King Fahd University of Petroleum and Minerals College of Computer Sciences and Engineering Department of Computer Engineering

COE 202 - Fundamentals of Computer Engineering (T102)

Homework \# 04 (due date \& time: Saturday 23/04/2011 during class period)

*** Show all your work. No credit will be given if work is not shown! ***

Problem \# 1 (10 points):

Assume that both true and complement forms of the input variables are available. Provide an all-NAND implementation for the minimized expressions for the following:
i. (5 points) $F(A, B, C, D)=\sum m(0,1,2,3,6,7,10,11,14,15)$
ii. (5 points) $F(A, B, C, D)=\prod M(4,5,6,7,8,9,14,15)$

Problem \# 2 (10 points):

Assume that both true and complement forms of the input variables are available. Provide an all-NOR implementation for the minimized expressions for the following:
i. (5 points) $F(A, B, C, D)=\sum m(0,1,2,3,6,7,10,11,14,15)$
ii. (5 points) $F(A, B, C, D)=\prod M(4,5,6,7,8,9,14,15)$

Problem \# 3 (40 points):

Design a circuit that accepts two 2-bit unsigned numbers A (i.e. $\mathrm{A}_{1} \mathrm{~A}_{0}$) and B (i.e. $\mathrm{B}_{1} \mathrm{~B}_{0}$). The circuit produces $|A-B|$. Provide an all-NOR implementation of the circuit. Assume that both true and complement forms of the input variables are available.

Problem \# 4 (10 points): Use a 4×16 non-inverted-output decoder and external gate(s) to implement the following function:

$$
F(A, B, C, D)=\sum(2,3,5,6,8,9,14)
$$

Problem \# 5 (10 points): Repeat problem \# 4 but use a $\mathbf{4 \times 1 6}$ inverted-output decoder and external gate(s).

Problem \# 6 (10 points): Repeat problem \# 4 but use a $\mathbf{1 6 \times 1}$ MUX and external gate(s).
Problem \# $\mathbf{7}$ (10 points): Repeat problem \# 4 but use an $\mathbf{8 \times 1}$ MUX and external gate(s). Connect $\boldsymbol{C}, \boldsymbol{A}$, and \boldsymbol{D} to $\mathrm{S}_{2}, \mathrm{~S}_{1}$, and S_{0}, respectively.

