King Fahd University of Petroleum and Minerals College of Computer Sciences and Engineering

CISE 301 - Numerical Methods (T152)

Homework \# 06 (due date \& time: Sunday 03/04/2016 during class period)

*** Show all your work. No credit will be given if work is not shown! ***

Problem 1 (40 points): Use centered difference approximations of $O\left(h^{4}\right)$ to estimate the first and second derivatives for each of the following functions at the specified location and for the specified step size:
(a) (20 points) $y=x^{3}+3 x-13 \quad$ at $x=0, h=0.25$
(b) (20 points) $y=x^{2} \sin x$
at $x=0.2$ (radian), $h=0.1$

Problem 2 ($\mathbf{3 0}$ points):

(a) (25 points) Compute forward and backward difference approximations of $O(h)$ and $O\left(h^{2}\right)$, and central difference approximations of $O\left(h^{2}\right)$ and $O\left(h^{4}\right)$ for the first derivative of $y=e^{x}$ at $x=0.1$ for $h=0.2$.
(b) (5 points) Estimate the true percent relative error ε_{t} for each approximation.

Problem 3 ($\mathbf{3 0}$ points): Consider the following data set:

X	0	2	3	3.5	4	4.5	5	6	7
$f(x)$	0.5	1	0.75	4	3.5	1.9	1.35	1	1.7

(a) (25 points) Using a tabular form, determine the best estimate of the first order derivative of $f(x)$ at $x=4$ using the Richardson extrapolation method with the highest accuracy possible. (Hint: Determine the appropriate h from the given data set)
(b) (5 points) Determine the order, in terms of h, of the truncation error of part (a).

