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COE 301 / ICS 233 

Computer Organization 
 

Exam 2 – Spring 2017 
 

Saturday, April 29, 2017 

6:30 PM – 8:30 PM 
 

Computer Engineering Department 

College of Computer Sciences & Engineering 

King Fahd University of Petroleum & Minerals 

 
Student Name: SOLUTION  

 

Student ID:   

 

Section:   

 

Q1 / 15 Q2 / 15 

Q3 / 15 Q4 / 25 

Q5 / 15 Q6 / 20 

Total               / 105 

 
Important Reminder on Academic Honesty 

Using unauthorized information or notes on an exam, peeking at others work, or altering 

graded exams to claim more credit are severe violations of academic honesty. Detected cases 

will receive a failing grade in the course. 
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Question 1: Writing a Recursive Function in MIPS 

(15 pts) Write a MIPS assembly-language function sum that receives two arguments: list[] and length, 

passed in $a0 and $a1, respectively, computes recursively and returns the sum of the array elements in $f0.  

list[] is the address of an array of single-precision floats. The result of the function is a single-precision 

float. 

 
float sum (float list[], int length) { 
  if (length == 0) return 0; 
  else return (list[0] + sum(&list[1], length-1)); 
} 
 

SOLUTION: 
 
sum: 

 bne $a1, $zero, else # if (length != 0) else: 

 sub.s $f0, $f0, $f0 # $f0 = $f0 - $f0 = 0 

 jr $ra # return to caller 

else: 

 addiu $sp, $sp, -8 # allocate stack frame = 8 bytes 

 lwc1 $f0, 0($a0) # load $f0 = list[0] 

 sw $ra, 0($sp) # save return address 

 swc1 $f0, 4($sp) # save $f0 = list[0] 

 addiu $a0, $a0, 4 # $a0 = &list[1] 

 addiu $a1, $a1, -1 # $a1 = length–1 

 jal sum # recursive call 

 lw $ra, 0($sp) # restore return address 

 lwc1 $f1, 4($sp) # restore $f1 = list[0] 

 add.s $f0, $f1, $f0 # $f0 = list[0] + sum(,) 

 addiu $sp, $sp, 8 # free stack frame 

 jr $ra # return to caller 
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Question 2: Greatest Common Divisor 

(15 pts) The greatest common divisor of two integers a and b can be computed as follows: 

gcd(a, 0) = a 

gcd(a, b) = gcd(b, a % b) where % is the remainder operator 

For example, 

gcd(30, 18) = gcd(18, 30%18) =  

gcd(18, 12) = gcd(12, 18%12) =  

gcd(12, 6)  = gcd(6,  12%6)  = gcd(6, 0) = 6 

Write a MIPS assembly-language function that receives two integer arguments in $a0 and $a1, computes and 

returns the greatest common divisor in $v0. Hint: use integer division and remainder in your computation, and 

write a loop to repeatedly compute the gcd. 

 
SOLUTION: 
 

gcd: 

 bne $a1, $zero, loop # if (b != 0) branch to loop 

 move $v0, $a0 # $v0 = a 

 jr $ra # return to caller 

loop: 

div $a0, $a1 # divide a/b; HI = remainder = a%b 

move $a0, $a1 # $a0 = b 

mfhi $a1 # $a1 = a % b (remainder) 

bne $a1, $zero, loop # loop if (remainder != 0) 

move $v0, $a0 # $v0 = a 

jr $ra # return to caller 
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Question 3: Sequential Signed Integer Multiplication 

(15 pts) Given that the Multiplicand = 10100101 and the Multiplier = 10101101 are signed 2’s complement 

numbers, show the signed multiplication of the Multiplicand by the Multiplier. The result of the 

multiplication should be a 16-bit signed number in HI and LO registers. Show the steps of your work for a 

full mark. 

