
A Two-Phase Return-to-Zero (RZ) Asynchronous
Transceiver Circuit for Pipe-Lined SoC Interconnects

Muhammad E. S. Elrabaa
Computer Engineering Department

King Fahd University of Petroleum and Minerals
Dhahran, Saudi Arabia
elrabaa@kfupm.edu.sa

Abstract—A new delay-insensitive two-phase asynchronous
handshaking protocol has been developed. The new protocol
utilizes return to zero data format which simplifies
communication circuits design significantly. Robust
transceiver circuitry that implement this protocol have been
developed and simulated using a 0.13µm, 1.2V technology to
verify their performance.

I. INTRODUCTION
Current SoCs not only feature multiple clock domains but

also integrate a wide range of blocks (IPs) with various data
communication needs and patterns. In addition, SoC designs
usually have very short time-to-market demands. This
requires efficient design flows that can achieve time closure
of the whole SoC in short times. As a result of these
requirements two main new design paradigms have emerged
to satisfy the communication needs of these SoCs while
enabling a reasonable timing closure of the complete SoC
design; Network-on-Chips (NoCs) [1-3] and Globally
Asynchronous Locally Synchronous (GALS) systems [4-6].

NoCs research aims at developing scalable interconnect
architectures that can provide a mean for routing data
between SoC IPs with minimum latency over shared
interconnects. While research on GALS aims at developing
circuits, methodologies and models for interconnecting
synchronous blocks with separate clock domains using
asynchronous interconnects. Hence NoCs can be viewed as
a special case of GALS. In any case, both shares the
common problem of designing the point-to-point
interconnect circuitry (repeaters, buffers, and pipeline
stages) between routers and/or IP blocks. Hence developing
high performance robust interconnect circuitry is essential
for current and future SoCs.

GALS are categorized into three types based on their
communication schemes [6]; pausible clocks; asynchronous,

This work have been supported by King Fahd University of Petroleum and
Minerals through grant # IN070367

and loosely synchronous. Pausible clock systems stop (or
pause) the clock of the IP block during data transfer. This
goes against the fundamental concept of decoupling
‘computations’ from ‘communications’ rendering this
design style impractical. With each additional input channel,
the percentage of idle time would increase even further.
Loosely synchronous techniques would require some form
of buffering (FIFOs) on the receiver and/or transmitter
sides. Again coupling IP design with the communication
(interconnect) design. This increases the SoC's design time
significantly. Fully asynchronous interconnects offer the
highest degree of robustness and decoupling of different
SoC design activities. However, latency and throughput are
major concerns. Due to handshaking, each datum transfer
would require at least two round trips. Interconnect
pipelining and repeaters can improve latency and
throughput.

Many researchers have proposed new solutions to
improve latency and throughput of asynchronous pipelines
[7-11]. In [7,8] control pulses are used instead of traditional
transition-coded control. This allows faster acknowledge at
the expense of more complex circuit design to precisely
control pulse widths and math the wire delays. Other
researchers proposed a form of wave-pipelining called
surfing interconnects [9-11] where they remove two way
handshaking altogether. This adversely affects the
robustness of circuits and increase the design time
significantly. By trading off design time (complexity) for
speed another important feature of asynchronous
interconnects is sacrificed, flow control. Asynchronous
handshaking not only ensure proper timing of valid data but
it also allows receivers to control the flow of data, an
essential feature in SoCs. Using FIFO buffers instead of
handshaking as proposed in [11] would require flow control
at higher levels of the protocol stack. Surfing interconnects
resembles source synchronous communications with the
request signal being used to strobe the data at the receiver
and repeaters with adjustable delays as delay lines. Efficient

source synchronous on-chip serial communication circuits
have been proposed in [12,13] where the data and clock are
re-timed at the receiver side instead of repeaters along the
control line as in [11]. Again flow control would have to be
handled at higher levels of the communication protocol
stack, something that SoC IPs might not be designed for.

Another concern with asynchronous interconnects is the
use of non-standard CMOS circuits. Hence developing
robust asynchronous circuits that can be used as 'plug-and-
play' hard macros is highly desirable. This can be achieved
through the use of delay-insensitive design techniques.

