King Fahd University of Petroleum and Minerals College of Computer Science and Engineering Computer Engineering Department

COE 301 COMPUTER ORGANIZATION ICS 233: COMPUTER ARCHITECTURE & ASSEMBLY LANGUAGE Term 161 (Fall 2016-2017) Major Exam 2 Saturday Dec. 10, 2016

Time: 150 minutes, Total Pages: 13

 Name:
 ID:
 Section:

Notes:

- Do not open the exam book until instructed
- Answer all questions
- All steps must be shown
- Any assumptions made must be clearly stated

Question	Max Points	Score
Q1	20	
Q2	10	
Q3	17	
Q4	23	
Total	70	

Dr. Aiman El-Maleh Dr. Marwan Abu Amara (Q1) Write MIPS programs with <u>minimal</u> used instructions. Use <u>MIPS programming</u> <u>convention</u> in saving and restoring registers in procedures.

- (i) [4 points] Write a procedure GetAscii that receives a single hexadecimal digit in register \$a0 and returns the ASCII code of that digit in register \$v0. For example, if \$a0=0x9 the procedure will return 0x39 in \$v0 and if \$a0=0xA, the procedure will return 0x41 in \$a0. Assume the use of capital letters for the digits A to F.
- (ii) [11 points] Write a procedure **DispHex** that receives a number in register \$a0 and displays the hexadecimal representation of that number. Only significant hexadecimal digits need to be displayed. For example, if \$a0=0x1E, the procedure will display 1E. Your DisHex procedure should utilize the GetAscii procedure.
- (iii) [5 points] Write a MIPS program that asks the user to enter a decimal number and displays its hexadecimal content using the **DispHex** procedure. Two sample runs of the program are given below:

Enter a decimal number: 260 Your number in hexadecimal is: 0x104

Enter a decimal number: 0 Your number in hexadecimal is: 0x0

```
.data
Prompt: .asciiz "Enter a decimal number: "
MSG: .asciiz "Your number in hexadecimal is: 0x"
TTable: .ascii "0123456789ABCDEF"
.text
la $a0, Prompt
li $v0, 4
syscall
li $v0, 5
syscall
move $s0, $v0
la $a0, MSG
li $v0, 4
syscall
move $a0, $s0
jal DispHex
li $v0, 10
syscall
```

DispHex: **#save registers** addi \$sp, \$sp, -12 sw \$s0, 0(\$sp) sw \$s1, 4(\$sp) sw \$s2, 8(\$sp) li \$s0, 8 move \$s1, \$a0 li \$s2, 0 Next: rol \$s1, \$s1, 4 andi \$t0, \$s1, 0xF bne \$s2, \$0, Sig beq \$s0, 1, Sig beq \$t0, \$0, Skip li \$s2, 1 Sig: move \$a0, \$t0 addi \$sp, \$sp, -4 sw \$ra, (\$sp) jal GetAscii **lw** \$ra (\$sp) addi \$sp, \$sp, 4 move \$a0, \$v0 li \$v0, 11 syscall Skip: addi \$s0, \$s0, -1 bne \$s0, \$0, Next # restore registers lw \$s0, 0(\$sp) lw \$s1, 4(\$sp) lw \$s2, 8(\$sp) addi \$sp, \$sp, 12 jr \$ra

GetAscii: la \$t0, TTable add \$t0, \$t0, \$a0 lb \$v0, (\$t0) jr \$ra

- (Q2)
- (i) [4 Points] Given that Multiplicand=0111 and Multiplier=1011 are signed 2's complement numbers, show the signed multiplication of Multiplicand by Multiplier. The result of the multiplication should be an 8 bit signed number in HI and LO registers. Show the steps of your work.

Ite	eration	Multiplicand	Sign	Product =HI,LO
0	Initialize	0111		0000 101 <mark>1</mark>
1	$LO[0] = 1 \Longrightarrow ADD$		0	0111 1011
	Shift Product = (HI, LO) right 1 bit	0111		0011 110 <mark>1</mark>
2	$LO[0] = 1 \Longrightarrow ADD$		0 1	1010 1101
	Shift Product = (HI, LO) right 1 bit	0111	overflow	0101 0110
3	$LO[0] = 0 \Longrightarrow$ Do nothing		0	0101 0110
	Shift Product = (HI, LO) right 1 bit	0111		0010 101 <mark>1</mark>
4	$LO[0] = 1 \implies SUB (ADD 2's compl)$	1001	1	1011 1011
	Shift Product = (HI, LO) right 1 bit			1101 1101

(ii) [6 Points] Given that Dividend=0111 and Divisor=1011 are signed 2's complement numbers, show the signed division of Dividend by Divisor. The result of division should be stored in the Remainder and Quotient registers. Show the steps of your work, and show the final result.