 

Iteration Multiplicand Sign Product = HI, LO 

0 Initialize 10100101  00000000, 10101101 

1 

LO[0]=1  ADD 10100101 1 10100101, 10101101 

Shift right arithmetic   11010010, 11010110 

2 

LO[0]=0  Do Nothing 10100101  11010010, 11010110 

 Shift right arithmetic   11101001, 01101011 

3 

LO[0]=1  ADD 10100101 1 10001110, 01101011 

Shift right arithmetic   11000111, 00110101 

4 

LO[0]=1  ADD 10100101 1 01101100, 00110101 

Shift right arithmetic   10110110, 00011010 

5 

LO[0]=0  Do Nothing 10100101  10110110, 00011010 

 Shift right arithmetic   11011011, 00001101 

6 

LO[0]=1  ADD 10100101 1 10000000, 00001101 

Shift right arithmetic   11000000, 00000110 

7 

LO[0]=0  Do Nothing 10100101  11000000, 00000110 

 Shift right arithmetic   11100000, 00000011 

8 

LO[0]=1  SUBTRACT 01011011 0 00111011, 00000011 

Shift right arithmetic   00011101, 10000001 

 

 

Check: Multiplicand = 10100101 = -91 
Multiplier = 10101101 = -83 
Product = -91 × -83 = 7,553 = 00011101 10000001 
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Question 4: Floating-Point Numbers and Arithmetic 

a) (4 pts) Find the decimal value of the following single-precision float: 

 

S Exponent Fraction 

1 1000 1110 000 0100 1100 0000 0110 0000 

 
Decimal Value = -1.000 0100 1100 0000 0110 0000×215 

Decimal Value = -1000 0100 1100 0000.0110 0000 

Decimal Value = -1000 0100 1100 0000.0110 0000 = -33984.375 

 

b) (4 pts) Find the decimal value of the following single-precision float: 

 

S Exponent Fraction 

0 0000 0000 010 1100 0001 0000 0000 0000 

 

Decimal Value = 0.010 1100 0001 0000 0000 0000×2-126 

Decimal Value = 0.010 1100 0001 0000 0000 0000×2-126 

Decimal Value = 10 1100 0001.0000 0000 0000×2-137 

Decimal Value = 705×2-137 = 4.0465015×10-39  

 

c) (4 pts) Find the IEEE 754 single-precision representation of –126.2, rounded to the nearest even. 

 

126.2 = 1111110.0011 0011 0011 0011 0011 ... 

Normalize: 126.2 = 1.111 1100 0110 0110 0110 0110 0110 ... ×2+6 

Round: 126.2 = 1.111 1100 0110 0110 0110 0110 ×2+6 (R=0, S=1) 

IEEE Representation: 

S Exponent Fraction 

1 1000 0101 111 1100 0110 0110 0110 0110 

 

d) (4 bits) Normalize and Round the given single-precision number with given GRS (Guard, Round, and 

Sticky) bits using the following four rounding modes. Show the final normalized number and its exponent: 

                                GRS 
-0.111 1111 1111 1111 1111 1111 110 × 2-12 
 

Round towards Zero: -1.111 1111 1111 1111 1111 1111 × 2-13 (Always Truncate) 

Round towards +Infinity: -1.111 1111 1111 1111 1111 1111 × 2-13 (Negative  Truncate) 

Round towards -Infinity: -1.000 0000 0000 0000 0000 0000 × 2-12 (RS=10  Inc + Renormalize) 

Round towards Nearest Even: -1.000 0000 0000 0000 0000 0000 × 2-12 (Inc + Renormalize) 
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e) (9 pts) Given that A and B are single-precision floats, compute the difference A–B. Use rounding to nearest 

even. Perform the operation using guard, round and sticky bits. 

