King Fahd University of Petroleum and Minerals College of Computer Sciences and Engineering Department of Computer Engineering

COE 202 - Fundamentals of Computer Engineering (T081)

Homework \# 04 (due date \& time: Saturday 03/01/2009 during class period)

*** Show all your work. No credit will be given if work is not shown! ***
Problem \# 1 (50 points): As a design engineer your manager asks you to design a circuit that will be used in an electronic device that monitors patients. Using sensors S_{1}, S_{2}, S_{3}, and S_{4} that are connected on the patient, the circuit monitors the patient's temperature, blood sugar level, blood pressure, and pulse, respectively. Every sensor produces a binary " 1 " if the symptom it monitors exceeds a predetermined threshold; otherwise the sensor produces a binary " 0 ". The circuit receives the readings from each of the four sensors. Furthermore, the circuit controls 2 green light bulbs, L_{1} and L_{2}. The circuit should behave as follows:

- Both L_{1} and L_{2} will be turned on (i.e. binary " 1 ") if the circuit detects that none of the symptoms exceeded their corresponding thresholds.
- Only L_{1} will be turned off (i.e. binary " 0 ") if the circuit detects that exactly one of the symptoms exceeded its corresponding threshold.
- Only L_{2} will be turned off if the circuit detects that either two or three of the symptoms exceeded their corresponding thresholds.
- Both L_{1} and L_{2} will be turned off if the circuit detects that all four symptoms exceeded their corresponding thresholds.

Design the circuit using all NOR gates.

Problem \# 2 (10 points): Use a 4×16 non-inverted-output decoder and external gate(s) to implement the following function:

$$
F_{A, B, C, D}=\sum(0,3,6,7,9,10,12)
$$

Problem \# 3 (10 points): Repeat problem \# 2 but use a $\mathbf{4 \times 1 6}$ inverted-output decoder and external gate(s).

Problem \# 4 ($\mathbf{1 0}$ points): Repeat problem \# 2 but use a $\mathbf{1 6 \times 1}$ MUX and external gate(s).
Problem \# 5 (10 points): Repeat problem \# 2 but use an $\mathbf{8 \times 1}$ MUX and external gate(s). Connect A, B, and C to S_{2}, S_{1}, and S_{0}, respectively.

Problem \# 6 (10 points): Repeat problem \# 2 but use an $\mathbf{8 \times 1}$ MUX and external gate(s). Connect $\boldsymbol{A}, \boldsymbol{C}$, and \boldsymbol{D} to $\mathrm{S}_{2}, \mathrm{~S}_{1}$, and S_{0}, respectively.

