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Abstract—A new delay-insensitive two-phase asynchronous 
handshaking protocol has been developed. The new protocol 
utilizes return to zero data format which simplifies 
communication circuits design significantly. Robust 
transceiver circuitry that implement this protocol have been 
developed and simulated using a 0.13µm, 1.2V technology to 
verify their performance. 

I. INTRODUCTION 
Current SoCs not only feature multiple clock domains but 

also integrate a wide range of blocks (IPs) with various data 
communication needs and patterns. In addition, SoC designs 
usually have very short time-to-market demands. This 
requires efficient design flows that can achieve time closure 
of the whole SoC in short times. As a result of these 
requirements two main new design paradigms have emerged 
to satisfy the communication needs of these SoCs while 
enabling a reasonable timing closure of the complete SoC 
design; Network-on-Chips (NoCs) [1-3] and Globally 
Asynchronous Locally Synchronous (GALS) systems [4-6].  

NoCs research aims at developing scalable interconnect 
architectures that can provide a mean for routing data 
between SoC IPs with minimum latency over shared 
interconnects. While research on GALS aims at developing 
circuits, methodologies and models for interconnecting 
synchronous blocks with separate clock domains using 
asynchronous interconnects. Hence NoCs can be viewed as 
a special case of GALS. In any case, both shares the 
common problem of designing the point-to-point 
interconnect circuitry (repeaters, buffers, and pipeline 
stages) between routers and/or IP blocks. Hence developing 
high performance robust interconnect circuitry is essential 
for current and future SoCs. 

GALS are categorized into three types based on their 
communication schemes [6]; pausible clocks; asynchronous, 
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and loosely synchronous. Pausible clock systems stop (or 
pause) the clock of the IP block during data transfer. This 
goes against the fundamental concept of decoupling 
‘computations’ from ‘communications’ rendering this 
design style impractical. With each additional input channel, 
the percentage of idle time would increase even further. 
Loosely synchronous techniques would require some form 
of buffering (FIFOs) on the receiver and/or transmitter 
sides. Again coupling IP design with the communication 
(interconnect) design. This increases the SoC's design time 
significantly. Fully asynchronous interconnects offer the 
highest degree of robustness and decoupling of different 
SoC design activities. However, latency and throughput are 
major concerns. Due to handshaking, each datum transfer 
would require at least two round trips. Interconnect 
pipelining and repeaters can improve latency and 
throughput.  

Many researchers have proposed new solutions to 
improve latency and throughput of asynchronous pipelines 
[7-11]. In [7,8] control pulses are used instead of traditional 
transition-coded control. This allows faster acknowledge at 
the expense of more complex circuit design to precisely 
control pulse widths and math the wire delays. Other 
researchers proposed a form of wave-pipelining called 
surfing interconnects [9-11] where they remove two way 
handshaking altogether. This adversely affects the 
robustness of circuits and increase the design time 
significantly. By trading off design time (complexity) for 
speed another important feature of asynchronous 
interconnects is sacrificed, flow control. Asynchronous 
handshaking not only ensure proper timing of valid data but 
it also allows receivers to control the flow of data, an 
essential feature in SoCs. Using FIFO buffers instead of 
handshaking as proposed in [11] would require flow control 
at higher levels of the protocol stack. Surfing interconnects 
resembles source synchronous communications with the 
request signal being used to strobe the data at the receiver 
and repeaters with adjustable delays as delay lines. Efficient 



source synchronous on-chip serial communication circuits 
have been proposed in [12,13] where the data and clock are 
re-timed at the receiver side instead of repeaters along the 
control line as in [11]. Again flow control would have to be 
handled at higher levels of the communication protocol 
stack, something that SoC IPs might not be designed for. 

Another concern with asynchronous interconnects is the 
use of non-standard CMOS circuits. Hence developing 
robust asynchronous circuits that can be used as 'plug-and-
play' hard macros is highly desirable. This can be achieved 
through the use of delay-insensitive design techniques. 

In this work a robust pipelined asynchronous 
interconnect system is proposed.  The proposed interconnect 
system combines a new handshaking protocol with an 
efficient delay-independent circuit implementation that keep 
the delay to a minimum. The new handshaking protocol is 
introduced in section II followed by the developed circuits 
that implement it in section III. Simulations results that 
verify the operation of these circuits are provided in section 
IV followed by conclusions in section V. 