 

A = +1.010 1001 1111 1010 0000 1101 × 2+3 

B = +1.001 1111 1010 0000 1110 0100 × 2-1 
 

 

A–B = 

 1.010 1001 1111 1010 0000 1101 × 2+3 

 – 1.001 1111 1010 0000 1110 0100 × 2-1 

 
 1.010 1001 1111 1010 0000 1101 × 2+3 

 – 0.000 1001 1111 1010 0000 1110 010 × 2+3  (Right-shift) 

 
 1.010 1001 1111 1010 0000 1101 × 2+3 

 + 1.111 0110 0000 0101 1111 0001 110 × 2+3  (2's complement) 
                                                 

 + 1.001 1111 1111 1111 1111 1110 110 × 2+3  (positive result) 
                                     GRS 

 
 Result is already normalized, GRS bits = 110 
 Therefore, Increment Fraction 
 

 + 1.001 1111 1111 1111 1111 1111 × 2+3  (Final result) 
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Question 5: Register File 

(15 pts) Draw a register file having 7 registers only (R1 to R7) with two register read ports (Ra and Rb) and 

one register write port (Rw). R0 should be hardwired to zero and cannot be written. The register file should 

have two output data busses (BusA and BusB) and one input data bus (BusW). A control signal (RegWrite) 

should be used to enable the writing of the register file at the edge of the Clock signal. 
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Question 6: Single-Cycle Datapath and Control 

 

(20 pts) Consider the single-cycle datapath and control given below that implements a subset of the MIPS 

instruction set: 

 

 
 

The PC control logic can be described as follows: 

 

if (Op == J) PCSrc = 1; 

else if ((Op == BEQ && Zero) || (Op == BNE && ~Zero)) PCSrc = 2; 

else PCSrc = 0; 

 

 

We wish to add the following instructions to the MIPS single-cycle datapath: 

 

Instruction Meaning Format 

 jalr Rd, Rs  Rd = PC+4; PC = Rs Op = 0 Rs 0 Rd 0 f = 9 

 movz Rd, Rs, Rt  if (Rt==0) Rd = Rs Op = 0 Rs Rt Rd 0 f = 10 

 lwr  Rd, Rs, Rt  Rd = MEM[Rs+Rt] Op = 0 Rs Rt Rd 0 f = 48 

 

 

  

Branch, Jump = 00  PCSrc = 0 
Branch, Jump = 01  PCSrc = 1 
Branch, Jump = 10  PCSrc = 2 
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a) (10 pts) Redraw the single-cycle datapath. Show and describe any necessary modifications to the datapath 

and control signals needed for the implementation of the above three instructions. 

b) (10 pts) Draw a table showing the values of ALL control signals needed for the implementation of the 

above three instructions. Describe any changes in the main control and PC control needed for the 

implementation of the above three instructions. 

 

Solution a: The modified single-cycle datapath is shown below. 
 

For JALR, a larger multiplexer is added at the PC input. The Jump Register Address is taken from 

BusA and fed back to input 3 of the PCSrc multiplexer. The PC Ctrl also depends on the function. 

Similarly, a larger multiplexer is needed for Write Back (WBdata). The Next PC address is connected to 

input 2 of the WBdata multiplexer. 
 

For MOVZ, the value of register Rt (on BusB) is detected whether it is zero (Bzero). A 32-input NOR 

gate is used to generate the Bzero signal (whether BusB is zero). The Zero flag of the ALU cannot be 

used because it indicates whether the ALU result is zero. The RegWr signal now depends also on the 

function code and the Bzero signal. 
 

For LWR, no change in the datapath is required. Only changes in the control signals. 
 

 
Solution b: Control Signals 
 

Op f PCSrc RegDst RegWr ExtOp ALUSrc ALUop MemRd MemWr WBdata 

0 JALR=9 BusA=3 Rd=1 1 X X X 0 0 RA=2 

0 MOVZ=10 NextPC=0 Rd=1 Bzero X X MoveA 0 0 ALU=0 

0 LWR=48 NextPC=0 Rd=1 1 X BusB=0 ADD 1 0 DM=1 
 

The Main control now depends on the Opcode, function code, and the Bzero signal. The PC control also 

depends on the function code. For JALR, PCSrc = 3 (BusA) and WBdata = 2 (return address). For 

MOVZ, RegWr = Bzero (enabled if Bzero is 1), ALUop = MoveA (ALU result = BusA), and WBdata = 0 

(ALU result). Finally, LWR is similar to LW except that the memory address is computed as Reg(Rs) + 

Reg(Rt). This is why ALUSrc = BusB, ALUop is ADD, MemRd = 1, and WBdata = 1 (Data memory). 


