1. It is required to design a Combinational circuit that compares two n-bit numbers, $A=A_{n-1}-A_{0}$ and $B=B_{n-1}-B_{0}$, to check if A is less than B or not. Design a circuit that has three inputs and one output that can be used for each of the n bits, such that the circuit is connected in cascade by carry-like signals. One of the inputs to each circuit is a carry input, and the single output is a carry output. If the final output from the last circuit is 1 , then this indicates that A is less than B , otherwise A is greater than or equal to B . Using this circuit, show the design of a 4-bit less than comparator.
2. Design a circuit that accepts a 4 -bit number and produces the 2 's complement equivalent of the 4-bit number. It is NOT permitted to use a full-adder circuit for this implantation.
3. You are required to design a combinational circuit that computes the remainder of dividing a 4-bit number $\mathrm{N}_{3} \mathrm{~N}_{2} \mathrm{~N}_{1} \mathrm{~N}_{0}$ by 3 . For example, the remainder of dividing the number 1010 by 3 is 01 and the remainder of dividing the number 0101 by 3 is 10 .
a. Derive the truth table showing the relation between inputs and outputs
b. Derive simplified sum of products expressions for the outputs.
4. Design a circuit that accepts two 2-bit unsigned numbers $A=\mathrm{A}_{1} \mathrm{~A}_{0}$ and $B=\mathrm{B}_{1} \mathrm{~B}_{0}$. The circuit produces $A \oplus B$ when $A \geq B$, and produces $A \odot B$ otherwise. Use NOR gate(s) and one non-inverted-output decoder to implement the circuit (other gates cannot be used for the implementation). Mark clearly the inputs and the outputs of the decoder.
5. Problems 3-10, 3-15, 3-16, 3-17 from the textbook.
