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           [18 Points] 

(Q1)  
(i) (10 points) A palindrome text is a text that reads the same backward or forward. For 

example, both abcdcba and abcddcba are palindrome texts. Write a recursive MIPS 

procedure that implements the following high-level palindrome procedure code using 

minimal instructions. The palindrome procedure should test if a text is palindrome or not. 

Assume the text to be tested is currently in the memory. Assume further that before calling 

the palindrome procedure, the $a0 and $a1 registers already contain the memory 

addresses of the first and the last characters of the text held in the memory, respectively. 

The palindrome procedure returns 1 in register $v0 if the text is palindrome, and returns 

0 in register $v0 if the text is not palindrome. Use MIPS programming convention in saving 

and restoring only the necessary register(s) in the procedure. Note that the variables first 

and last in the high-level procedure code refer to the memory locations of the first and 

the last characters of the text, respectively. On the other hand, *first and *last refer to 

the contents of the memory locations held in the variables first and last, respectively. 
 

int palindrome(int first, int last) { 

 if ((last – first) < 1) return 1; 

 else if (*last != *first) return 0; 

 else return (palindrome(++first, ––last)); 

} 

 

palin: 
 subu  $t1,$a1,$a0  # $t1 = (end - begin) 
 slti  $t0,$t1,1    # $t1 < 1 ? If true, set $t0 to 1, else 0 
 beqz  $t0,elseif   # (end - begin) < 1 ? 
 li    $v0,1        # return 1 (true) 
 jr    $ra 
elseif: 
 lbu   $t0,0($a0)   # get char at the beginning 
 lbu   $t1,0($a1)   # get char at the end 
 beq   $t0,$t1,else # *(begin) != *(end) ? 
 move  $v0,$zero    # return 0 (false) 
 jr    $ra 
else: 
 addiu $sp,$sp,-4   # save $ra 
 sw    $ra,0($sp) 
 addiu $a0,$a0,1    # ++begin 
 addiu $a1,$a1,-1   # --end 
 jal   palin        # palin(++begin, --end) 
 lw    $ra,0($sp) 
 addiu $sp,$sp,4    # save $ra 
 jr    $ra 
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(ii) (8 points) Assume that a procedure f calls another procedure g twice as shown in the given 

high-level code. Procedure g expects two signed integers to be passed to it as parameters 

in registers $a0 and $a1, and returns a signed integer as a result in $v0. It is not known 

what g does, or which registers are modified by g. Assume that the values of a, b, and c 

are not needed by the procedure calling the procedure f. Assume further that before calling 

procedure f, registers $a0 = a, $a1 = b, and $a2 = c, where a, b, and c are signed integers. 

Procedure f returns the signed integer result in $v0. Write a MIPS procedure that 

implements f. Use MIPS programming convention in saving and restoring only the 

necessary register(s) in the procedure. 

 
int f(int a, int b, int c) { 

 if (a > c) { 

  int d = g(a, g(a, c)); 

 } 

 else { 

  int d = g(c, g(a, c)); 

 } 

 return (b + d); 

} 

 

f: 
 addiu $sp,$sp,-12 # frame = 12 bytes 
 sw $ra,0($sp) # save $ra 
 sw $a1,4($sp) # save argument b 
 move $a1,$a2 # set 2nd arg. for 1st call to g to be c 
 
 slt $t0,$a2,$a0 # (a > c) ? If true, set $t0 to 1, else to 0 
 beqz $t0,else # If $t0 = 0, then (a  c) and branch to else 
 sw $a0,8($sp) # save argument a 
 jal g # call g(a,c) –– 1st call to g 
 lw $a0,8($sp) # set 1st arg. for 2nd call to g to be a 
 move $a1,$v0 # set 2nd arg. for 2nd call to g to be g(a,c) 
 jal g # call g(a, g(a,c)) –– 2nd call to g 
 j return # go to return code to compute (b + d) 
else: 
 sw $a2,8($sp) # save argument c 
 jal g # call g(a,c) –– 1st call to g 
 lw $a0,8($sp) # set 1st arg. for 2nd call to g to be c 
 move $a1,$v0 # set 2nd arg. for 2nd call to g to be g(a,c) 
 jal g # call g(c, g(a,c)) –– 2nd call to g 
return: 
 lw $t0,4($sp) # restore b 
 addu $v0,$t0,$v0 # return $v0 = (b + d) 
 lw $ra,0($sp) # restore $ra 
 addiu $sp,$sp,12 # free stack frame 
 jr $ra # return to caller 
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 [18 points]

  

(Q2)  

(i) (3 points) Find the decimal value of the following single-precision float: 

 

S Exponent Fraction 

1 1000 1011 000 0100 1100 1100 0000 0000 

 

Sign bit  = 1 (negative) 
Biased Exponent = 1000 1011 = 139 
Exponent Value = 139 – 127 = +12 
Value   = –(1.000 0100 1100 1100 0000 0000)2 × 2+12 
    = –(1000010011001.100 0000 0000)2 
Decimal Value  = –4249.5 

 

(ii) (3 points) Find the normalized IEEE 754 single-precision representation 

of -21.40625. 
 

