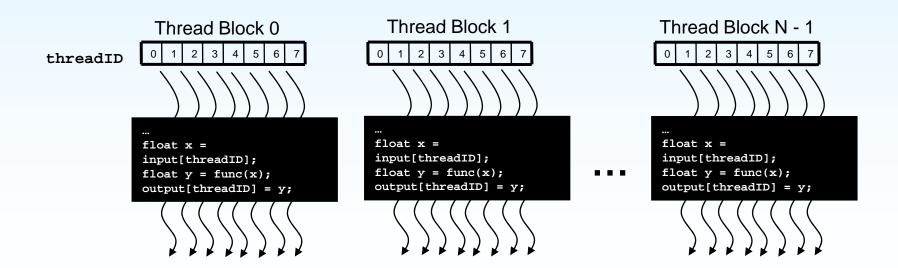
## Arrays of Parallel Threads

- A CUDA kernel is executed by an array of threads
  - All threads run the same code (SPMD)
  - Each thread has an ID that it uses to compute memory addresses and make control decisions



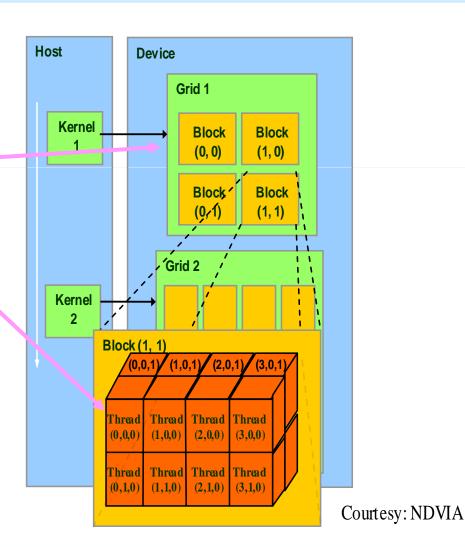
# Thread Blocks: Scalable Cooperation

- Divide monolithic thread array into multiple blocks
  - Threads within a block cooperate via shared memory, atomic operations and barrier synchronization
  - Threads in different blocks cannot cooperate



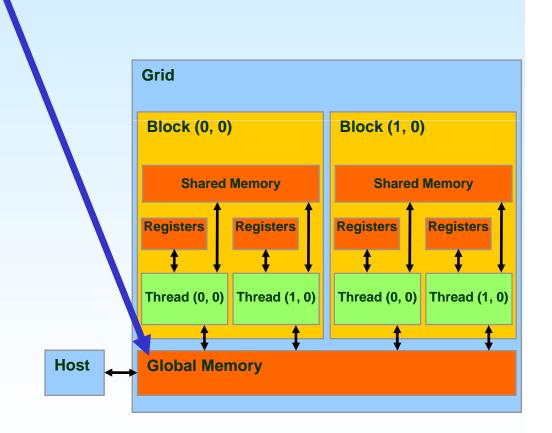
### Block IDs and Thread IDs

- All threads in a block execute the same kernel program (SPMD)
- Programmer declares block:
  - Block size 1 to 512 concurrent threads
  - Block shape 1D, 2D, or 3D
  - Block dimensions in threads
  - Blocks have Block id (X and Y)
- Threads have thread id (X,Y,Z) numbers within block
  - Thread program uses thread id to select work and address shared data
- Each block can execute in any order relative to other blocks
- CUDA Kernel is a mapping from data parallel computations onto Block id and thread id!



## CUDA Memory Model Overview

- Global memory
  - Main means of communicating R/W Data between host and device
  - Contents visible to all threads
  - Long latency access



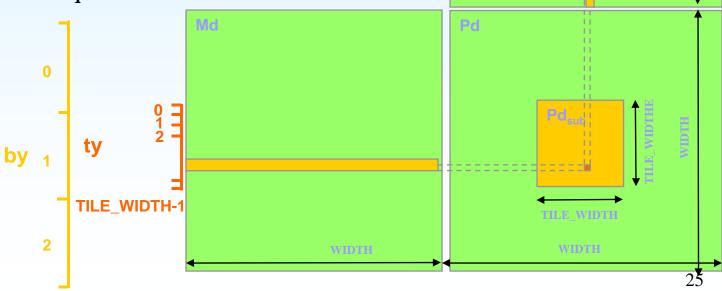
## Example: Matrix Multiplication

// Matrix multiplication on the (CPU) host in double precision

```
void MatrixMulOnHost(float* M, float* N, float* P, int
Width)
  for (int i = 0; i < Width; ++i)
     for (int j = 0; j < Width; ++j) {
       double sum = 0;
       for (int k = 0; k < Width; ++k) {
          double a = M[i * width + k];
          double b = N[k * width + j];
          sum += a * b;
       P[i * Width + j] = sum;
```