Since the Divisor is negative, we take its 2's complement \Rightarrow Divisor = 0101 Sign of <u>Quotient</u> = negative, Sign of <u>Remainder</u> = positive

Ite	eration	Remainder	Quotient	Divisor	Difference
		(HI)	(LO)		
0	Initialize	0000	0111	0101	
1	1: SLL, Difference	0000	1110	0101	1011
	2: Diff $< 0 \Rightarrow$ Do Nothing	0000	1110	0101	
2	1: SLL, Difference	0001	1100	0101	1100
	2: Diff $< 0 \Rightarrow$ Do Nothing	0001	1100	0101	
3	1: SLL, Difference	0011	1000	0101	1110
	2: Diff $< 0 \Rightarrow$ Do Nothing	0011	1000	0101	
4	1: SLL, Difference	0111	0000	0101	0010
	2: Rem = Diff, set lsb Quotient	0010	0001	0101	
Fi	nal Result	0010	1111		

(Q3)

1. [2 Points] Find the decimal value of the following single precision float:

 $= + (1.0000010011000...0)_2 * 2^{(136-127)} = + (1.0000010011000...0)_2 * 2^9$ = +1000001001.1 = +521.5

2. [2 Points] Find the decimal value of the following single precision float:

 $= -(0.01100...0)_2 * 2^{-126} = -1.5 \times 2^{-128}$

3. [3 Points] Find the normalized single precision representation of -59.625.

 $59.625 = 111011.101 = 1.11011101 * 2^{5}$

Exponent = 5 + 127 = 132

GRS

4. **[4 Points]** Round the given single precision float with the given GRS bits using the following rounding modes showing the resulting normalized number:

	+1.111	1111	1111 1	111 11	L11 11	L11 <mark>1(</mark>)0 x 2	2-12	7	
Zero:	[+1.11	1 1111	1111	1111	1111	1111	x	<mark>2⁻¹²⁷</mark>]
+infinity:	[<mark>+1.00</mark>	0 0000	0000	0000	0000	0000	x	<mark>2⁻¹²⁶</mark>]
-infinity:	[+1.11	1 1111	1111	1111	1111	1111	x	<mark>2⁻¹²⁷</mark>]
Nearest E	ven: [<mark>+1.00</mark>	0 0000	0000	0000	0000	0000	x	<mark>2⁻¹²⁶</mark>]

5. **[6 Points]** Find the normalized <u>difference</u> between **A** and **B** (i.e., A-B) by using rounding to <u>+infinity</u>. Perform the operation using **guard**, **round** and **sticky** bits.

A = +	-1.000 01	.01 1100	1010 10	00 00	01 ×	2 ⁴			
B = +	-1.011 10	01 0101	0000 00	010 10	00 ×	2 ⁻¹			
	1 000	0101 11	00 1010	1000	0001	000		24	
_		1001 01							
		0101 11							
_		0101 11							(align)
		0101 11							(
+									(2's complement)
	00.111	1111 11	11 1111	1111	1111	110	х	24	
=	+ 0.111	1111 11	11 1111	1111	1111	110	x	24	
=	+ 1.111	1111 11	11 1111	1111	1111	100	x	2 ³	(normalize)
=	+ 10.000	0000 00	00 0000	0000	0000		х	2 ³	(round)
=	+ 1.000	0000 00	00 0000	0000	0000		x	2 ⁴	(renormalize)
							-		(

(Q4) Consider the single-cycle datapath and control given below along with ALU design for the MIPS processor implementing a subset of the instruction set:

(i) Show the control signals generated for the execution of the following instructions by filling the table given below: (5 points)

Op	RegDst	RegWrite	ExtOp	ALUSrc	ALUOp	Beq	Bne	J	MemRead	MemWrite	MemtoReg
R-type	1 = Rd	1	x	0=BusB	R-type	0	0	0	0	0	0
slti	0 = Rt	1	1=sign	1=lmm	SLT	0	0	0	0	0	0
SW	x	0	1=sign	1=lmm	ADD	0	0	0	0	1	х
beq	x	0	x	0=BusB	SUB	1	0	0	0	0	х
j	x	0	x	х	x	0	0	1	0	0	х

(ii) Excluding the ALUOp, Beq, Bne and J signals, show the design of the control unit for the control signals given in the table above based on the given instructions. Assume that the opcode of these instructions is a 6-bit opcode such that the opcode for R-type instructions is 0, the opcode for slti is 1, the opcode for sw is 2, and so on for the rest of the instructions. (5 points)

