King Fahd University of Petroleum and Minerals College of Computer Sciences and Engineering Department of Computer Engineering

COE 202 – Fundamentals of Computer Engineering (T081)

CAD Assignment #02 (due date & time: Saturday 24/01/2009 during class period)

*** Show all your work. No credit will be given if work is not shown! ***

Using the "LogiSim" tool, build the circuit of Problem # 1 of Homework # 05. Label the clock as well as all flip-flops states, external input, X, and external output, F. Verify that your circuit is functioning properly. To build the circuit you need to load libraries from the "Project \rightarrow Load Library \rightarrow Built-in Library" submenu.

Save your circuit and name the file "CAD02_yourStudentID.circ".

Deliverables:

- 1. Send a soft copy of your circuit file to both myself (<a href="marker-marker
- 2. Submit a printout of the circuit window. Make sure that the entire circuit appears in the printout.
- 3. Submit snapshots of the circuit output for all possible state transitions.