
 Page 1 of 13

King Fahd University of Petroleum and Minerals

College of Computer Science and Engineering

Computer Engineering Department

COE 301 COMPUTER ORGANIZATION

ICS 233: COMPUTER ARCHITECTURE & ASSEMBLY LANGUAGE

Term 171 (Fall 2017-2018)

Major Exam 2

Saturday Dec. 2, 2017

Time: 150 minutes, Total Pages: 14

Name:______________________________ ID:__________________ Section: _______

Notes:

 Do not open the exam book until instructed

 Answer all questions

 All steps must be shown

 Any assumptions made must be clearly stated

Question Max Points Score

Q1 18

Q2 18

Q3 10

Q4 24

Total 70

Dr. Aiman El-Maleh

Dr. Marwan Abu Amara

 Page 2 of 13

 [18 Points]

(Q1)
(i) (10 points) A palindrome text is a text that reads the same backward or forward. For

example, both abcdcba and abcddcba are palindrome texts. Write a recursive MIPS

procedure that implements the following high-level palindrome procedure code using

minimal instructions. The palindrome procedure should test if a text is palindrome or not.

Assume the text to be tested is currently in the memory. Assume further that before calling

the palindrome procedure, the $a0 and $a1 registers already contain the memory

addresses of the first and the last characters of the text held in the memory, respectively.

The palindrome procedure returns 1 in register $v0 if the text is palindrome, and returns

0 in register $v0 if the text is not palindrome. Use MIPS programming convention in saving

and restoring only the necessary register(s) in the procedure. Note that the variables first

and last in the high-level procedure code refer to the memory locations of the first and

the last characters of the text, respectively. On the other hand, *first and *last refer to

the contents of the memory locations held in the variables first and last, respectively.

int palindrome(int first, int last) {

 if ((last – first) < 1) return 1;

 else if (*last != *first) return 0;

 else return (palindrome(++first, ––last));

}

palin:
 subu $t1,$a1,$a0 # $t1 = (end - begin)
 slti $t0,$t1,1 # $t1 < 1 ? If true, set $t0 to 1, else 0
 beqz $t0,elseif # (end - begin) < 1 ?
 li $v0,1 # return 1 (true)
 jr $ra
elseif:
 lbu $t0,0($a0) # get char at the beginning
 lbu $t1,0($a1) # get char at the end
 beq $t0,$t1,else # *(begin) != *(end) ?
 move $v0,$zero # return 0 (false)
 jr $ra
else:
 addiu $sp,$sp,-4 # save $ra
 sw $ra,0($sp)
 addiu $a0,$a0,1 # ++begin
 addiu $a1,$a1,-1 # --end
 jal palin # palin(++begin, --end)
 lw $ra,0($sp)
 addiu $sp,$sp,4 # save $ra
 jr $ra

 Page 3 of 13

(ii) (8 points) Assume that a procedure f calls another procedure g twice as shown in the given

high-level code. Procedure g expects two signed integers to be passed to it as parameters

in registers $a0 and $a1, and returns a signed integer as a result in $v0. It is not known

what g does, or which registers are modified by g. Assume that the values of a, b, and c

are not needed by the procedure calling the procedure f. Assume further that before calling

procedure f, registers $a0 = a, $a1 = b, and $a2 = c, where a, b, and c are signed integers.

Procedure f returns the signed integer result in $v0. Write a MIPS procedure that

implements f. Use MIPS programming convention in saving and restoring only the

necessary register(s) in the procedure.

int f(int a, int b, int c) {

 if (a > c) {

 int d = g(a, g(a, c));

 }

 else {

 int d = g(c, g(a, c));

 }

 return (b + d);

}

f:
 addiu $sp,$sp,-12 # frame = 12 bytes
 sw $ra,0($sp) # save $ra
 sw $a1,4($sp) # save argument b
 move $a1,$a2 # set 2nd arg. for 1st call to g to be c

 slt $t0,$a2,$a0 # (a > c) ? If true, set $t0 to 1, else to 0
 beqz $t0,else # If $t0 = 0, then (a c) and branch to else
 sw $a0,8($sp) # save argument a
 jal g # call g(a,c) –– 1st call to g
 lw $a0,8($sp) # set 1st arg. for 2nd call to g to be a
 move $a1,$v0 # set 2nd arg. for 2nd call to g to be g(a,c)
 jal g # call g(a, g(a,c)) –– 2nd call to g
 j return # go to return code to compute (b + d)
else:
 sw $a2,8($sp) # save argument c
 jal g # call g(a,c) –– 1st call to g
 lw $a0,8($sp) # set 1st arg. for 2nd call to g to be c
 move $a1,$v0 # set 2nd arg. for 2nd call to g to be g(a,c)
 jal g # call g(c, g(a,c)) –– 2nd call to g
return:
 lw $t0,4($sp) # restore b
 addu $v0,$t0,$v0 # return $v0 = (b + d)
 lw $ra,0($sp) # restore $ra
 addiu $sp,$sp,12 # free stack frame
 jr $ra # return to caller