RegDst	<=	R-type	Op ⁶
RegWrite	<=	(R-type+ <u>slti</u>)	Decoder
ExtOp	<=	1	
ALUSrc	<=	(<u>slti</u> + <u>sw</u>)	tis Bagaret Bagaret Bagaret
MemRead	<=	0	Logic Equations
MemWrite	<=	SW	
<u>MemtoReg</u>	<=	0	 ALUop RegDst RegWrite ExtOp ALUSrc ALUSrc MemRead MemRead MemRoeg MemRoeg Bne D

(iii) Show the design of the Next PC block. (4 points)

- (iv) We wish to add the following instructions to the MIPS single-cycle datapath. Add any necessary datapath modifications and control signals needed for the implementation of these instructions. Show only the <u>modified</u> and <u>added</u> components to the datapath.
 - a. sra (3 points)

	Instruction	Meaning			Fo	rmat		
sra	rd, rt, imm ⁵	rd= rt>>imm ¹⁶	$Op^6 = 0$	0	rt ⁵	rd ⁵	Imm ⁵	f ⁵ =3

For the sra instruction, examining the ALU one can see that the shift amont is coming through the A-input of the ALU and the operand to be shifted comes through the B input of the ALU. Thus, we need-to add a MUX on the A-input to select between the output of a register and the immediate values. This MUX needs to select only between the least significant 5 bits of BusA and bits 5 to 9 from Imm16. The modified part in the datapath is shown below:

b. jr (3 points)

	Instruction	Meaning	Format					
j	r rs	PC=rs	$op^{6} = 0$	rs ⁵	0	0	0	8

For this instruction, the changes required in the datapath to implement it is to load the PC from BusA, which is driven by the RS field. Thus, we need to add a MUX to select the target address to be loaded in the PC either from the output of the MUX choosing between the address from NextPC block and incremented PC or from BusA. The required changes are shown below:

- (v) Assume that the propagation delays for the major components used in the datapath are as follows:
 - Instruction and data memories: 120 ps
 - ALU and adders: 30 ps
 - Register file access (read or write): 14 ps
 - Main control: 8 ps
 - ALU control: 7 ps

Ignore the delays in the multiplexers, PC access, extension logic, and wires. What is the cycle time for the single-cycle datapath given above? (**3 points**)

Cycle Time = IM + max(Main Control+ALU Control, Register Reading) + ALU + DM= 120 ps + 15 ps + 30 ps + 120 = 285 ps

Syscall Services:

Service	\$v0	Arguments / Result
Print Integer	1	<pre>\$a0 = integer value to print</pre>
Print Float	2	<pre>\$f12 = float value to print</pre>
Print Double	3	<pre>\$f12 = double value to print</pre>
Print String	4	<pre>\$a0 = address of null-terminated string</pre>
Read Integer	5	Return integer value in <mark>\$v0</mark>
Read Float	6	Return float value in <mark>\$f0</mark>
Read Double	7	Return double value in <mark>\$f0</mark>
Read String	8	<pre>\$a0 = address of input buffer</pre>
Iteau Stillig	0	<pre>\$a1 = maximum number of characters to read</pre>
Exit Program	10	
Print Char	11	\$a0 = character to print
Read Char	12	Return character read in \$v0

MIPS Instructions:

