King Fahd University of Petroleum and Minerals College of Computer Sciences and Engineering
 Department of Computer Engineering

COE 341 - Data \& Computer Communications (T111)

Homework \# 01 (due date: Sunday 16/10/2011 during class period)
*** Show all your work. No credit will be given if work is not shown! ***
Problem \# 1 (20 points): Write the following signal in the form $x(t)=A \sin \left(2 \pi f_{0} t+\phi\right)$. Also, find out the amplitude (A), the frequency $\left(f_{0}\right)$ and the phase (\varnothing) for the signal.

$$
x(t)=\frac{\sqrt{2}}{2} \cos \left(400 t+\frac{\pi}{5}\right)+\frac{\sqrt{2}}{2} \sin \left(400 t+\frac{\pi}{5}\right) \quad,\left(\text { hint: } \sin \left(\frac{\pi}{4}\right)=\cos \left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\right)
$$

Problem \# 2 (10 points): Find the bandwidth for the following function:

$$
s(t)=50 \cos (16 \pi t)-500 \sin (2400 \pi t)+300 \sin (4 \pi t)
$$

Problem \# 3 (70 points): Consider the "Sawtooth" wave function listed in table A. 1 of Appendix A (page 838) of the text book. Find the effective bandwidth of the transmitted signal such that it contains at least 95% of the total power of the original signal. (Starting with the mathematical expression of the function show all steps of derivation).