 Page 4 of 13

 [18 points]

(Q2)

(i) (3 points) Find the decimal value of the following single-precision float:

S Exponent Fraction

1 1000 1011 000 0100 1100 1100 0000 0000

Sign bit = 1 (negative)
Biased Exponent = 1000 1011 = 139
Exponent Value = 139 – 127 = +12
Value = –(1.000 0100 1100 1100 0000 0000)2 × 2+12
 = –(1000010011001.100 0000 0000)2
Decimal Value = –4249.5

(ii) (3 points) Find the normalized IEEE 754 single-precision representation

of -21.40625.

–21.40625 = –10101.01101

Normalize: –21.40625 = –1.010 1011 0100 0000 0000 0000 × 2+4

S Exponent Fraction

1 1000 0011 010 1011 0100 0000 0000 0000

(iii)(5 points) Normalize and Round the given single-precision number with given GRS

(Guard, Round, and Sticky) bits using the following four rounding modes. Show the final

normalized number and its exponent:

 GRS
+0.111 1111 1111 1111 1111 1111 110 × 2+10

Normalize: +1.111 1111 1111 1111 1111 1111 100 × 2+9

Round towards Zero: +1.111 1111 1111 1111 1111 1111 × 2+9

Round towards +Infinity: +1.000 0000 0000 0000 0000 0000 × 2+10

Round towards -Infinity: +1.111 1111 1111 1111 1111 1111 × 2+9

Round towards Nearest Even: +1.000 0000 0000 0000 0000 0000 × 2+10

 Page 5 of 13

(iv) (7 points) Given that A and B are single-precision floats, compute the difference A–B.

Use rounding to nearest even. Perform the operation using guard, round and sticky bits.

A = +1.011 1001 0101 0000 0011 0000 × 2-3

B = +1.111 1010 0011 0101 0111 1111 × 2+2

1.011 1001 0101 0000 0011 0000 000 x 2-3

- 1.111 1010 0011 0101 0111 1111 000 x 2+2

 00.000 0101 1100 1010 1000 0001 100 x 2+2 (align)

- 01.111 1010 0011 0101 0111 1111 000 x 2+2

 00.000 0101 1100 1010 1000 0001 100 x 2+2

+ 10.000 0101 1100 1010 1000 0001 000 x 2+2 (2’s complement)

 10.000 1011 1001 0101 0000 0010 100 x 2+2

= - 1.111 0100 0110 1010 1111 1101 100 x 2+2

= - 1.111 0100 0110 1010 1111 1110 x 2+2 (round)

 Page 6 of 13

[10 Points]

(Q3)

(i) (4 points) Given that Multiplicand=0111 and Multiplier=1011, using the signed

multiplication hardware, show the signed multiplication of Multiplicand by

Multiplier. The result of the multiplication should be an 8-bit signed number in HI

and LO registers. Show the steps of your work.

Iteration Multiplicand Sign Product = HI,LO

0 Initialize 0111 0000 1011

1 LO[0] = 1 => ADD 0 0111 1011

Shift Product = (HI, LO) right 1 bit 0111 0011 1101

2 LO[0] = 1 => ADD 0 1010 1101

Shift Product = (HI, LO) right 1 bit 0111 0101 0110

3 LO[0] = 0 => Do nothing 0 0101 0110

Shift Product = (HI, LO) right 1 bit 0111 0010 1011

4 LO[0] = 1 => SUB (ADD 2's compl) 1001 1 1011 1011

Shift Product = (HI, LO) right 1 bit 1101 1101

(ii) (6 points) Given that Dividend=1001 and Divisor=0010 are signed 2’s

complement numbers, show the signed division of Dividend by Divisor. The result

of division should be stored in the Remainder and Quotient registers. Show the steps

of your work, and show the final result.