srl \$s1,\$s2,10 \$s1 = \$s2>>>10 op = 0 rs = 0 rt = \$s2 rd = \$s1 sa = 10 f sra \$s1, \$s2, 10 \$s1 = \$s2>>> 10 op = 0 rs = 0 rt = \$s2 rd = \$s1 sa = 10 f slv \$s1, \$s2, \$s3 \$s1 = \$s2 <<< \$s3 op = 0 rs = \$s3 rt = \$s2 rd = \$s1 sa = 10 f slv \$s1, \$s2, \$s3 \$s1 = \$s2 <<< \$s3 op = 0 rs = \$s3 rt = \$s2 rd = \$s1 sa = 0 f srlv \$s1, \$s2, \$s3 \$s1 = \$s2>>>\$s3 op = 0 rs = \$s3 rt = \$s2 rd = \$s1 sa = 0 f srav \$s1, \$s2, \$s3 \$s1 = \$s2>>> \$s3 op = 0 rs = \$s3 rt = \$s2 rd = \$s1 sa = 0 f srav \$s1, \$s2, \$s3 \$s1 = \$s2 >>> \$s3 op = 0 rs = \$s3 rt = \$s2 rd = \$s1 sa = 0 f	0x21 0x22 0x23 0x24 0x24 0x25 0x26
addu \$s1, \$s2, \$s3\$s1 = \$s2 + \$s3op = 0rs = \$s2rt = \$s3rd = \$s1sa = 0f = 0sub \$s1, \$s2, \$s3\$s1 = \$s2 - \$s3op = 0rs = \$s2rt = \$s3rd = \$s1sa = 0f = 0subu \$s1, \$s2, \$s3\$s1 = \$s2 - \$s3op = 0rs = \$s2rt = \$s3rd = \$s1sa = 0f = 0subu \$s1, \$s2, \$s3\$s1 = \$s2 - \$s3op = 0rs = \$s2rt = \$s3rd = \$s1sa = 0f = 0InstructionMeaningR-Type Formatand \$s1, \$s2, \$s3\$s1 = \$s2 & \$s3op = 0rs = \$s2rt = \$s3rd = \$s1sa = 0f = 0or \$s1, \$s2, \$s3\$s1 = \$s2 & \$s3op = 0rs = \$s2rt = \$s3rd = \$s1sa = 0f = 0xor \$s1, \$s2, \$s3\$s1 = \$s2 ^ \$s3op = 0rs = \$s2rt = \$s3rd = \$s1sa = 0f = 0nor \$s1, \$s2, \$s3\$s1 = \$s2 ^ \$s3op = 0rs = \$s2rt = \$s3rd = \$s1sa = 0f = 0nor \$s1, \$s2, \$s3\$s1 = \$s2 ^ \$s3op = 0rs = \$s2rt = \$s3rd = \$s1sa = 0f = 0nor \$s1, \$s2, 10\$s1 = \$s2 <<10	0x21 0x22 0x23 0x24 0x25 0x26 0x26 0x27 = 0 = 2 = 3
sub\$s1, \$s2, \$s3\$s1 = \$s2 - \$s3op = 0rs = \$s2rt = \$s3rd = \$s1sa = 0f = 0subu\$s1, \$s2, \$s3\$s1 = \$s2 - \$s3op = 0rs = \$s2rt = \$s3rd = \$s1sa = 0f = 0InstructionMeaningR-Type Formatand\$s1, \$s2, \$s3\$s1 = \$s2 & \$s3op = 0rs = \$s2rt = \$s3rd = \$s1sa = 0f = 0or\$s1, \$s2, \$s3\$s1 = \$s2 & \$s3op = 0rs = \$s2rt = \$s3rd = \$s1sa = 0f = 0or\$s1, \$s2, \$s3\$s1 = \$s2 & \$s3op = 0rs = \$s2rt = \$s3rd = \$s1sa = 0f = 0or\$s1, \$s2, \$s3\$s1 = \$s2 & \$s3op = 0rs = \$s2rt = \$s3rd = \$s1sa = 0f = 0or\$s1, \$s2, \$s3\$s1 = \$s2 & \$s3op = 0rs = \$s2rt = \$s3rd = \$s1sa = 0f = 0or\$s1, \$s2, \$s3\$s1 = \$s2 & \$s3op = 0rs = \$s2rt = \$s3rd = \$s1sa = 0f = 0nor\$s1, \$s2, \$s3\$s1 = \$s2 & \$s3op = 0rs = \$s2rt = \$s3rd = \$s1sa = 10f = \$s1InstructionMeaningR-Type Formats1\$s1, \$s2, 10\$s1 = \$s2 <<<10op = 0rs = 0rt = \$s2rd = \$s1sa = 10f<s1\$s1, \$s2, 10\$s1 = \$s2 >>> 10op = 0rs = 0rt = \$s2rd = \$s1sa = 10fs1\$s1, \$s2, \$s3\$s1 = \$s2 <<<\$s3op = 0rs = \$s3rt = \$s2rd = \$s1 </td <td>0x22 0x23 0x24 0x25 0x26 0x27 = 0 = 2 = 3</td>	0x22 0x23 0x24 0x25 0x26 0x27 = 0 = 2 = 3