In this work a robust pipelined asynchronous
interconnect system is proposed. The proposed interconnect
system combines a new handshaking protocol with an
efficient delay-independent circuit implementation that keep
the delay to a minimum. The new handshaking protocol is
introduced in section II followed by the developed circuits
that implement it in section III. Simulations results that
verify the operation of these circuits are provided in section
IV followed by conclusions in section V.

II. THE NEW HANDSHAKING PROTOCOL
In a typical asynchronous pipeline, Figure 1, data is

transferred from one stage to the next via a sequence of
handshaking signals. A stage would latch a datum when it
receives a Request (Req) signal from the preceding stage
while the next stage had already indicated that it had latched
the previous datum (by de-asserting the Acknowledge
signal). Traditionally, there have been two main
handshaking protocols for asynchronous data exchange;
four-phase handshaking and two-phase handshaking. When
combined with dual-rail data encoding these protocols yield
delay-insensitive (or at least Quasi-delay-insensitive)
operation. The four-phase protocol, illustrated in Figure
2(a), uses a return-to-zero (RZ) data format requiring 4
steps (or trips) to complete a single datum transfer. The
transmitter initiates a datum transfer by driving one of the
pre-charged data lines low (or high depending on the pre-
charged value). The receiver detects the difference between
the data lines using a simple CMOS gate, generates the
request, latches in the data if the acknowledge signal
coming from the next stage is low and force its own
acknowledge high. This signals the transmitter that the
transfer is successful and it responds by pre-charging the
data lines which is detected at the receiver as the request
signal going down. The receiver now responds by lowering
its acknowledge signal indicating to the transmitter that it is
ready for a new data. Since data is level-encoded,
conventional circuits can be used in the transmitter and
receiver. The two-phase protocol is very similar except that
it uses a non-return-to-zero (NRZ) data format (no pre-
charging) requiring only two steps to complete a datum
transfer as shown in Figure 2(b). For this protocol, data is
transition encoded which require special circuitry to detect
and handle the two possible transitions.

 Ack

Noting that both request and acknowledge signals are
generated at the receiver, a new handshaking protocol has
been developed that combines the four-phase data level-
encoding (i.e. RZ) with the two-phase data exchange steps
(trips), as illustrated in Figure 3. When a new data initiated
at stage i is received at stage i+1, an enable signal is
generated at stage i+1 (Eni+1). This enable signal would
initiate the transfer of data to the next segment (i+1th
segment) and at the same time activate a pre-charging signal
(Pre-Chargei) that would pre-charge the preceding data
segment (ith segment). This overlaps the transfer of data to
the i+1th segment with the pre-charging of the ith segment. So

Reqi Reqi+1 Reqi+2

Acki+2 Acki+3Acki+1i

Di
Di+1 Di+2

En En En

Figure 1. A typical asynchronous pipeline. For dual-rail or 1-in-n
encoding, the Req signal is generated from at the receiver.

Dual-Rail Data Di

Reqi+1

Acki+1

(a) Four-phase (RZ) handshaking.

Dual-Rail Data Di

Reqi+1

Acki+1

(b) Two-phase (NRZ) handshaking.

Figure 2. Traditional asynchronous handshaking protocols with dual-rail
data encoding for delay insensitive operation. Di is the data transfer
initiated at the transmitter. Both Req and Ack signals are generated at
receiver side. Thick arrow curves indicate trips from transmitter to receiver
or vise versa.

Figure 3. The proposed two-phase (RZ) handshaking. Di is the data transfer
initiated at the ith stage. Each data segment is discharged from the
transmitter side and pre-charged from the receiver side. Only two trips are
required per datum transfer.

Eni+1

Di+1

Dual-Rail DataDi

Pre-Chargei

within two trips the data is transferred, similar to
conventional two-phase signaling. Because data lines are
pre-charged between transfers, then simple level-sensitive
circuits can be used, simplifying the circuit design
significantly and enabling higher performance. Also, since a
data line can only go down, there is no need for an actual
data latch. The enable signal can be simply used to drive the
data line low using a single NMOS switch, again simplifying
the design and reducing the latency of the repeater. Hence
each data segment in the pipeline is discharged from the
transmitter side and charged from the receiver side. The
developed protocol and circuits ensure delay-insensitive
operation with no contention between the discharging and
charging circuitry on the same data segment.

