King Fahd University of Petroleum and Minerals College of Computer Sciences and Engineering Department of Computer Engineering

COE 344 - Computer Networks (T172)

Homework \# 04 (due date \& time: Tuesday 10/04/2018 during class period)

Late homework submission will NOT be accepted

*** Show all your work. No credit will be given if work is not shown! ***
Problem \# 1 (12 points): Consider a datagram network using IPv4 addresses. Suppose a router has five links, numbered 0 through 4, and datagrams are to be forwarded to the link interfaces as follows:

Destination Address Range			Link Interface
11100000	0000000000000000 through	00000000	0
11100000	0011111111111111	11111111	
11100000	0100000000000000 through	00000000	1
11100000	0100000000001111	11111111	
11100000	0100000000010000 through	00000000	2
11100000	0100000011111111	11111111	
11100000	0100000100000000 through	00000000	3
11100001	0111111111111111	11111111	
	otherwise		4

a. Provide an equivalent forwarding table that translates each of the given ranges into a prefix of the form a.b.c.d/x along with the associated link interface. The forwarding table should have six entries (2 for the "otherwise" range, and 4 for the other ranges).
b. Determine the appropriate link interface for forwarding datagrams with the following destination addresses:

i.	11100000	01010000	11000011	00111100
ii.	11100001	10000000	00010001	01110111
iii.	11100000	01000000	00001000	11111111

Problem \# 2 (5 points): Consider the following IP-based network with the assigned IP addresses as shown. For each of the following cases, complete the table regarding the datagram as it is forwarded from the source to the destination.

1. Assume that host \boldsymbol{A} sends an IP datagram to host \boldsymbol{C}.

Source IP address	Destination IP address	Receiving interface IP address that was passed down to the Data Link layer to be used for forwarding

2. Assume that host \boldsymbol{A} sends an IP datagram to host \boldsymbol{E}.

Source IP address	Destination IP address	Receiving interface IP address that was passed down to the Data Link layer to be used for forwarding

Problem \# 3 (6 points): Consider a router that interconnects 3 subnets: Subnet 1, Subnet 2, and Subnet 3. Suppose all of the interfaces in each of these 3 subnets are required to have the prefix 224.1.18/24. Also suppose that Subnet 1 is required to support 60 interfaces, Subnet 2 is to support 11 interfaces, and Subnet $\mathbf{3}$ is to support 91 interfaces. Provide three network addresses of the form $\boldsymbol{a} \cdot \boldsymbol{b} . \boldsymbol{c} . \boldsymbol{d} / \boldsymbol{x}$ that satisfy these constraints.

Problem \# 4 (3 points):

Consider sending a $\mathbf{1 5 0 0}$-byte IP datagram (inclusive of a minimum size header of 20 bytes) from host \boldsymbol{A} to host \boldsymbol{B} along the path shown in the following figure. Assume that the MTU of each of the shown links is inclusive of a minimum size header of 20 bytes.

1. (1 point) Find the total number of fragments generated by router $\mathbf{R 1}$.
2. (2 points) Specify the header's "offset" field value of each fragment that is generated by router R1.

Problem \# 5 (12 points):
Consider the following network.

With the indicated link costs, use Dijkstra's shortest-path algorithm, as discussed in class, to compute the shortest path from \boldsymbol{w} to all network nodes using the table given below.

N^{\prime}	$D(u), p(u)$	$D(v), p(v)$	$D(x), p(x)$	$D(y), p(y)$	$D(z), p(z)$

Problem \# 6 ($\mathbf{1 2}$ points): Consider the following network.

Suppose that the link cost $c(0,2)$ has changed from 8 to 1 , re-compute the distance tables for nodes $0,1,2$, and 3 after only two iterations of a synchronous version of the distance vector algorithm. Note that the current tables' values prior to the link cost change are as shown in the leftmost column of the tables.

