Homework \# 07 (due date \& time: Sunday 24/04/2016 during class period)

*** Show all your work. No credit will be given if work is not shown! ***

Problem 1 (30 points):

(a) Evaluate the integral $\int_{0}^{\pi / 2}(5-3 \sin x) d x$ using:
i. ($\mathbf{1 0}$ points) Single application of the trapezoidal rule.
ii. (10 points) Multiple-application trapezoidal rule $n=4$.
(b) (10 points) Estimate the true percent relative error ε_{t} for each approximation.

Problem 2 (10 points): Evaluate the integral of the following tabular data with the trapezoidal rule

x	-2	0	2	4	6	8	10
$f(x)$	34	5	-10	2	4	3	19

Problem 3 (20 points): Use order of h^{8} Romberg integration to evaluate $\int_{0}^{\pi / 2}(5-3 \sin x) d x$ and compare ε_{t} on the basis of the analytical solution.

Problem 4 (20 points): Obtain an estimate of the integral $\int_{0}^{\pi / 2}(5-3 \sin x) d x$ using threepoint Gauss-Legendre formula. Compute ε_{t} on the basis of the analytical solution.

Problem 5 (40 points): Using each of the following methods, solve the following problem over the interval from $x=0$ to 1.5 using a step size of 0.5 where $y(0)=1$.

$$
\frac{d y}{d x}=(2+4 x) \sqrt[3]{y}
$$

(a) ($\mathbf{1 0}$ points) Euler's method.
(b) ($\mathbf{1 0}$ points) Midpoint method.
(c) (10 points) Heun's method without the corrector.
(d) ($\mathbf{1 0}$ points) Fourth-order RK method.

Problem 6 ($\mathbf{3 0}$ points): Solve the following problem with the third-order RK method:

$$
\frac{d^{2} y}{d x^{2}}+0.5 \frac{d y}{d x}+7 y=0
$$

where $y(0)=4$ and $y^{\prime}(0)=0$. Solve from $x=0$ to 2 with $h=0.5$.