–21.40625 = –10101.01101 

Normalize: –21.40625 = –1.010 1011 0100 0000 0000 0000 × 2+4 

 

S Exponent Fraction 

1 1000 0011 010 1011 0100 0000 0000 0000 

 

(iii)(5 points) Normalize and Round the given single-precision number with given GRS 

(Guard, Round, and Sticky) bits using the following four rounding modes. Show the final 

normalized number and its exponent: 
 

                                GRS 
+0.111 1111 1111 1111 1111 1111 110 × 2+10 

 

 

 

Normalize:   +1.111 1111 1111 1111 1111 1111 100 × 2+9 
 

 

 

Round towards Zero:  +1.111 1111 1111 1111 1111 1111 × 2+9 

 

Round towards +Infinity:  +1.000 0000 0000 0000 0000 0000 × 2+10 

 

Round towards -Infinity:  +1.111 1111 1111 1111 1111 1111 × 2+9 

 

Round towards Nearest Even: +1.000 0000 0000 0000 0000 0000 × 2+10 
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(iv) (7 points) Given that A and B are single-precision floats, compute the difference A–B. 

Use rounding to nearest even. Perform the operation using guard, round and sticky bits. 
 

A = +1.011 1001 0101 0000 0011 0000 × 2-3 

B = +1.111 1010 0011 0101 0111 1111 × 2+2 
 

 
1.011 1001 0101 0000 0011 0000 000 x 2-3 

- 1.111 1010 0011 0101 0111 1111 000 x 2+2 

         00.000 0101 1100 1010 1000 0001 100 x 2+2 (align) 

-   01.111 1010 0011 0101 0111 1111 000 x 2+2 

    00.000 0101 1100 1010 1000 0001 100 x 2+2 

+   10.000 0101 1100 1010 1000 0001 000 x 2+2 (2’s complement) 

    10.000 1011 1001 0101 0000 0010 100 x 2+2 

= -  1.111 0100 0110 1010 1111 1101 100 x 2+2 

= -  1.111 0100 0110 1010 1111 1110  x 2+2 (round) 
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[10 Points] 

(Q3)  

(i) (4 points) Given that Multiplicand=0111 and Multiplier=1011, using the signed 

multiplication hardware, show the signed multiplication of Multiplicand by 

Multiplier. The result of the multiplication should be an 8-bit signed number in HI 

and LO registers. Show the steps of your work. 
 

 

Iteration Multiplicand Sign Product = HI,LO 

0 Initialize 0111   0000 1011 

1 LO[0] = 1 => ADD  0  0111 1011 

Shift Product = (HI, LO) right 1 bit 0111   0011 1101 

2 LO[0] = 1 => ADD  0  1010 1101 

Shift Product = (HI, LO) right 1 bit 0111   0101 0110 

3 LO[0] = 0 => Do nothing  0  0101 0110 

Shift Product = (HI, LO) right 1 bit 0111   0010 1011 

4 LO[0] = 1 => SUB (ADD 2's compl) 1001 1  1011 1011 

Shift Product = (HI, LO) right 1 bit    1101 1101 

 
 

 

 

 

 

(ii) (6 points) Given that Dividend=1001 and Divisor=0010 are signed 2’s 

complement numbers, show the signed division of Dividend by Divisor. The result 

of division should be stored in the Remainder and Quotient registers. Show the steps 

of your work, and show the final result. 
 

