King Fahd University of Petroleum and Minerals College of Computer Sciences and Engineering Department of Computer Engineering

COE 444 – Internetwork Design and Management (T102)

Homework # 02 (due date & time: Tuesday 03/05/2011 during class period)

*** Show all your work. No credit will be given if work is not shown! ***

Problem #1 (50 points): Given a network with six nodes, labelled 0 to 5, with node 0 being the central backbone node. The cost of having a link between any two nodes is as indicated in the following cost matrix.

	0	1	2	3	4	5
0	0	7	10	8	17	9
1	7	0	6	5	10	12
2	10	6	0	11	14	8
3	8	5	11	0	8	7
4	17	10	14	8	0	14
5	9	12	8	7	14	0

Each of the nodes 1 to 5 generates 1 unit of flow to the backbone node. Only one type of link is available which can accommodate a maximum of 3 flow units.

- (a) (15 points) Find a minimum cost feasible spanning tree using Kruskal's algorithm.
- (b) (15 points) Find a minimum cost feasible spanning tree using Prim's algorithm.
- (c) (20 points) Find a minimum cost feasible spanning tree using Esau-Williams' algorithm.

For each of parts (a) and part (b) provide the following:

- 1. List of the links included in the tree in the same order as they were added to the tree.
- 2. List of the links that were excluded due to creation of cycles.
- 3. List of the links that were excluded due to exceeding flow constraint.

Note: For all algorithms you should show all the steps.

Problem # 2 (50 points): Construct a minimum cost spanning tree connecting six workgroup switches to the main backbone switch (relay number 1). The flows from the various workgroup switches to the backbone are as follows:

Node Number	1	2	3	4	5	6
Flow in Mbps	-	10	10	5	10	10

Assume that there is a design constraint to have the flow on any link not to exceed 25 Mbps, and that the link costs are as follows:

	1	2	3	4	5	6
1	-	3	3	20	8	2
2	3	-	19	-	-	-
3	3	19	-	8	-	-
4	20	-	8	-	1	-
5	8	-	-	1	-	4
6	2	-	-	-	4	-

(a) (15 points) Find a minimum cost feasible spanning tree using Kruskal's algorithm.

- (b) (15 points) Find a minimum cost feasible spanning tree using Prim's algorithm.
- (c) (20 points) Find a minimum cost feasible spanning tree using Esau-Williams' algorithm.

For each of parts (a) and part (b) provide the following:

- 1. List of the links included in the tree in the same order as they were added to the tree.
- 2. List of the links that were excluded due to creation of cycles.
- 3. List of the links that were excluded due to exceeding flow constraint.

Note: For all algorithms you should show all the steps.