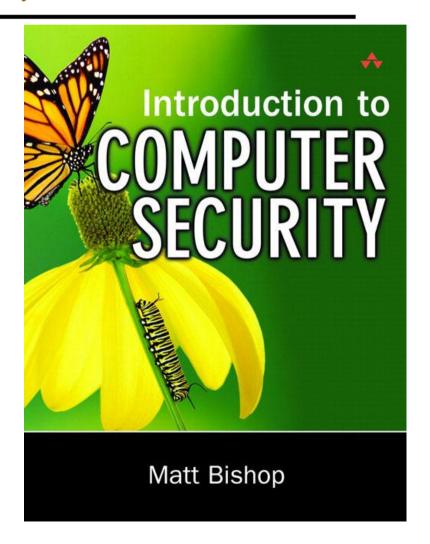


These Slides are prepared from


Matt Bishop slides and book "Introduction to Computer Security"

Benefiting from the Slides posted by Ahmad Al-Mulhem

An Overview of Computer Security

Adnan Gutub

Computer Engineering Department
King Fahd University of Petroleum & Minerals
Dhahran, Saudi Arabia

Network Security

- What is network security?
 - Protection of networks and their services from unauthorized modification, destruction, or disclosure.
- Why is it important?
 - Computer networks are important in our life (mission-critical, business, banks, . . . etc).
 - Information is power and money.
- Why is it difficult?
 - Computer networks are growing in complexity and size.
 - People make mistakes!

COE 449 Term 081 2/19

Course Goals

- Both theory and practice are important!
- Computer security \neq Cryptography
- Computer security is a science and art

COE 449 Term 081 3/19

Ethics

Is hacking . . .

- legal?
 - NO!
- ethical?
 - NO!
- cool?
 - NO!

How about studying attacks for . .

- education?
 - YES
- awareness?
 - YES
- learning to build more secure systems?
 - YES

COE 449 Term 081 4/19

Outline

- Components of computer security
- Threats
- Policies and mechanisms
- The role of trust
- Assurance
- Operational Issues
- Human Issues

COE 449 Term 081 5/19

Basic Components

- Confidentiality
 - Keeping data and resources hidden
 - Supported by: Access control
- Integrity
 - Preventing unauthorized modification
 - Data integrity integrity
 - Origin integrity authentication
 - Integrity mechanisms: Prevention vs. Detection
- Availability
 - Enabling access to data and resources
 - Denial of service attacks

COE 449 Term 081 6/19

Attacks Examples

- Malwares: viruses/worms, Trojans/backdoors, keyloggers/spywares. . etc.
- Intrusions: Compromises.
- Denial of Service Attacks: flooding. . . etc.
- Theft
- Spamming and Phishing
- Social engineering

COE 449 Term 081 7/19

Threats

Threat - Definition

A threat is a potential violation of security

Attack – Definition

An attack is a threat executed by an attacker

- confidentiality
- integrity
- availability

used to counter threats & attacks

COE 449 Term 081 8/19

Classes of Threats

- Disclosure unauthorized access to information
 - snooping, sniffing, wiretapping
 - Confidentiality services counter this threat
- Deception acceptance of false data
 - Modification, spoofing, repudiation of origin, denial of receipt
 - Integrity services counter this threat
- Disruption interruption or prevention of correct operation
 - Modification
 - Integrity services counter this threat
- Usurpation unauthorized control of some part of a system
 - Modification, spoofing, delay, denial of service
 - Availability services counter this threat

COE 449 Term 081 9/19

Policies and Mechanisms

Security *policy* - Definition

- A security policy is a statement of what is, and what is not, allowed
 - Policy says: formal or informal --- legal or illegal
 - This defines "security" for the site/system/etc.

Security *mechanism* - Definition

- A security mechanism is a method, tool, or procedure for enforcing a security policy.
 - Mechanisms enforce policies can be non technical (ID proof)
 - Composition of policies
 - If policies conflict, discrepancies may create security vulnerabilities

Policies & Mechanisms Example

- Copying HWs files Prohibited
 - System provide security mechanism to prevent others from reading users files.
- Ali does not use the secure method.
- Omar copies Ali's files.
- Does Ali's failure to protect his files authorize Omar to copy them?
- If Omar looks into Ali's files without copying, is it a security violation?