Since the Dividend is negative, we take its 2’s complement  Dividend = 0111 

 Sign of Quotient = negative, Sign of Remainder = negative 
 

 

Iteration Remainder 

(HI) 

Quotient 

(LO) 

Divisor Difference 

0 Initialize 0000 0111 0010  

1 1: SLL, Difference 0000 1110 0010 1110 

2: Diff < 0 => Do Nothing 0000 1110 0010  

2 1: SLL, Difference 0001 1100 0010 1111 

2: Diff < 0 => Do Nothing 0001 1100 0010  

3 1: SLL, Difference 0011 1000 0010 0001 

2: Rem = Diff, set lsb Quotient 0001 1001 0010  

4 1: SLL, Difference 0011 0010 0010 0001 

2: Rem = Diff, set lsb Quotient 0001 0011 0010  

 
Quotient = 1101      Remainder = 1111    
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[24 Points] 

(Q4) Consider the single-cycle datapath and control given below along with ALU and Next PC 

blocks design for the MIPS processor implementing a subset of the instruction set: 
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(i) (5 points) Show the control signals generated for the execution of the following 

instructions by filling the table given below: 
 

Op RegDst RegWrite ExtOp ALUSrc ALUOp Beq Bne J MemRead MemWrite MemtoReg 

R-type 
1 = Rd 1 x 0=BusB R-type 0 0 0 0 0 0 

xori 
0 = Rt 1 0=zero 1=Imm XOR 0 0 0 0 0 0 

lw 
0 = Rt 1 1=sign 1=Imm ADD 0 0 0 1 0 1 

bne 
x 0 x 0=BusB SUB 0 1 0 0 0 x 

j  
x 0 x x x 0 0 1 0 0 x 

 

(ii) (4 points) Show the block diagram for designing the control unit for this CPU 

and show the logic gates or equations for the control signals RegDst, RegWrite 

and ExtOp based on these instructions. Assume that the opcode of these 

instructions is a 6-bit opcode such that the opcode for R-type instructions is 0, 

the opcode for xori is 1, the opcode for lw is 2, and so on for the rest of the 

instructions. 

 
 



 Page 9 of 13 

 

(iii) (12 points) We wish to add the following instructions to the MIPS single-cycle 

datapath. Add any necessary datapath modifications and control signals needed 

for the implementation of these instructions. Show only the modified and 

added components to the datapath.   
 

a. srl 

 

For the srl instruction, examining the ALU one can see that the shift amont is 

coming through the A-input of the ALU and the operand to be shifted comes 

through the B input of the ALU. Thus, we need-to add a MUX on the A-input 

to select between the output of a register and the immediate values. This MUX 

needs to select only between the least significant 5 bits of BusA and bits 6 to 10 

from Imm16. The modified part in the datapath is shown below: 

 

 
 

 

b. lui 

 

For this instruction, the shift amount is 16 and the operand to be shifted is the 

immediate value selected on the B-input of the ALU. Thus, we need to add 

another MUX to select the shift amount as 16 for this instruction. The modified 

parts of the datapath to support the execution of this instruction is given below: 
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c. bgtz 

 

Since the first source operand specified by RS comes on BusA and the second 

operand which is the Zero register specified by the RT filed comes on BusB, all 

we need is to get the operand on BusA to appear at the output of the ALU as we 

just need to check the sign bit (i.e. most significant bit of the result).  

 

Performing an addition, subtraction, xoring, oring operations will work. Let us 

assume that we will do an ALU addition operation.  

To check that the result is greater than 0, we need to check that the sign bit is 0 

and that the result is not equal to zero. Thus, the changes needed to be done are 

in the NextPC block as shown below: 

 

 
 

 

d. jal 

 

This instruction is similar to the jump instruction (J) with the difference that 

register $31 should be loaded with the incremented PC value. Thus, we need to 

add a MUX at the input of RW input to the register file to select the value 31 

when executing this instruction. We also need to add a MUX at the input of 

BusW in the register file to select the incremented PC value to be loaded instead 

of the value coming from the output of the data memory MUX. In addition, we 

need to make changes to the NextPC block to perform the same operation 

needed by the J instruction for Jal instruction. These changes are shown below: 

Beq 
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e. lwi; This is a new instruction with the following format: lwi Rt, imm16.    

Rt = MEMORY[imm16]. Assume that imm16 will be zero extended.  

 

For this instruction, the address for memory access should be loaded from 

the immediate value. Thus, we need to add a MUX at the input of the Data 

Memory unit to select between the ALU output and the output of the Extend 

unit. 
 

(iv) (3 points) Suppose that you are asked to reduce the clock cycle of this CPU. 

What changes in the instruction set and the resulting CPU design you would 

do to achieve this goal? Clearly explain your solution and show the added 

changes in the CPU circuit design. 
 

We will change the format of the load and store instructions so that the address 

is specified by a register only without a displacement. This will make the data 

memory unit to be accessed directly after the register file access without the 

need to wait for the ALU to finish. Thus, the changes in the design will be 

having the Data Memory with inputs for the address input connected to BusA 

instead of the ALU and the data input to remain connected to BusB.  
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MIPS Instructions: 
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