subu $\$s1$, $\$s2$, $\$s3$ $\$s1 = \$s2 - \$s3$ $op = 0$ $rs = \$s2$ $rt = \$s3$ $rd = \$s1$ $sa = 0$ $f = 0$ InstructionMeaningR-Type Formatand $\$s1$, $\$s2$, $\$s3$ $\$s1 = \$s2$ $\$s3$ $op = 0$ $rs = \$s2$ $rt = \$s3$ $rd = \$s1$ $sa = 0$ $f = 0$ or $\$s1$, $\$s2$, $\$s3$ $\$s1 = \$s2$ $\$s3$ $op = 0$ $rs = \$s2$ $rt = \$s3$ $rd = \$s1$ $sa = 0$ $f = 0$ or $\$s1$, $\$s2$, $\$s3$ $\$s1 = \$s2$ $\$s3$ $op = 0$ $rs = \$s2$ $rt = \$s3$ $rd = \$s1$ $sa = 0$ $f = 0$ or $\$s1$, $\$s2$, $\$s3$ $\$s1 = \$s2$ $\$s3$ $op = 0$ $rs = \$s2$ $rt = \$s3$ $rd = \$s1$ $sa = 0$ $f = 0$ xor $\$s1$, $\$s2$, $\$s3$ $\$s1 = \$s2 \wedge \$s3$ $op = 0$ $rs = \$s2$ $rt = \$s3$ $rd = \$s1$ $sa = 0$ $f = 1$ nor $\$s1$, $\$s2$, $1s3$ $\$s1 = \$s2 < 10$ $op = 0$ $rs = 0$ $rt = \$s3$ $rd = \$s1$ $sa = 0$ $f = 1$ nor $\$s1$, $\$s2$, 10 $\$s1 = \$s2 < 10$ $op = 0$ $rs = 0$ $rt = \$s2$ $rd = \$s1$ $sa = 10$ f srl $\$s1$, $\$s2$, 10 $\$s1 = \$s2 >> 10$ $op = 0$ $rs = 0$ $rt = \$s2$ $rd = \$s1$ $sa = 10$ f srl $\$s1$, $\$s2$, $\$s1 = \$s2 < <<$	0x23 0x24 0x25 0x26 0x27 = 0 = 2 = 3
$\begin{array}{ c c c c c c c c } \hline Instruction & Meaning & R-Type Format \\ \hline and \$s1, \$s2, \$s3 \$s1 = \$s2 \$\$s3 & op = 0 & rs = \$s2 & rt = \$s3 & rd = \$s1 & sa = 0 & f = \\ \hline or & \$s1, \$s2, \$s3 & \$s1 = \$s2 \$s3 & op = 0 & rs = \$s2 & rt = \$s3 & rd = \$s1 & sa = 0 & f = \\ \hline xor & \$s1, \$s2, \$s3 & \$s1 = \$s2 ^ \$s3 & op = 0 & rs = \$s2 & rt = \$s3 & rd = \$s1 & sa = 0 & f = \\ \hline nor & \$s1, \$s2, \$s3 & \$s1 = \$s2 ^ \$s3 & op = 0 & rs = \$s2 & rt = \$s3 & rd = \$s1 & sa = 0 & f = \\ \hline nor & \$s1, \$s2, \$s3 & \$s1 = \ast(\$s2) \$s3 & op = 0 & rs = \$s2 & rt = \$s3 & rd = \$s1 & sa = 0 & f = \\ \hline nor & \$s1, \$s2, \$s3 & \$s1 = \ (\$s2) \$s1 = \ (\$s2) \$s1 & \$s2 \ s1 = \ (\$s2) \$s1 & sa = 0 & f = \\ \hline nor & \$s1, \$s2, 10 & \$s1 = \$s2 <<10 & op = 0 & rs = 0 & rt = \$s2 & rd = \$s1 & sa = 10 & f \\ \hline srl & \$s1, \$s2, 10 & \$s1 = \$s2 >> 10 & op = 0 & rs = 0 & rt = \$s2 & rd = \$s1 & sa = 10 & f \\ \hline sra & \$s1, \$s2, 10 & \$s1 = \$s2 >> 10 & op = 0 & rs = 0 & rt = \$s2 & rd = \$s1 & sa = 10 & f \\ \hline srl & \$s1, \$s2, \$s3 & \$s1 = \$s2 <<10 & op = 0 & rs = 0 & rt = \$s2 & rd = \$s1 & sa = 10 & f \\ srl & \$s1, \$s2, 10 & \$s1 = \$s2 >> 10 & op = 0 & rs = 0 & rt = \$s2 & rd = \$s1 & sa = 10 & f \\ srl & \$s1, \$s2, \$s3 & \$s1 = \$s2 >> 10 & op = 0 & rs = 0 & rt = \$s2 & rd = \$s1 & sa = 10 & f \\ srl & \$s1, \$s2, \$s3 & \$s1 = \$s2 >> 10 & op = 0 & rs = 0 & rt = \$s2 & rd = \$s1 & sa = 10 & f \\ srlv & \$s1, \$s2, \$s3 & \$s1 = \$s2 >> \$s3 & op = 0 & rs = \$s3 & rt = \$s2 & rd = \$s1 & sa = 0 & f \\ srlv & \$s1, \$s2, \$s3 & \$s1 = \$s2 >> \$s3 & op = 0 & rs = \$s3 & rt = \$s2 & rd = \$s1 & sa = 0 & f \\ srav & \$s1, \$s2, \$s3 & \$s1 = \$s2 >> \$s3 & op = 0 & rs = \$s3 & rt = \$s2 & rd = \$s1 & sa = 0 & f \\ srav & \$s1, \$s2, \$s3 & \$s1 = \$s2 >> \$s3 & op = 0 & rs = \$s3 & rt = \$s2 & rd = \$s1 & sa = 0 & f \\ srav & \$s1, \$s2, \$s3 & \$s1 = \$s2 >> \$s3 & op = 0 & rs = \$s3 & rt = \$s2 & rd = \$s1 & sa = 0 & f \\ srav & \$s1, \$s2, \$s2, \$s3 & \$s1 = \$s2 >> \$s3 & op = 0 & rs = \$s3 & rt = \$s2 & rd = \$s1 & sa = 0 & f \\ srav & \$s1, \$s2, \$s2, \$s3 & \$s1 = \$s2 >> \$s3 & op = 0 & rs = \$s3 & rt = \$s2 & rd = \$s1 & sa = 0 & f \\ srav & \$s1, \$s2, \$s2, \$s3 & s1 = \$s2 >> \$s3 $	0x24 0x25 0x26 0x27 = 0 = 2 = 3
and \$s1, \$s2, \$s3\$s1 = \$s2 & \$s3op = 0rs = \$s2rt = \$s3rd = \$s1sa = 0f =or\$s1, \$s2, \$s3\$s1 = \$s2 \$s3op = 0rs = \$s2rt = \$s3rd = \$s1sa = 0f =xor\$s1, \$s2, \$s3\$s1 = \$s2 ^ \$s3op = 0rs = \$s2rt = \$s3rd = \$s1sa = 0f =nor\$s1, \$s2, \$s3\$s1 = \$s2 ^ \$s3op = 0rs = \$s2rt = \$s3rd = \$s1sa = 0f =nor\$s1, \$s2, \$s3\$s1 = ~(\$s2 \$s3)op = 0rs = \$s2rt = \$s3rd = \$s1sa = 0f =nor\$s1, \$s2, \$s3\$s1 = ~(\$s2 \$s3)op = 0rs = \$s2rt = \$s3rd = \$s1sa = 0f =nor\$s1, \$s2, \$s3\$s1 = \$s2 <<10	0x25 0x26 0x27 = 0 = 2 = 3
or $\$s1$, $\$s2$, $\$s3$ $\$s1 = \$s2 \$s3$ op = 0 $rs = \$s2$ $rt = \$s3$ $rd = \$s1$ $sa = 0$ $f = xor$ xor $\$s1$, $\$s2$, $\$s3$ $\$s1 = \$s2 ^ \$s3$ op = 0 $rs = \$s2$ $rt = \$s3$ $rd = \$s1$ $sa = 0$ $f = nor$ nor $\$s1$, $\$s2$, $\$s3$ $\$s1 = \$s2 ^ \$s3$ op = 0 $rs = \$s2$ $rt = \$s3$ $rd = \$s1$ $sa = 0$ $f = nor$ InstructionMeaningR-Type Formatsll $\$s1$, $\$s2$, 10 $\$s1 = \$s2 <<10$ $op = 0$ $rs = 0$ $rt = \$s2$ $rd = \$s1$ $sa = 10$ f srl $\$s1$, $\$s2$, 10 $\$s1 = \$s2 <<10$ $op = 0$ $rs = 0$ $rt = \$s2$ $rd = \$s1$ $sa = 10$ f srl $\$s1$, $\$s2$, 10 $\$s1 = \$s2 >> 10$ $op = 0$ $rs = 0$ $rt = \$s2$ $rd = \$s1$ $sa = 10$ f sra $\$s1$, $\$s2$, 10 $\$s1 = \$s2 >> 10$ $op = 0$ $rs = 0$ $rt = \$s2$ $rd = \$s1$ $sa = 10$ f sllv $\$s1$, $\$s2$, $\$s3$ $\$s1 = \$s2 <$	0x25 0x26 0x27 = 0 = 2 = 3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0x26 0x27 = 0 = 2 = 3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0x27 = 0 = 2 = 3
$\begin{array}{ c c c c c c c c c } \hline Instruction & Meaning & R-Type Format \\ \hline sll $$s1,$s2,10 $$s1 = $s2 << 10 $$op = 0 $$rs = 0 $$rt = $s2 $$rd = $s1 $$sa = 10 $$f$ \\ \hline srl $$s1,$s2,10 $$s1 = $s2>>>10 $$op = 0 $$rs = 0 $$rt = $s2 $$rd = $s1 $$sa = 10 $$f$ \\ \hline sra $$s1,$s2,10 $$s1 = $$s2>>>10 $$op = 0 $$rs = 0 $$rt = $s2 $$rd = $s1 $$sa = 10 $$f$ \\ \hline slv $$s1,$s2,$s3 $$s1 = $$s2 << $s3 $$op = 0 $$rs = $$s3 $$rt = $$s2 $$rd = $$s1 $$sa = 0 $$f$ \\ \hline srlv $$s1,$s2,$s3 $$s1 = $$s2>>>$$s3 $$op = 0 $$rs = $$s3 $$rt = $$s2 $$rd = $$s1 $$sa = 0 $$f$ \\ \hline srlv $$s1,$s2,$s3 $$s1 = $$s2>>>$$s3 $$op = 0 $$rs = $$s3 $$rt = $$s2 $$rd = $$s1 $$sa = 0 $$$f$ \\ \hline srav $$s1,$s2,$s3 $$$s1 = $$s2>>>$$s3 $$op = 0 $$rs = $$s3 $$rt = $$s2 $$rd = $$s1 $$sa = 0 $$$f$ \\ \hline srav $$s1,$s2,$s3 $$$s1 = $$s2>>>$$s3 $$op = 0 $$$rs = $$s3 $$rt = $$s2 $$rd = $$s1 $$sa = 0 $$$$f$ \\ \hline srav $$s1,$s2,$s3 $$$s1 = $$s2 >>>$$s3 $$op = 0 $$$$$$rs = $$s3 $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$	= 0 = 2 = 3
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	= 2 = 3
srl \$s1,\$s2,10 \$s1 = \$s2>>>10 op = 0 rs = 0 rt = \$s2 rd = \$s1 sa = 10 f sra \$s1, \$s2, 10 \$s1 = \$s2>>> 10 op = 0 rs = 0 rt = \$s2 rd = \$s1 sa = 10 f slv \$s1, \$s2, \$s3 \$s1 = \$s2 << \$s3 op = 0 rs = \$s3 rt = \$s2 rd = \$s1 sa = 10 f slv \$s1, \$s2, \$s3 \$s1 = \$s2 <<< \$s3 op = 0 rs = \$s3 rt = \$s2 rd = \$s1 sa = 0 f srlv \$s1, \$s2, \$s3 \$s1 = \$s2>>> \$s3 op = 0 rs = \$s3 rt = \$s2 rd = \$s1 sa = 0 f srav \$s1, \$s2, \$s3 \$s1 = \$s2 >>> \$s3 op = 0 rs = \$s3 rt = \$s2 rd = \$s1 sa = 0 f	= 2 = 3
sra \$s1, \$s2, 10 \$s1 = \$s2 >> 10 op = 0 rs = 0 rt = \$s2 rd = \$s1 sa = 10 f sllv \$s1,\$s2,\$s3 \$s1 = \$s2 << \$s3	= 3
sllv \$s1,\$s2,\$s3 \$s1 = \$s2 << \$s3	
srlv \$\$1,\$\$2,\$\$3 \$\$1 = \$\$2>>>\$\$3 op = 0 rs = \$\$3 rt = \$\$2 rd = \$\$1 \$\$a = 0 f srav \$\$1,\$\$2,\$\$3 \$\$1 = \$\$2>>> \$\$3 op = 0 rs = \$\$3 rt = \$\$2 rd = \$\$1 \$\$a = 0 f srav \$\$1,\$\$2,\$\$3 \$\$1 = \$\$2>>> \$\$3 op = 0 rs = \$\$3 rt = \$\$2 rd = \$\$1 \$\$a = 0 f	- 1
srav \$s1,\$s2,\$s3 \$s1 = \$s2 >> \$s3 op = 0 rs = \$s3 rt = \$s2 rd = \$s1 sa = 0 f	
	= 6
	= 7
Instruction Meaning I-Type Format	
addi \$s1, \$s2, 10 \$s1 = \$s2 + 10 op = 0x8 rs = \$s2 rt = \$s1 imm ¹⁶ = 10)
addiu \$s1, \$s2, 10 \$s1 = \$s2 + 10 op = 0x9 rs = \$s2 rt = \$s1 imm ¹⁶ = 10)
andi \$\$1, \$\$2, 10 \$\$1 = \$\$2 & 10 op = 0xc rs = \$\$2 rt = \$\$1 imm ¹⁶ = 10	
ori $\$1, \$2, 10$ $\$1 = \$2 10$ op = 0xd rs = $\$2$ rt = $\$1$ imm ¹⁶ = 10	
xori $\$s1, \$s2, 10$ $\$s1 = \$s2^{10}$ op = 0xe rs = $\$s2$ rt = $\$s1$ imm ¹⁶ = 10	
lui $\$s1$, 10 $\$s1 = 10 << 16$ op = 0xf 0 rt = $\$s1$ imm ¹⁶ = 10	,
Instruction Meaning Format	
j label jump to label op ⁶ = 2 imm ²⁶	
beq rs, rt, label branch if (rs == rt) $op^6 = 4$ rs ⁵ rt ⁵ imm ¹⁶	
bne rs, rt, label branch if (rs != rt) op ⁶ = 5 rs ⁵ rt ⁵ imm ¹⁶	
blez rs, label branch if (rs<=0) $op^6 = 6$ rs ⁵ 0 imm ¹⁶	
bgtz rs, label branch if (rs > 0) $op^6 = 7$ rs ⁵ 0 imm ¹⁶	
bltz rs, label branch if (rs < 0) $op^6 = 1$ rs ⁵ 0 imm ¹⁶	
bgez rs, label branch if (rs>=0) $op^6 = 1$ rs ⁵ 1 imm ¹⁶	
Instruction Meaning Format	
	(2a
	(2b
slti rt, rs, imm ¹⁶ rt=(rs <imm?1:0) 0xa="" rs<sup="">5 rt⁵ imm¹⁶</imm?1:0)>	
sltiu rt, rs, imm ¹⁶ rt=(rs <imm?1:0) 0xb="" rs<sup="">5 rt⁵ imm¹⁶</imm?1:0)>	I

