# King Fahd University of Petroleum and Minerals <br> College of Computer Sciences and Engineering <br> Department of Computer Engineering 

COE 202 - Digital Logic Design (T112)
Homework \# 03 (due date \& time: Wednesday 14/03/2012 during class period)
*** Show all your work. No credit will be given if work is not shown! ***
Problem 1 (30 points): Consider the Boolean function $F(A, B, C, D)=\Sigma m(0,1,2,5,6,7,8$, 9, 10, 12, 13). Find the following:

1. Identify all the prime implicants and the essential prime implicants of F .
2. Simplify the Boolean function $\mathbf{F}$ into a minimal sum-of-products expression.
3. Simplify the Boolean function $\mathbf{F}$ into a minimal product-of-sums expression.

Problem 2 ( 30 points): Consider the Boolean function $F(A, B, C, D)=\Sigma m(0,2,5,8,10)$, together with the don't care conditions $\mathbf{d}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(1,4,7,9,11,12,14,15)$. Find the following:

1. Simplify the Boolean function $\mathbf{F}$ together with the don't care conditions $\mathbf{d}$, into minimal sum-of-products expression.
2. Starting with the sum-of-products expression, implement the function using only NAND gates and Inverters.
3. Starting with the sum-of-products expression, implement the function using only NOR gates and Inverters.

Problem 3 ( 40 points): Design a 3-bit decrementer using only NAND gates. The circuit takes a 3-bit unsigned number $\mathbf{I}=\mathbf{I}_{\mathbf{2}} \mathbf{I}_{\mathbf{1}} \mathbf{I}_{\mathbf{0}}$ as input and generates a 3-bit output number $\mathbf{Z}=$ $\mathbf{Z}_{2} \mathbf{Z}_{1} \mathbf{Z}_{\mathbf{0}}$ and a Valid output $\mathbf{V}$. Whenever $\mathbf{I}>\mathbf{0}$ the output $\mathbf{Z}=\mathbf{I} \mathbf{- 1}$ and $\mathbf{V}=\mathbf{1}$. If $\mathbf{I}=\mathbf{0}$, the output is invalid which is indicated by an output $\mathbf{V}=\mathbf{0}$. Derive the simplified Boolean expressions of all outputs, and show the logic diagram implementation of the all NAND gates circuit.

