King Fahd University of Petroleum and Minerals
 College of Computer Sciences and Engineering Department of Computer Engineering

COE 451 - Computer and Network Security (T142)
Homework \# 04 (due date \& time: Thursday 12/03/2015 during class period)

Problem \# 1: Suppose that Alice's RSA public key is $(N, e)=(33,7)$
a. Find her private key, d.
b. If Bob encrypts the message $M=17$ using Alice's public key, what is the ciphertext C ? Show that Alice can decrypt C to obtain M.
c. Let S be the result when Alice digitally signs the message $M=19$. What is S ? If Bob receives M and S, explain the process Bob will use to verify the signature and show that in this particular case, the signature verification succeeds.

Problem \# 2: Solve problem 10 (only parts band d, and use a 128-bit symmetric key for part d) of Chapter 4 of the textbook.

Problem \# 3: Suppose that Bob's knapsack private key consists of $(3,5,10,21)$ along with the multiplier $m^{-1}=6$ and modulus $n=41$.
a. Find the plaintext given the ciphertext $C=18$. Give your answer in binary.
b. Find m and the public key.

Problem \# 4: Consider the knapsack cryptosystem. Suppose the public key consists of (15, 25, 1, 27) and $n=44$.
a. Find the private key, assuming $m=5$.
b. Encrypt the message $M=1011$ (given in binary). Give your result in decimal.

Problem \# 5: Solve problem 30 of Chapter 4 of the textbook.
Problem \# 6: Use the repeated squaring technique to compute $7^{27} \bmod 11$. Show the power groupings and the steps.

