King Fahd University of Petroleum and Minerals College of Computer Sciences and Engineering Department of Computer Engineering

COE 444 - Internetwork Design and Management

Problem \# 1: A network has three backbone switches B_{1}, B_{2}, and B_{3} that are interconnected with full duplex links according to a tree topology with B_{1} as the root of the tree, and B_{2} and B_{3} as the children of B_{1}. Suppose that there are 6 workgroup switches, labelled S_{1} to S_{6}, that are assigned as follows: S_{1} and S_{2} to B_{1}, S_{3} and S_{4} to B_{2}, and S_{5} and S_{6} to B_{3}. Assume that the MTBF and MTTR of any link are respectively 8 years and 1 day, and the MTBF and MTTR of any switch are respectively 12 years and 3 days. (1 year $=365.25$ days)
a. Find \boldsymbol{P}_{l} and \boldsymbol{P}_{s}, the links and switches reliabilities (use precision at 10^{-5})

$$
\begin{aligned}
& P_{l}=1-\frac{M T T R_{l}}{M T B F_{l}}=1-\frac{1 \text { day }}{8 \times 365.25 \text { days }}=0.99966 \\
& P_{s}=1-\frac{M T T R_{S}}{M T B F_{s}}=1-\frac{3 \text { day }}{12 \times 365.25 \text { days }}=0.99932
\end{aligned}
$$

b. Find the overall network reliability, that is, the probability that the network is connected.

$$
P_{c}(T)=\left(P_{s}\right)^{9}\left(P_{l}\right)^{8}=0.99114
$$

c. Find $\boldsymbol{E}\left(\boldsymbol{B}_{I}\right)$, the expected number of nodes communicating with the root node $\boldsymbol{B}_{\boldsymbol{I}}$.

$$
\begin{aligned}
& E\left(B_{1}\right)=\sum_{i=1}^{9} P_{c}(i) \\
& P_{c}\left(B_{1}\right)=0.99932 \\
& P_{c}\left(B_{2}\right)=P_{B_{2}} P_{B_{1}} P_{l_{B_{2} B_{1}}}=(0.99932)^{2}(0.99966)=0.99829=P_{c}\left(B_{3}\right)=P_{c}\left(S_{1}\right) \\
& =P_{c}\left(S_{2}\right) \\
& P_{c}\left(S_{3}\right)=P_{S_{3}} P_{l_{S_{3} B_{2}}} P_{c}\left(B_{2}\right)=(0.99932)(0.99966)(0.99829)=0.99727=P_{c}\left(S_{4}\right) \\
& =P_{c}\left(S_{5}\right)=P_{c}\left(S_{6}\right) \\
& E\left(B_{1}\right)=8.98153
\end{aligned}
$$

d. Find $\operatorname{EPR}\left(\boldsymbol{B}_{I}\right)$, the expected number of node pairs communicating through the root node \boldsymbol{B}_{1}.

$$
\begin{aligned}
& E\left(S_{1}\right)=E\left(S_{2}\right)=E\left(S_{3}\right)=E\left(S_{4}\right)=E\left(S_{5}\right)=E\left(S_{6}\right)=0.99932 \\
& E\left(B_{2}\right)=P_{B_{2}}+P_{B_{2}}\left(P_{l} E\left(S_{3}\right)+P_{l} E\left(S_{4}\right)\right)=(0.99932)[1+[0.99966(2 \times 0.99932)]] \\
& \quad=2.99590=E\left(B_{3}\right) \\
& E P R\left(B_{1}\right)=P_{B_{1}}\left[P_{l} E\left(S_{1}\right)+P_{l} E\left(S_{2}\right)+P_{l} E\left(B_{2}\right)+P_{l} E\left(B_{3}\right)\right]+P_{B_{1}}\left[P_{l} E\left(S_{1}\right) P_{l} E\left(B_{2}\right)\right. \\
& \quad+P_{l} E\left(S_{1}\right) P_{l} E\left(B_{3}\right)+P_{l} E\left(S_{1}\right) P_{l} E\left(S_{2}\right)+P_{l} E\left(B_{2}\right) P_{l} E\left(S_{2}\right) \\
& \left.\quad+P_{l} E\left(B_{2}\right) P_{l} E\left(B_{3}\right)+P_{l} E\left(B_{3}\right) P_{l} E\left(S_{2}\right)\right]=29.9016
\end{aligned}
$$

Problem \# 2: Calculate the reliability of the path from router A to router \mathbf{F} of the following network given the associated links reliabilities. Assume that the reliability of each router is 100\%. (Note: Show all steps of your calculation)

Convert the network above into the following reliability graph.

Upper AF path $P_{A F}=(0.99)(0.99)(0.999)=0.9791199$
$P_{E D C}=(0.999)(0.99)(0.999)=0.98802099$
$P_{E C}=1-(1-0.999)\left(1-P_{E D C}\right)=0.99998802099$
$P_{A E C B F}=(0.999)\left(P_{E C}\right)(0.999)(0.99)=0.9880091544866805801$
Total $P_{A F}=1-\left(1-P_{A F}\right)\left(1-P_{A E C B F}\right)=0.99974962994659733918054601$

Problem \# 3: Consider the following simplified computer network along with the associated links' reliabilities.

By showing all the steps, calculate the reliability of the path from router \boldsymbol{A} to router \boldsymbol{B} by assuming that the link $\boldsymbol{E B}$ is working/not working.

Convert the network above into the following reliability graph.

Considering that link $\boldsymbol{E} \boldsymbol{B}$ is working/not working we get:
$P_{A B}=$
$P_{E B} \times P($ path $A B$ working $\mid E B$ is working $)+\left(1-P_{E B}\right) \times P($ path $A B$ working $\mid E B$ is NOT working $)$ (1)

When $\boldsymbol{E} \boldsymbol{B}$ is working we get:

$P($ path $A B$ working $\mid E B$ is working $)=1-\left(1-P_{A F(E / B)}\right)\left(1-P_{A(E / B)}\right)$
$P_{A F(E / B)}=(98 \%)(1-(1-98 \%)(1-99 \%))=0.979804$
$P($ path $A B$ working $\mid E B$ is working $)=1-(1-0.979804)(1-99.9 \%)=0.999979804$

When $\boldsymbol{E} \boldsymbol{B}$ is NOT working we get:

$P($ path $A B$ working $\mid E B$ is NOT working $)=\left(P_{A F}\right)\left(P_{F B}\right)$
$P_{A F}=1-(1-98 \%)(1-(99.9 \%)(98 \%))=0.9995804$
$P($ path $A B$ working $\mid E B$ is NOT working $)=(0.9995804)(99 \%)=0.989584596$

From (1): $P_{A B}=(99.9 \%)(0.999979804)+(1-99.9 \%)(0.989584596)=0.999969408792$