### Tiled Construct

- Break-up Pd into tiles
- Each block calculates one tile
  - Each thread calculates one element
  - Block size equal to tile size



bx

tx

ىتــــىس

Nd

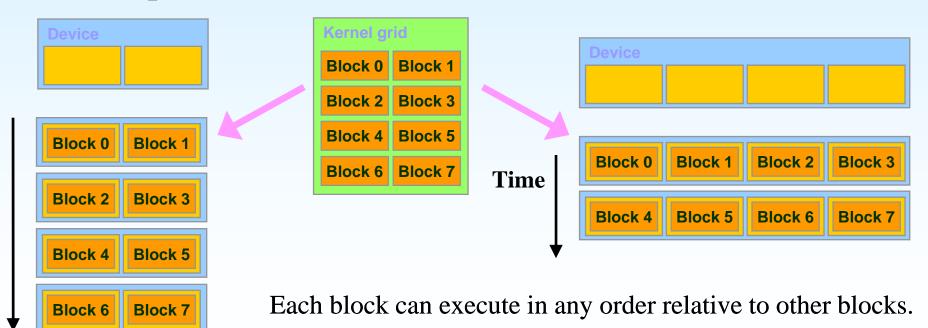
012 TILE\_WIDTH-1

### Kernel

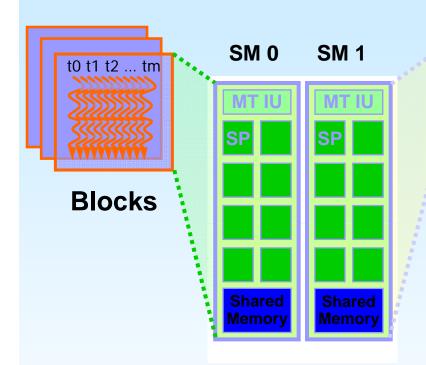
```
_global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
// Calculate the row index of the Pd element and M
int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;
// Calculate the column idenx of Pd and N
int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;
float Pvalue = 0;
// each thread computes one element of the block sub-matrix
for (int k = 0; k < Width; ++k)
  Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];
Pd[Row*Width+Col] = Pvalue;
```

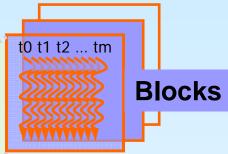
### Transparent Scalability

- Hardware is free to assigns blocks to any processor at any time
  - A kernel scales across any number of parallel processors



### **G80** Execution Model

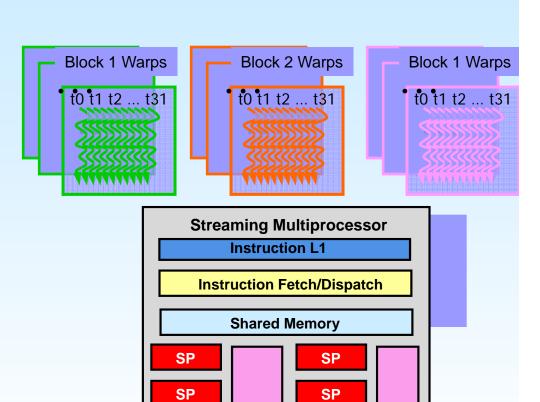




- Threads are assigned to Streaming Multiprocessors in block granularity
  - Up to 8 blocks to each SM as resource allows
  - SM in G80 can take up to **768** threads
    - » Could be 256 (threads/block) \* 3 blocks
    - » Or 128 (threads/block) \* 6 blocks, etc.
- Threads run concurrently
  - SM maintains thread/block id #s
  - SM manages/schedules thread execution