II. THE NEW HANDSHAKING PROTOCOL 
In a typical asynchronous pipeline, Figure 1, data is 

transferred from one stage to the next via a sequence of 
handshaking signals. A stage would latch a datum when it 
receives a Request (Req) signal from the preceding stage 
while the next stage had already indicated that it had latched 
the previous datum (by de-asserting the Acknowledge 
signal). Traditionally, there have been two main 
handshaking protocols for asynchronous data exchange; 
four-phase handshaking and two-phase handshaking. When 
combined with dual-rail data encoding these protocols yield 
delay-insensitive (or at least Quasi-delay-insensitive) 
operation. The four-phase protocol, illustrated in Figure 
2(a), uses a return-to-zero (RZ) data format requiring 4 
steps (or trips) to complete a single datum transfer. The 
transmitter initiates a datum transfer by driving one of the 
pre-charged data lines low (or high depending on the pre-
charged value). The receiver detects the difference between 
the data lines using a simple CMOS gate, generates the 
request, latches in the data if the acknowledge signal 
coming from the next stage is low and force its own 
acknowledge high. This signals the transmitter that the 
transfer is successful and it responds by pre-charging the 
data lines which is detected at the receiver as the request 
signal going down. The receiver now responds by lowering 
its acknowledge signal indicating to the transmitter that it is 
ready for a new data.  Since data is level-encoded, 
conventional circuits can be used in the transmitter and 
receiver. The two-phase protocol is very similar except that 
it uses a non-return-to-zero (NRZ) data format (no pre-
charging) requiring only two steps to complete a datum 
transfer as shown in Figure 2(b). For this protocol, data is 
transition encoded which require special circuitry to detect 
and handle the two possible transitions.  
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Noting that both request and acknowledge signals are 
generated at the receiver, a new handshaking protocol has 
been developed that combines the four-phase data level-
encoding (i.e. RZ) with the two-phase data exchange steps 
(trips), as illustrated in Figure 3. When a new data initiated 
at stage i is received at stage i+1, an enable signal is 
generated at stage i+1 (Eni+1). This enable signal would 
initiate the transfer of data to the next segment (i+1th 
segment) and at the same time activate a pre-charging signal 
(Pre-Chargei) that would pre-charge the preceding data 
segment (ith segment). This overlaps the transfer of data to 
the i+1th segment with the pre-charging of the ith segment. So 
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Figure 1. A typical asynchronous pipeline. For dual-rail or 1-in-n 
encoding, the Req signal is generated from at the receiver. 
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Figure 2. Traditional asynchronous handshaking protocols with dual-rail 
data encoding for delay insensitive operation. Di is the data transfer 
initiated at the transmitter. Both Req and Ack signals are generated at 
receiver side. Thick arrow curves indicate trips from transmitter to receiver 
or vise versa. 

Figure 3. The proposed two-phase (RZ) handshaking. Di is the data transfer 
initiated at the ith stage. Each data segment is discharged from the 
transmitter side and pre-charged from the receiver side. Only two trips are 
required per datum transfer. 
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within two trips the data is transferred, similar to 
conventional two-phase signaling. Because data lines are 
pre-charged between transfers, then simple level-sensitive 
circuits can be used, simplifying the circuit design 
significantly and enabling higher performance. Also, since a 
data line can only go down, there is no need for an actual 
data latch. The enable signal can be simply used to drive the 
data line low using a single NMOS switch, again simplifying 
the design and reducing the latency of the repeater. Hence 
each data segment in the pipeline is discharged from the 
transmitter side and charged from the receiver side. The 
developed protocol and circuits ensure delay-insensitive 
operation with no contention between the discharging and 
charging circuitry on the same data segment.  

