King Fahd University of Petroleum and Minerals College of Computer Sciences and Engineering Department of Computer Engineering

ICS 555 – Data Security and Encryption (T162)

Homework # 02 (due date & time: Wednesday 29/03/2017 during class period)

Problem # 1 – 10 points: Compute the following $A(x) \cdot B(x) \mod P(x)$ in $GF(2^4)$, where $A(x) = x^2+1$, $B(x) = x^3+x^2+1$, and $P(x) = x^4+x+1$ being the irreducible polynomial.

Problem # 2 – 20 points: The following table contains a list of all multiplicative inverses for this field. As such, compute $(x^4+x+1)/(x^7+x^6+x^3+x^2)$ in *GF*(2⁸), where the irreducible polynomial is the one used by AES, $P(x)=x^8+x^4+x^3+x+1$.

		Y															
		0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
Х	0	00	01	8D	F6	CB	52	7B	D1	E8	4F	29	C0	В0	E1	E5	C7
	1	74	В4	AA	4B	99	2B	60	5F	58	3F	FD	CC	\mathbf{FF}	40	\mathbf{EE}	В2
	2	3A	6E	5A	F1	55	4D	A8	C9	C1	0A	98	15	30	44	A2	C2
	3	2C	45	92	6C	F3	39	66	42	F2	35	20	6F	77	BB	59	19
	4	1D	\mathbf{FE}	37	67	2D	31	F5	69	Α7	64	AB	13	54	25	E9	09
	5	$^{\rm ED}$	5C	05	CA	4C	24	87	BF	18	3E	22	F0	51	EC	61	17
	6	16	5E	AF	D3	49	A6	36	43	F4	47	91	DF	33	93	21	3B
	7	79	В7	97	85	10	В5	BA	3C	В6	70	D0	06	A1	FA	81	82
	8	83	7E	7F	80	96	73	BE	56	9B	9E	95	D9	F7	02	В9	Α4
	9	DE	6A	32	6D	D8	8A	84	72	2A	14	9F	88	F9	DC	89	9A
	А	FB	7C	2E	C3	8F	B8	65	48	26	C8	12	4A	CE	E7	D2	62
	В	0C	E0	1F	\mathbf{EF}	11	75	78	71	A5	8E	76	3D	BD	BC	86	57
	С	0B	28	2F	A3	DA	D4	E4	0F	Α9	27	53	04	1B	\mathbf{FC}	AC	E6
	D	7A	07	AE	63	C5	DB	E2	EA	94	8B	C4	D5	9D	F8	90	6B
	Е	В1	0D	D6	EΒ	C6	0E	CF	AD	80	4E	D7	E3	5D	50	1E	В3
	F	5B	23	38	34	68	46	03	8C	DD	9C	7D	A0	CD	1A	41	1C

Problem # 3 – 10 points: Assume that (**E0**, **B4**, **52**, **AE**) is a column of the input state to the **MixColumn** step of AES, find the 2^{nd} element of the corresponding column of the output state of the **MixColumn** step.

Problem # 4 – 20 points; 10 points each: Consider the field $GF(2^4)$ with $P(x)=x^4+x+1$ being the irreducible polynomial. Find the inverses for each of A(x) = x and $B(x) = x^2 + x$ by applying the Extended Euclidean algorithm for polynomials. Verify your answer by multiplying the inverses you determined by A and B, respectively.

Problem # 5 – 10 points: Using the Extended Euclidean algorithm, find the multiplicative inverse of 19 mod 999.

Problem # 6 – 20 points; 10 points each: Compute the inverse $a^{-1} \mod n$ with Fermat's Theorem (if applicable) or Euler's Theorem:

1. a = 5, n = 122. a = 6, n = 13

Problem # 7 – 10 points: Use Euler's Theorem to compute $((33^{71} + 285^{43}) \cdot (143^{20} + 150^{61})) \mod 7$.