## G80: Thread Scheduling

- The threads of each Block are executed as 32-thread Warps (Instr. broadcast to 8 cores in 4 cycles)
  - An implementation decision, not part of the CUDA programming model
  - Warps are scheduled in SM
- If 3 blocks are assigned to an SM and each block has 256 threads, how many Warps are there in an SM?
  - Each Block is divided into 256/32 = 8
     Warps
  - There are 8 \* 3 = 24 Warps
  - Steaming Multiprocessor (Thread-Level Parallelism (TLP))
    - SM performs 18 FLOPs/Cycle
    - SM has 8K registers
    - When one warp stalls (Mem. or arith.),
       the SM quickly switches to a ready
       warp from same or another block
    - On-chip memories are used to promote data locality and sharing
    - Cache is single-ported, accesses of different addresses yield stalls



SFU

SP

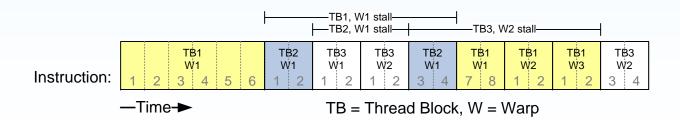
SFU

SP

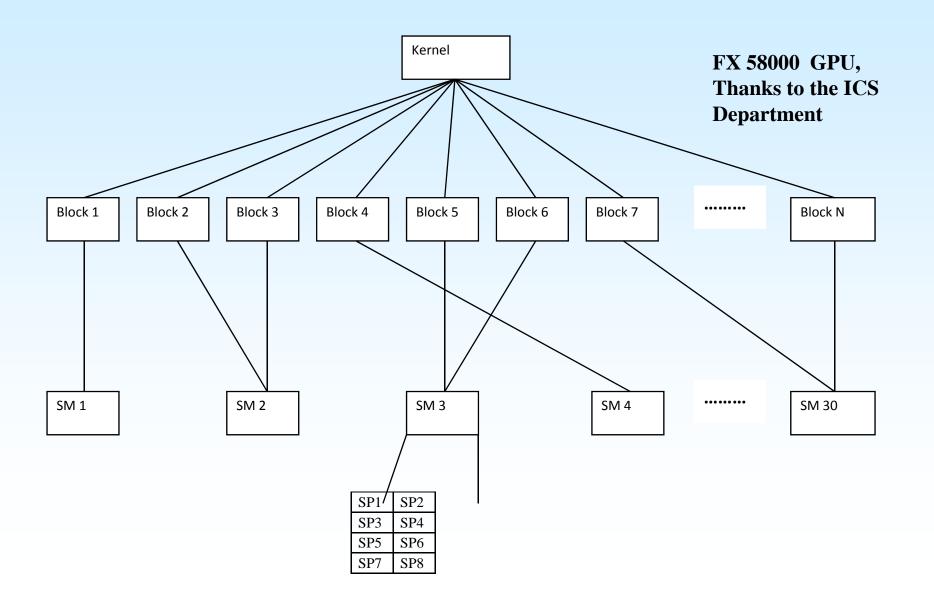
SP

## G80: Thread Scheduling (Cont.)

- Hiding latency of GM and some Arithmetics: SM implements zero-overhead warp scheduling
  - At any time, only one of the warps is executed by SM
  - Warps whose next instruction has its operands ready for consumption are eligible for execution
  - Eligible Warps are selected for execution on a prioritized scheduling policy
  - All threads in a warp execute the same instruction when selected
  - Coalesced access to SM significantly reduce access time



## Performance of MM and Jacobi



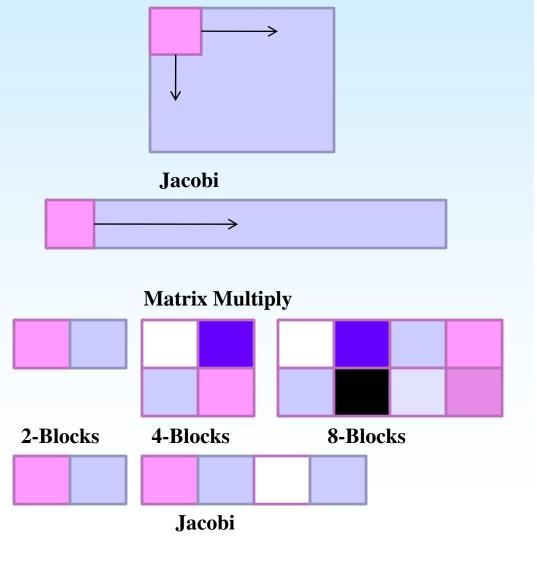
## N-Blocks Over 1-Block Experiments

#### ■ 1-Block Execution:

- Single kernel block will compute the whole matrix/array.
- Traverses in small blocks to complete the whole matrix/array.
- Each thread within the block compute (N\*N)/256 elements (for matrix multiply) and N/16 elements (for jacobi)

#### N-Block Execution:

- Whole resultant matrix/array is divided into number of blocks
   2,4,8, ..., 16384
- 1 Block = 256 threads (16x16) for MM.
- 1 Block = 16 threads for Jacobi.