III. CIRCUITS DESCRIPTION 
Figure 4 shows the circuit details of the repeater 

(transceiver) on one of the dual data lines. The circuit for 
the other line is similar with Di replaced by Di~ and Di+1 by 
Di+1~. It has four components as shown in Figure 4(a); a 
data driver circuit for the next data segment, an enable 
circuit to generate the control signal (En) for the data driver, 
a pre-charging driver for the preceding data segment, and a 
pre-charging control circuit that controls the pre-charging 
driver. The data driver circuit is a simple NMOS switch 
with a weak keeper to hold the data line low when the 
enable signal goes down. The enable circuit, Figure 4(b), 
has a behavior similar to a Muller-C element. It would assert 
the enable signal only when the input data (Di) becomes low 
while both output data lines are high (indicating that 
previous data has been transferred). Only when the next data 
segment (Di+1) is discharged the En signal is de-asserted.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

En would remain low as long as the next segment is low. A 
weak keeper is added to hold the enable signal low when all 
data segments are in the pre-charged (high) state.  The pre-
charging driver for the preceding data segment is a simple 
PMOS transistor and a weak keeper to hold the data line 
high. The circuit that controls the pre-charging driver, 
Figure 4(c), would produce a low signal when both En and 
Di are low. When the preceding segment is charged (i.e. Di 
becomes high), the pre-charging signal goes high and the 
data line is held high by the weak keeper.  

Unlike previous work, the widths of the En and Pre-
Charge pulses are automatically set by the timing behavior of 
the data lines and need no special circuit sizing. 

IV. CIRCUIT SIMULATIONS 
 Spice simulations using a 0.13µm, 1.2 V CMOS 

technology were used to verify the operation of the 
proposed circuits. Figure 5 shows the test pipeline 
consisting of three stages asynchronous transceivers, a data 
producer and a data consumer. Wire segments in between 
are modeled using lumped RC circuits that approximately 
represent 100µm wires. Transistors were simply sized to 
achieve 50 ps fall times and 100 ps rise times. No further 
optimization was carried out to illustrate the robustness of 
the circuits. Figure 6 shows the simulation waveforms of a 
single stage transceiver. It shows how the transceiver 
circuits achieve the appropriate sequence of events on input 
data, En and pre-charge signals, and output data. It shows 
also at this wire length, the throughput is ~ 5 Gbs. 

To test the complete asynchronous pipeline the following 
scenario has been simulated; 1st the producer produces data 
at a constant rate (every 2 ns) while the consumer does not 
consume any data, Figure 7(a). The figure shows how the 
pipeline is filled after the injection of 4 data items (all data 
lines D1-4 are now low). 
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Figure 4. Asynchronous transceiver Circuitry 
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Figure 5. The setup used to test the new transceiver circuit. Wire segments
between stages are 100µm long and represented as a lumped RC circuit. 
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Figure 6. Signal waveforms of one of the transceiver stages. PC is the 
pre-charge control signal.



Next, the consumer starts consuming data items also at a 
rate of 2ns. Whenever the consumer consumes a data item 
(indicated by the pre-charging of D4), all the data in the 
pipeline move one step forward as evident from the 
consecutive pre-charging and discharging of the data lines 
in Figure 7(b). The producer continues to inject data at the 
same rate the consumer is consuming them, keeping the 
pipeline full while data move along the pipeline. The 2ns 
injection/consumption rate was used to have uncluttered 
waveform graphs that clearly show the movement of data 
along the pipeline. At this wire length, the injection rate 
could have been made as small as 200 ps. 

V. CONCLUSIONS 
A new two-phase asynchronous handshaking protocol 

that utilizes dual-rail RZ data encoding has been developed. 
Allowing simple circuit implementations that keep 
minimize latenc. Efficient robust circuit implementation of 
the protocol has been realized and tested using SPICE 
simulations. With almost no circuit optimization, the new 
transceiver circuit can achieve a throughput of 5Gbs with 
wire lengths of ~100µm.  The robustness and delay-
insensitivity of the developed circuitry would help decouple 
computations from communications in the SoC design 
process, significantly increasing the design productivity. 
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(a) Data is being injected by the producer (D1) at a rate of 2ns while the consumer is not consuming any data at 
all. After four data injections the pipeline is full and can not accept any new data (all data lines D1-D4 are low).
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Figure 7. The data waveforms along the asynchronous pipeline stages for the two communication scenarios. 

(b) Data is being injected by the producer (D1) and consumed by the consumer (D4) at 
the same rate of 2ns. The data is moving along the pipeline at a speed of ~200 ps/stage. 
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