Since the Dividend is negative, we take its 2’s complement Dividend = 0111

 Sign of Quotient = negative, Sign of Remainder = negative

Iteration Remainder

(HI)

Quotient

(LO)

Divisor Difference

0 Initialize 0000 0111 0010

1 1: SLL, Difference 0000 1110 0010 1110

2: Diff < 0 => Do Nothing 0000 1110 0010

2 1: SLL, Difference 0001 1100 0010 1111

2: Diff < 0 => Do Nothing 0001 1100 0010

3 1: SLL, Difference 0011 1000 0010 0001

2: Rem = Diff, set lsb Quotient 0001 1001 0010

4 1: SLL, Difference 0011 0010 0010 0001

2: Rem = Diff, set lsb Quotient 0001 0011 0010

Quotient = 1101 Remainder = 1111

 Page 7 of 13

[24 Points]

(Q4) Consider the single-cycle datapath and control given below along with ALU and Next PC

blocks design for the MIPS processor implementing a subset of the instruction set:

 Page 8 of 13

(i) (5 points) Show the control signals generated for the execution of the following

instructions by filling the table given below:

Op RegDst RegWrite ExtOp ALUSrc ALUOp Beq Bne J MemRead MemWrite MemtoReg

R-type
1 = Rd 1 x 0=BusB R-type 0 0 0 0 0 0

xori
0 = Rt 1 0=zero 1=Imm XOR 0 0 0 0 0 0

lw
0 = Rt 1 1=sign 1=Imm ADD 0 0 0 1 0 1

bne
x 0 x 0=BusB SUB 0 1 0 0 0 x

j
x 0 x x x 0 0 1 0 0 x

(ii) (4 points) Show the block diagram for designing the control unit for this CPU

and show the logic gates or equations for the control signals RegDst, RegWrite

and ExtOp based on these instructions. Assume that the opcode of these

instructions is a 6-bit opcode such that the opcode for R-type instructions is 0,

the opcode for xori is 1, the opcode for lw is 2, and so on for the rest of the

instructions.

 Page 9 of 13

(iii) (12 points) We wish to add the following instructions to the MIPS single-cycle

datapath. Add any necessary datapath modifications and control signals needed

for the implementation of these instructions. Show only the modified and

added components to the datapath.

a. srl

For the srl instruction, examining the ALU one can see that the shift amont is

coming through the A-input of the ALU and the operand to be shifted comes

through the B input of the ALU. Thus, we need-to add a MUX on the A-input

to select between the output of a register and the immediate values. This MUX

needs to select only between the least significant 5 bits of BusA and bits 6 to 10

from Imm16. The modified part in the datapath is shown below:

b. lui

For this instruction, the shift amount is 16 and the operand to be shifted is the

immediate value selected on the B-input of the ALU. Thus, we need to add

another MUX to select the shift amount as 16 for this instruction. The modified

parts of the datapath to support the execution of this instruction is given below:

Ext

A
L
U

ALUCtrl

BusA

BusB

ALUSrc

zero

Imm16

Imm32

m

u

x

1

0

m

u

x

1

0

Shifti
ExtOp

Ext

ALUCtrl

BusA

BusB

ALUSrc

Imm16

Imm32
m

u

x

1

0

m

u

x

1

0

Shifti

A
L
U

z
e

16

m

u

x

1

0

s16
ExtOp

 Page 10 of 13

c. bgtz

Since the first source operand specified by RS comes on BusA and the second

operand which is the Zero register specified by the RT filed comes on BusB, all

we need is to get the operand on BusA to appear at the output of the ALU as we

just need to check the sign bit (i.e. most significant bit of the result).

Performing an addition, subtraction, xoring, oring operations will work. Let us

assume that we will do an ALU addition operation.

To check that the result is greater than 0, we need to check that the sign bit is 0

and that the result is not equal to zero. Thus, the changes needed to be done are

in the NextPC block as shown below:

d. jal

This instruction is similar to the jump instruction (J) with the difference that

register $31 should be loaded with the incremented PC value. Thus, we need to

add a MUX at the input of RW input to the register file to select the value 31

when executing this instruction. We also need to add a MUX at the input of

BusW in the register file to select the incremented PC value to be loaded instead

of the value coming from the output of the data memory MUX. In addition, we

need to make changes to the NextPC block to perform the same operation

needed by the J instruction for Jal instruction. These changes are shown below:

Beq

Bne

J
 Zero

PCSrc

Sign

Bgtz

 Page 11 of 13

e. lwi; This is a new instruction with the following format: lwi Rt, imm16.

Rt = MEMORY[imm16]. Assume that imm16 will be zero extended.

For this instruction, the address for memory access should be loaded from

the immediate value. Thus, we need to add a MUX at the input of the Data

Memory unit to select between the ALU output and the output of the Extend

unit.

(iv) (3 points) Suppose that you are asked to reduce the clock cycle of this CPU.

What changes in the instruction set and the resulting CPU design you would

do to achieve this goal? Clearly explain your solution and show the added

changes in the CPU circuit design.

We will change the format of the load and store instructions so that the address

is specified by a register only without a displacement. This will make the data

memory unit to be accessed directly after the register file access without the

need to wait for the ALU to finish. Thus, the changes in the design will be

having the Data Memory with inputs for the address input connected to BusA

instead of the ALU and the data input to remain connected to BusB.

 Page 12 of 13

MIPS Instructions:

 Page 13 of 13