**Matrix Multiply** 

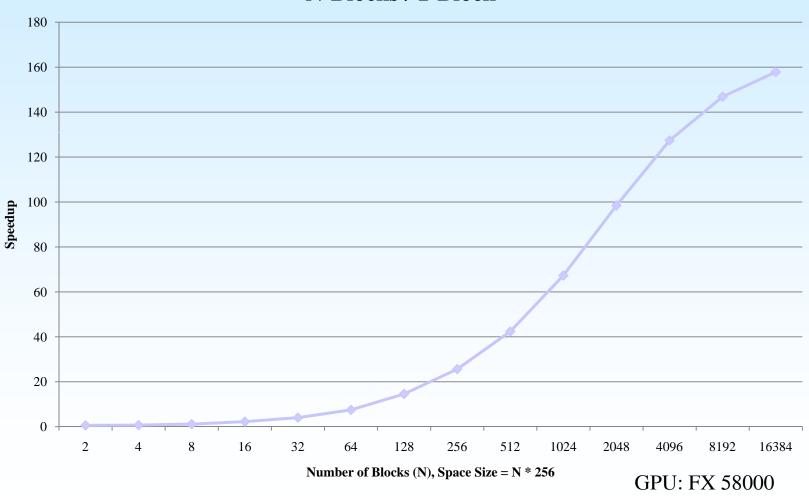
## Matrix Multiply (only GM)





# Matrix Multiply (With ShM)

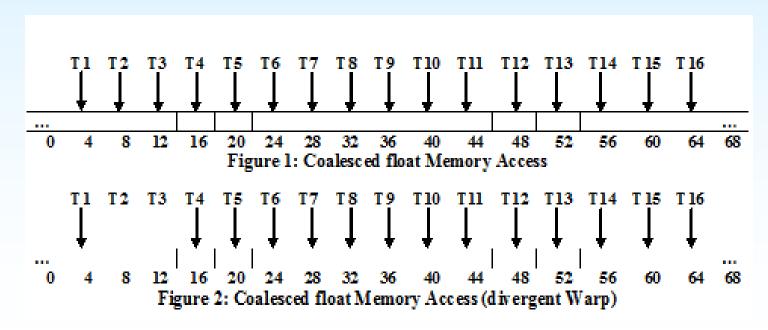
#### N-Blocks / 1-Block



Note: Significant Increase in Speedup is also due to Coalesced Memory Access

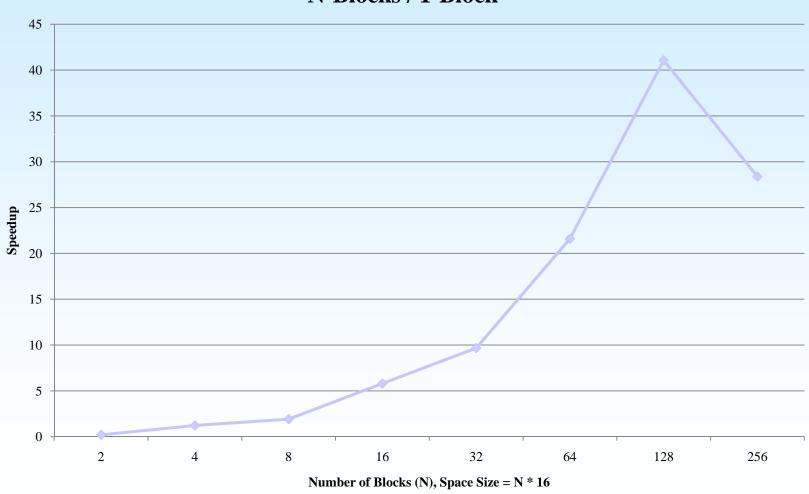
## Coalesced Memory Access

- The size of the memory element accessed by each thread is either 4, 8, or 16 bytes
- The elements form a contiguous block of memory
- The Nth element is accessed by the Nth thread in the half-warp, does not affect if any thread in between not accessing the global memory that is divergent warp.
- The address of the first element is aligned to 16 times the element's size



