King Fahd University of Petroleum and Minerals College of Computer Sciences and Engineering Department of Computer Engineering

COE 202 – Fundamentals of Computer Engineering (T101)

Homework # 04 (due date & time: Sunday 19/12/2010 during class period)

*** Show all your work. No credit will be given if work is not shown! ***

Problem # 1 (50 points): As a *design engineer* your manager asks you to design a circuit that will be used in a petrochemical plant. Using sensors S_1 , S_2 , S_3 , and S_4 that are connected to the plant's petrochemical reservoir, the circuit monitors the reservoir's temperature, pressure, sulfur contents, and acidity, respectively. Every sensor produces a binary "1" if the phenomenon it monitors exceeds a predetermined threshold; otherwise the sensor produces a binary "0". The circuit receives the readings from each of the four sensors. Furthermore, the circuit controls 2 green light bulbs, L_1 and L_2 . The circuit should behave as follows:

- Both L₁ and L₂ will be turned on (i.e. binary "1") if the circuit detects that none of the phenomena exceeded their corresponding thresholds.
- L_1 will be turned **off** (i.e. binary "0") if the circuit detects that the temperature, the pressure, or both exceeded the corresponding threshold.
- L₂ will be turned off (i.e. binary "0") if the circuit detects that the sulfur contents, the acidity, or both exceeded the corresponding threshold.

Design the circuit using all NOR gates.

Problem # 2 (10 points): Use a 4×16 **<u>non-inverted-output decoder</u>** and external gate(s) to implement the following function:

$$F_{A,B,C,D} = \sum (1,3,6,7,8,10,14)$$

Problem # 3 (10 points): Repeat problem # 2 but use a **4×16 inverted-output decoder** and external gate(s).

Problem # 4 (10 points): Repeat problem # 2 but use a **16×1 MUX** and external gate(s).

Problem # 5 (10 points): Repeat problem # 2 but use an 8×1 MUX and external gate(s). Connect *A*, *B*, and *C* to S₂, S₁, and S₀, respectively.

Problem # 6 (10 points): Repeat problem # 2 but use an 8×1 MUX and external gate(s). Connect *C*, *A*, and *D* to S₂, S₁, and S₀, respectively.