III. CIRCUITS DESCRIPTION
Figure 4 shows the circuit details of the repeater

(transceiver) on one of the dual data lines. The circuit for
the other line is similar with Di replaced by Di~ and Di+1 by
Di+1~. It has four components as shown in Figure 4(a); a
data driver circuit for the next data segment, an enable
circuit to generate the control signal (En) for the data driver,
a pre-charging driver for the preceding data segment, and a
pre-charging control circuit that controls the pre-charging
driver. The data driver circuit is a simple NMOS switch
with a weak keeper to hold the data line low when the
enable signal goes down. The enable circuit, Figure 4(b),
has a behavior similar to a Muller-C element. It would assert
the enable signal only when the input data (Di) becomes low
while both output data lines are high (indicating that
previous data has been transferred). Only when the next data
segment (Di+1) is discharged the En signal is de-asserted.

En would remain low as long as the next segment is low. A
weak keeper is added to hold the enable signal low when all
data segments are in the pre-charged (high) state. The pre-
charging driver for the preceding data segment is a simple
PMOS transistor and a weak keeper to hold the data line
high. The circuit that controls the pre-charging driver,
Figure 4(c), would produce a low signal when both En and
Di are low. When the preceding segment is charged (i.e. Di
becomes high), the pre-charging signal goes high and the
data line is held high by the weak keeper.

Unlike previous work, the widths of the En and Pre-
Charge pulses are automatically set by the timing behavior of
the data lines and need no special circuit sizing.

IV. CIRCUIT SIMULATIONS
 Spice simulations using a 0.13µm, 1.2 V CMOS

technology were used to verify the operation of the
proposed circuits. Figure 5 shows the test pipeline
consisting of three stages asynchronous transceivers, a data
producer and a data consumer. Wire segments in between
are modeled using lumped RC circuits that approximately
represent 100µm wires. Transistors were simply sized to
achieve 50 ps fall times and 100 ps rise times. No further
optimization was carried out to illustrate the robustness of
the circuits. Figure 6 shows the simulation waveforms of a
single stage transceiver. It shows how the transceiver
circuits achieve the appropriate sequence of events on input
data, En and pre-charge signals, and output data. It shows
also at this wire length, the throughput is ~ 5 Gbs.

To test the complete asynchronous pipeline the following
scenario has been simulated; 1st the producer produces data
at a constant rate (every 2 ns) while the consumer does not
consume any data, Figure 7(a). The figure shows how the
pipeline is filled after the injection of 4 data items (all data
lines D1-4 are now low).

VDD

Di+1
Di

En
Weak keeper

Enable
Circuit

Weak keeper Pre-
Charging
Circuit

(a) Block diagram

Figure 4. Asynchronous transceiver Circuitry

(b) Enable Circuit

VDD

Di+1

Di

 En

Weak keeper

Di+1 En

Pre_charge

(c) Pre-Charging Circuit

VDD

Di

D1

D1

D3

D3

D2

D2

St
ag

e
1

St
ag

e
2

St
ag

e
3

Pr
od

uc
er

C
on

su
m

D4

D4 er

Figure 5. The setup used to test the new transceiver circuit. Wire segments
between stages are 100µm long and represented as a lumped RC circuit.

-0.2
0

0.2
0.4
0.6
0.8

1
1.2
1.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Time (nS)

V

En

PC DOutDin

Figure 6. Signal waveforms of one of the transceiver stages. PC is the
pre-charge control signal.

Next, the consumer starts consuming data items also at a
rate of 2ns. Whenever the consumer consumes a data item
(indicated by the pre-charging of D4), all the data in the
pipeline move one step forward as evident from the
consecutive pre-charging and discharging of the data lines
in Figure 7(b). The producer continues to inject data at the
same rate the consumer is consuming them, keeping the
pipeline full while data move along the pipeline. The 2ns
injection/consumption rate was used to have uncluttered
waveform graphs that clearly show the movement of data
along the pipeline. At this wire length, the injection rate
could have been made as small as 200 ps.