Goals of Security

Prevention

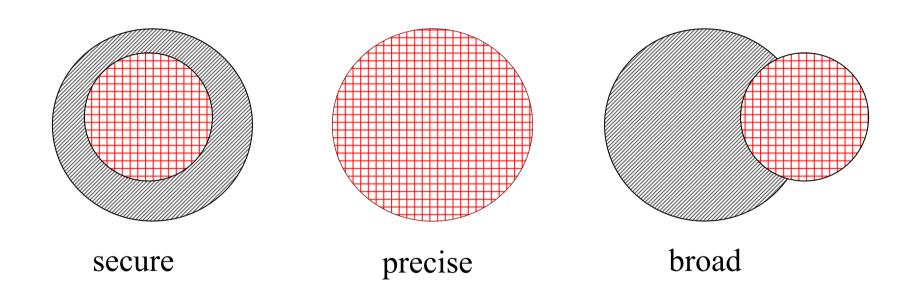
stop attackers from violating security policy

Detection

discover attackers' violation of security policy

Recovery

- Prevent or end attack, assess and repair damage
- continue to function correctly even if attack succeeds



Assumptions & Trust

- Underlie *all* aspects of security
 - example: Opening a door lock requires a key?
- Policies
 - Unambiguously & clearly partition system states into "secure & non-secure" states.
 - Correctly capture security requirements not allowing the system to enter in "non-secure" state.
- Mechanisms
 - Assumed to enforce policy
 - Support mechanisms work correctly

Types of Mechanisms

set of reachable states

set of secure states

Assurance

Assurance - Definition

- A basis of "how much" one can trust a system
 - Specification
 - Requirements analysis
 - Statement of desired functionality
 - Design
 - How system will meet specification
 - Implementation
 - Programs/systems that carry out design

Medication Example....

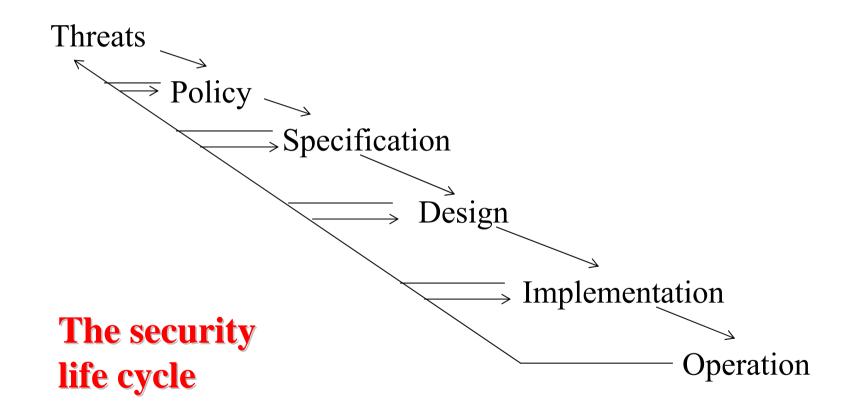
Operational Issues

- Policies and mechanisms must consider factors other than protection
- Cost-Benefit Analysis
 - Is it cheaper to prevent or recover?
- Risk Analysis Attack trees
 - Should we protect something? potential threats
 - How much should we protect this thing? level of protection
- Laws and Customs
 - Are desired security measures illegal? legal
 - Will people do them? acceptable

Unused mechanisms?

- Better not to have a mechanism than unused one
- give false security impression users may rely on them without knowing!!

Human Issues


Organizational Problems

- Power and responsibility
 - Security conflicts with usability, free access, performance
- NO Financial benefits
- Human limitation(non-knowledgeable, overloaded)
- Lack of resources
 (work time, technology & designs, training)
- People problems
 - Outsiders and insiders
 - Social engineering

Tying Together

Key Points

- Policy defines security
- Mechanisms enforce security
 - Confidentiality
 - Integrity
 - Availability
- Trust and knowing assumptions
- Importance of assurance
- The human factor