King Fahd University of Petroleum and Minerals College of Computer Sciences and Engineering

CISE 301 - Numerical Methods (T152)

$\underline{\text { Programming Assignment (due date } \& \text { time: Sunday 01/05/2016) }}$

Total score: 3\% of the total course work score

1. Develop a program in a language of your choice to numerically integrate $f(x)=\frac{2 \times\left[\sin ^{2}(2 x)+\cos (2 x)\right]}{e^{\cos (2 x)}}$ from $x=a$ to $x=b$, where $\underline{x \text { is in radians, }}$, and a and b are user specified integers with $b \geq a$ using the following two methods:
i. Multiple application rule of the Trapezoid method with equally spaced base points using h as a step size, where h is a user specified integer >0 and $\leq(b-a)$.
ii. Romberg method with up to $R(n, n)$, where n is a user specified integer ≥ 2.

Use a minimum of 10 significant digits with rounding for all calculations.
2. The program should generate the absolute true error percentage for the 2 methods above. Note that the analytical solution is

$$
\int_{a}^{b} f(x) d x=\left[\frac{\sin (2 x)}{e^{\cos (2 x)}}\right]_{a}^{b}
$$

3. The program should generate a single table showing a comparison of all the results generated using the 2 methods above. Specifically, the table should show the result produced by the $1^{\text {st }}$ method, the results $R(n, 0), R\left(n, 1, \ldots, R(n, n)\right.$ produced by the $2^{\text {nd }}$ method, and the corresponding absolute true error percentage for each result.

Deliverables:

- A hard copy of a report including:

1. Cover page (Name, ID, Serial number, Course, Term, Date)
2. Printout of your well-commented program. Write your name, ID, and serial number at the top of your program.
3. Detailed instructions on how to successfully run your program (e.g., include instructions on what compilers/tools/packages need to be installed and where to get them from, how to accept user specified values, ...).
4. Provide the single table by testing your program for the following two cases:

$$
\begin{array}{llll}
\text { i. } & a=0, & b=5, & h=100, \\
\text { ii. } & a=-10, & b=10, & h=1000, \\
\text { in } & n=10
\end{array}
$$

- A soft copy of the program and the report should be included in a directory called <yourID>-prog-cise301-T152, zipped (<yourID>-prog-cise301-T152.zip or 〈yourID>-prog-cise301T152.rar), and then sent by email to the instructor at marwan@kfupm.edu.sa as well as to the grader at s201264960@kfupm.edu.sa with a subject line "Prog-CISE301-T152".

IMPORTANT: The program developed and submitted should be the result of your own individual genuine effort. I follow a zero tolerance policy regarding plagiarism.

