King Fahd University of Petroleum and Minerals
 College of Computer Sciences and Engineering
 Department of Computer Engineering

SEC 521 -Network Security (T151)

Homework \# 01 (due date \& time: Sunday 04/10/2015 during class period)

Problem \# 1: Solve problem 2.2 of the $4^{\text {th }}$ edition of William Stallings textbook.
Problem \# 2: Use the A5/1 algorithm. Suppose that, after a particular step, the values in the registers are

$$
\begin{array}{ll}
X=\left(x_{0}, x_{1}, \ldots, x_{18}\right) & =(1010101010101010110) \\
Y=\left(y_{0}, y_{1}, \ldots, y_{21}\right) & =(1100110001101100010011) \\
Z=\left(z_{0}, z_{1}, \ldots, z_{22}\right) & =(11100101110000011000011)
\end{array}
$$

List the next 4 keystream bits and give the contents of X, Y, and Z after the generation of each of these 4 bits.

Problem \# 3: Consider a Feistel cipher with three rounds. Then the plaintext is denoted as $P=$ (L_{0}, R_{0}) and the corresponding ciphertext is $C=\left(L_{3}, R_{3}\right)$. What is the simplest form of the ciphertext C, in terms of L_{0}, R_{0}, and the subkey, for each of the following round functions?
a. $\quad F\left(R_{i-1}, K_{i}\right)=\overline{R_{i-1}}$, where $\overline{R_{i-1}}$ is the logical complement of R_{i-1}
b. $\quad F\left(R_{i-1}, K_{i}\right)=R_{i-1} \oplus K_{i}$

Problem \# 4: Solve problem 2.16 (only part b) of the $4^{\text {th }}$ edition of William Stallings textbook.
Problem \# 5: Use the "Repeated Squaring" method on p. 104 of the "Public-Key Cryptography" slides to compute $9^{25} \bmod 15$. Show the power groupings and the steps.

Problem \# 6: Solve problem 3.14 (parts d and e) of the $4^{\text {th }}$ edition of William Stallings textbook.
Problem \# 7: Solve problem 3.21 of the $4^{\text {th }}$ edition of William Stallings textbook.
Problem \# 8: Suppose that Bob uses the following variant of RSA. He first chooses N, then he finds two encryption exponents, e_{0} and e_{1}, and the corresponding decryption exponents d_{0} and d_{1}. He asks Alice to encrypt her message M to him by first computing $C_{0}=M^{e 0} \bmod N$, then encrypting C_{0} to obtain the ciphertext, $C_{1}=C_{0}{ }^{e 1}$ $\bmod N$. Alice then sends C_{1} to Bob. Does this double encryption increase the security as compared to a single RSA encryption? Why or why not?

