King Fahd University of Petroleum and Minerals College of Computer Sciences and Engineering Department of Computer Engineering

COE 202 - Fundamentals of Computer Engineering (T101)
Homework \# 04 (due date \& time: Sunday 19/12/2010 during class period)
*** Show all your work. No credit will be given if work is not shown! ***
Problem \# 1 (50 points): As a design engineer your manager asks you to design a circuit that will be used in a petrochemical plant. Using sensors S_{1}, S_{2}, S_{3}, and S_{4} that are connected to the plant's petrochemical reservoir, the circuit monitors the reservoir's temperature, pressure, sulfur contents, and acidity, respectively. Every sensor produces a binary " 1 " if the phenomenon it monitors exceeds a predetermined threshold; otherwise the sensor produces a binary " 0 ". The circuit receives the readings from each of the four sensors. Furthermore, the circuit controls 2 green light bulbs, L_{1} and L_{2}. The circuit should behave as follows:

- Both L_{1} and L_{2} will be turned on (i.e. binary " 1 ") if the circuit detects that none of the phenomena exceeded their corresponding thresholds.
- L_{1} will be turned off (i.e. binary " 0 ") if the circuit detects that the temperature, the pressure, or both exceeded the corresponding threshold.
- L_{2} will be turned off (i.e. binary " 0 ") if the circuit detects that the sulfur contents, the acidity, or both exceeded the corresponding threshold.

Design the circuit using all NOR gates.

Problem \# 2 (10 points): Use a 4×16 non-inverted-output decoder and external gate(s) to implement the following function:

$$
F_{A, B, C, D}=\sum(1,3,6,7,8,10,14)
$$

Problem \# 3 (10 points): Repeat problem \# 2 but use a $\mathbf{4 \times 1 6}$ inverted-output decoder and external gate(s).

Problem \# 4 (10 points): Repeat problem \# 2 but use a $\mathbf{1 6 \times 1}$ MUX and external gate(s).
Problem \# 5 (10 points): Repeat problem \# 2 but use an $\mathbf{8 \times 1}$ MUX and external gate(s). Connect A, B, and C to S_{2}, S_{1}, and S_{0}, respectively.

Problem \# 6 (10 points): Repeat problem \# 2 but use an $\mathbf{8 \times 1}$ MUX and external gate(s). Connect $\boldsymbol{C}, \boldsymbol{A}$, and \boldsymbol{D} to $\mathrm{S}_{2}, \mathrm{~S}_{1}$, and S_{0}, respectively.