V. CONCLUSIONS
A new two-phase asynchronous handshaking protocol

that utilizes dual-rail RZ data encoding has been developed.
Allowing simple circuit implementations that keep
minimize latenc. Efficient robust circuit implementation of
the protocol has been realized and tested using SPICE
simulations. With almost no circuit optimization, the new
transceiver circuit can achieve a throughput of 5Gbs with
wire lengths of ~100µm. The robustness and delay-
insensitivity of the developed circuitry would help decouple
computations from communications in the SoC design
process, significantly increasing the design productivity.

ACKNOWLEDGMENT
Facilities support by King Fahd University of Petroleum

and Minerals is highly appreciated.

REFERENCES

[1] L. Benini and G. D. Micheli, "Networks on chips: A new SoC
paradigm", IEEE Computer, Vol. 35, No 1, pp. 70 – 78, 2002.

[2] W. J. Dally and B. Towles, "Route packets, not wires: On chip
interconnection networks", Proc. 38thDesign Automation Conference,
pp. 684–689, June 2001.

[3] J. Henkel, W. Wolf, and S. Chakradhar, "On-chip networks: a
scalable, communication-centric embedded system design paradigm",
Proc. 17th Int’l Conf. VLSI Design, 2004, pp. 845-851.

[4] D. M. Chapiro, "Globally-Asynchronous Locally-Synchronous
Systems", PhD thesis, Stanford University, October 1984.

[5] S. Moore, G. Taylor, R. Mullins, and P. Robinson, "Point to Point
GALS Interconnect", Proc. 8th Int. Symp. Async. Cir. & Sys.
(ASYNC'02), pages 69–75, 2002.

[6] P. Teehan, M. R. Greenstreet, and G. Lemieux, "A survey and
Taxonomy of GALS Design Styles", IEEE Design and Test of
Computers, pp. 418-428, September-October 2007.

[7] I. Sutherland and S. Fairbanks, "GasP: A Minimal FIFO Control",
ASYNC'01, pp. 46–53, 2001.

[8] R. Ho, J. Gainsley, and R. Drost, "Long Wires and Asynchronous
Control", ASYNC'04, pp. 240–249, 2004.

[9] B. D. Winters and M. R Greenstreet, "A Negative Overhead, self-
timed pipeline", ASYNC'02, pp. 32–41, 2002.

[10] S. Yang, B. D. Winters, and M. R Greenstreet, "Energy Efficient
Surfing", ASYNC'05, pp. 2–11, 2005.

[11] M. R Greenstreet and J. Ren, "Surfing Interconnect", ASYNC'06, pp.
1–9, 2005.

[12] M. E. S. Elrabaa, "A Digital Clock Re-Timing Circuit for On-Chip
Source-Synchronous Serial Links", Proc. IEEE Int. Conf. on
Microelectronics, pp. 206-209, 2006.

[13] M. E. S. Elrabaa, "Portable Clock Recovery Circuits (CRCs) For On-
Chip and Off-Chip Serial Data Communication," AJSE Journal, pp.
109-117, Dec. 2007. http://www.kfupm.edu.sa/publications/ajse/

-0 .2

0

0 .2

0 .4

0 .6

0 .8

1

1 .2

1 .4

0 0 .4 0 .8 1 .2 1 .6 2 2 .4 2 .8 3 .2 3 .6 4 4 .4 4 .8 5 .2 5 .6 6 6 .4
T im e (n s)

V

D4 D3 D2 D1

4th data bit

(a) Data is being injected by the producer (D1) at a rate of 2ns while the consumer is not consuming any data at
all. After four data injections the pipeline is full and can not accept any new data (all data lines D1-D4 are low).

2nd data bit1st data bit 3rd data bit

-0 .2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

8.8 9 .2 9.6 10 10 .4 10.8 11.2 11 .6 12 12.4 12 .8 13.2 13.6 14 14.4 14.8 15.2 15.6 16
T im e (n s)

V

D4 D3 D2 D1

Figure 7. The data waveforms along the asynchronous pipeline stages for the two communication scenarios.

(b) Data is being injected by the producer (D1) and consumed by the consumer (D4) at
the same rate of 2ns. The data is moving along the pipeline at a speed of ~200 ps/stage.

new data
injected

data consumed

	Introduction
	The New Handshaking Protocol
	Circuits Description
	Circuit Simulations
	Conclusions
	Acknowledgment
	References