Instruction	Meaning			I-Typ	e Forr	nat		
lb rt, imm ¹⁶ (rs)	rt = MEM[rs+imn	n ¹⁶] 0x2	0 rs	⁵ r	5	imn	n ¹⁶	
Ih rt, imm ¹⁶ (rs)	rt = MEM[rs+imn	n ¹⁶] 0x2	1 rs	⁵ r	5	imm ¹⁶		
lw rt, imm ¹⁶ (rs)	rt = MEM[rs+imn	n ¹⁶] 0x2	3 rs	⁵ rt	5	imm ¹⁶		
lbu rt, imm16(rs)	rt = MEM[rs+imn	n ¹⁶] 0x2	4 rs	⁵ rt	5	imn	n ¹⁶	
Ihu rt, imm16(rs)	rt = MEM[rs+imn	n ¹⁶] 0x2	5 rs	⁵ rt	5	imn	n ¹⁶	
sb rt, imm16(rs)	MEM[rs+imm ¹⁶]	= rt 0x2	8 rs	⁵ r	5	imm ¹⁶		
sh rt, imm16(rs)	MEM[rs+imm ¹⁶]	= rt 0x2	9 rs	⁵ rt	5	imm ¹⁶		
sw rt, imm16(rs)	MEM[rs+imm ¹⁶]	= rt 0x2	b rs	⁵ rt	5	imm ¹⁶		
Instruction Meaning Format								
jal label S	\$31=PC+4, jump	op ⁶ = 3	op ⁶ = 3 imm ²⁶					
jr Rs	PC = Rs	op ⁶ = 0	rs ⁵	0	0	0	8	
jalr Rd, Rs F	d=PC+4, PC=Rs	op ⁶ = 0	rs ⁵	0	rd ⁵	0	9	
Instruction	Meaning			For	mat			
mult Rs, Rt	Hi, Lo = Rs × Rt	op ⁶ = 0	Rs⁵	Rt⁵	0	0	0x18	
multu Rs, Rt	Hi, Lo = Rs × Rt	op ⁶ = 0	Rs⁵	Rt⁵	0	0	0x19	
mul Rd, Rs, Rt	Rd = <u>Rs</u> × <u>Rt</u>	0x1c	Rs⁵	Rt⁵	Rd⁵	0	0x02	
div Rs, Rt	Hi, Lo = Rs / Rt	op ⁶ = 0	Rs⁵	Rt⁵	0	0	0x1a	
divu Rs, Rt	Hi, Lo = Rs / Rt	op ⁶ = 0	Rs⁵	Rt⁵	0	0	0x1b	
mfhi Rd	Rd = Hi	op ⁶ = 0	0	0	Rd⁵	0	0x10	
mflo Rd	Rd = Lo	op ⁶ = 0	0	0	Rd⁵	0	0x12	