King Fahd University of Petroleum and Minerals College of Computer Sciences and Engineering Department of Computer Engineering

SEC 521 –Network Security (T151)

Homework # 01 (due date & time: Sunday 04/10/2015 during class period)

Problem # 1: Solve <u>problem</u> 2.2 of the 4th edition of William Stallings textbook.

Problem # 2: Use the A5/1 algorithm. Suppose that, after a particular step, the values in the registers are

$X = (x_0, x_1, \dots, x_{18})$	= (101010101010101010)
$Y = (y_0, y_1, \dots, y_{21})$	= (1100110001101100010011)
$Z = (z_0, z_1, \ldots, z_{22})$	=(11100101110000011000011)

List the next 4 keystream bits and give the contents of X, Y, and Z after the generation of each of these 4 bits.

Problem # 3: Consider a Feistel cipher with three rounds. Then the plaintext is denoted as $P = (L_0, R_0)$ and the corresponding ciphertext is $C = (L_3, R_3)$. What is the <u>simplest form</u> of the ciphertext *C*, in terms of L_0 , R_0 , and the subkey, for each of the following round functions?

a. $F(R_{i-1}, K_i) = \overline{R_{i-1}}$, where $\overline{R_{i-1}}$ is the logical complement of R_{i-1} b. $F(R_{i-1}, K_i) = R_{i-1} \oplus K_i$

Problem # 4: Solve <u>problem</u> 2.16 (**only part b**) of the 4th edition of William Stallings textbook.

Problem # 5: Use the "Repeated Squaring" method on p. 104 of the "Public-Key Cryptography" slides to compute $9^{25} \mod 15$. Show the power groupings and the steps.

Problem # 6: Solve <u>problem</u> 3.14 (**parts d and e**) of the 4th edition of William Stallings textbook.

Problem # 7: Solve <u>problem</u> 3.21 of the 4th edition of William Stallings textbook.

Problem # 8: Suppose that Bob uses the following variant of RSA. He first chooses *N*, then he finds two encryption exponents, e_0 and e_1 , and the corresponding decryption exponents d_0 and d_1 . He asks Alice to encrypt her message *M* to him by first computing $C_0 = M^{e_0} \mod N$, then encrypting C_0 to obtain the ciphertext, $C_1 = C_0^{e_1} \mod N$. Alice then sends C_1 to Bob. Does this double encryption increase the security as compared to a single RSA encryption? Why or why not?