King Fahd University of Petroleum and Minerals College of Computer Sciences and Engineering Department of Computer Engineering

COE 202 – Fundamentals of Computer Engineering (T081)

Homework # 04 (due date & time: Saturday 03/01/2009 during class period)

*** Show all your work. No credit will be given if work is not shown! ***

Problem # 1 (50 points): As a *design engineer* your manager asks you to design a circuit that will be used in an electronic device that monitors patients. Using sensors S_1 , S_2 , S_3 , and S_4 that are connected on the patient, the circuit monitors the patient's temperature, blood sugar level, blood pressure, and pulse, respectively. Every sensor produces a binary "1" if the symptom it monitors exceeds a predetermined threshold; otherwise the sensor produces a binary "0". The circuit receives the readings from each of the four sensors. Furthermore, the circuit controls 2 green light bulbs, L_1 and L_2 . The circuit should behave as follows:

- Both L₁ and L₂ will be turned on (i.e. binary "1") if the circuit detects that none of the symptoms exceeded their corresponding thresholds.
- Only L₁ will be turned off (i.e. binary "0") if the circuit detects that exactly one of the symptoms exceeded its corresponding threshold.
- Only L_2 will be turned **off** if the circuit detects that either **two** or **three** of the symptoms exceeded their corresponding thresholds.
- Both *L*₁ and *L*₂ will be turned **off** if the circuit detects that all four symptoms exceeded their corresponding thresholds.

Design the circuit using all NOR gates.

Problem # 2 (10 points): Use a 4×16 **non-inverted-output decoder** and external gate(s) to implement the following function:

$$F_{A,B,C,D} = \sum (0,3,6,7,9,10,12)$$

Problem # 3 (10 points): Repeat problem # 2 but use a **4×16 inverted-output decoder** and external gate(s).

Problem # 4 (10 points): Repeat problem # 2 but use a **16×1 MUX** and external gate(s).

Problem # 5 (10 points): Repeat problem # 2 but use an 8×1 MUX and external gate(s). Connect *A*, *B*, and *C* to S₂, S₁, and S₀, respectively.

Problem # 6 (10 points): Repeat problem # 2 but use an 8×1 MUX and external gate(s). Connect *A*, *C*, and *D* to S₂, S₁, and S₀, respectively.