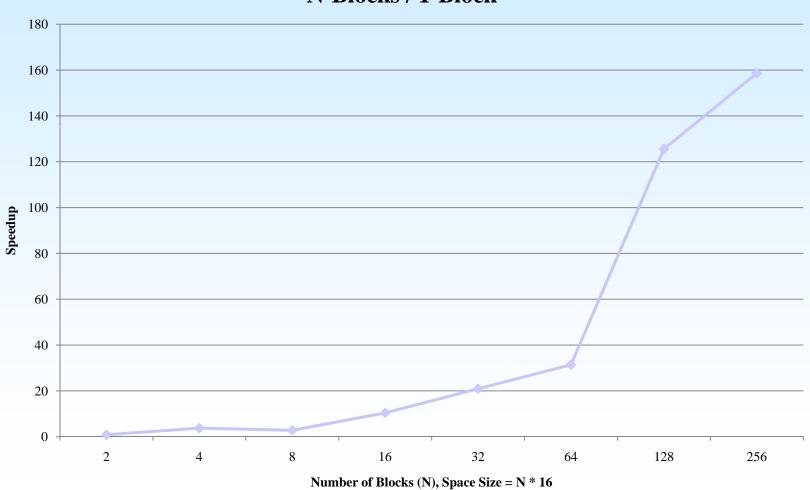
# Jacobi (only GM)

#### N-Blocks / 1-Block

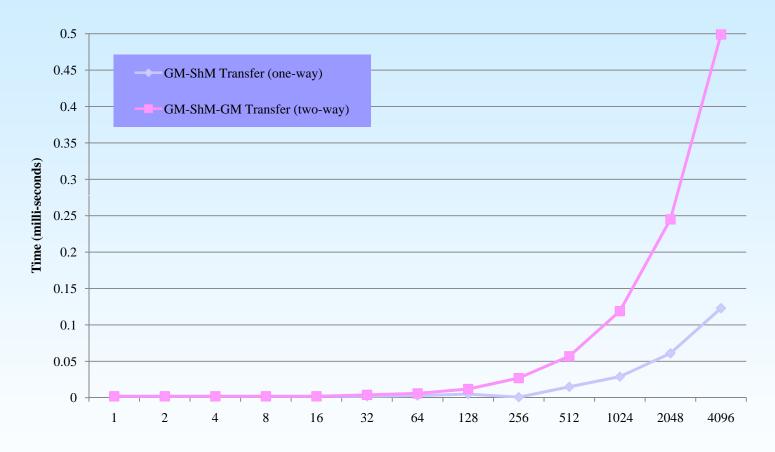


# Jacobi (With ShM)

### N-Blocks / 1-Block



# Benchmarking data copy



Kernel Blocks (N), Data Size = N \* 14KB, Chunk Size = 2 KB

### **Research Directions**

- Programming GPGPU require an expert level understanding of the memory hierarchy and execution model to reach peak performance.
- Even for experts, rewriting a program to exploit the architecture in achieving high speedup can be tedious and error prone.
- Compilers and their ability to make code transformations can assist in parallel programming of large scale GPGPU applications as well as handling many of the target specific details.
- A source to source compiler transformation and code generation framework is needed for the parallelization and optimization of computations expressed in sequential loop nests for running on many-core GPUs.
- May use a complete scripting language to describe composable compiler transformations that can be written, shared and reused by non expert application and library developers.
- A research framework must exhibit high-performance on standard benchmarks that show it capable of matching or outperforming hand-tuned GPU kernels.

### **Research Directions**

#### Some research directions:

- Automating the GPU kernel generation including computation partitioning, allocating memory for GPU I/O, GPU copying data, and performing block and thread decomposition.
- Compiler transformations can be applied in the decomposition and mapping process, and in subsequently optimizing the kernel code to manage the memory hierarchy and parallelism tradeoffs.
- Since there is significant performance variation on GPUs for very subtle differences in code, there is need to explore a space of different implementations, and different values of parameters associated with the mapping.
- A programming tool may support both automated compiler optimization as well as programmer-guided optimization.

## Thank you