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A new simple-to-design FIFO that allows data transfer between two clock
domains of unrelated frequencies has been developed. The fully synchronous
interfaces significantly ease the system-on-chip integration process. With a
relatively low gate count, the proposed FIFO allows the producer and consumer
to put/get data at their respective frequencies (1 datum/clock cycle) till it gets
filled, then the rates converge to the lower of the two frequencies. The maximum
initial latency is three cycles of the consumer’s clock. Several manifestations of the
FIFO have been developed for different design cases including producer/
consumer data width mismatch. Operation of the FIFO has been verified using
both gate-level simulations and SPICE simulations with a 0.13 mm, 1.2V
technology. An 8-cell FIFO showed proper operation at producer and consumer
clock frequencies of 2 and 3.125GHz, respectively, with a data transfer rate of
more than 2 giga datum/s and an average power of 721 mW.

Keywords: FIFO; on-chip communication; synchronous data transfer; system-
on-chip; network-on-chip

1. Introduction

Currently, systems-on-chip (SoCs) are constructed using a wide range of pre-designed
modules (intellectual properties or IPs) that are integrated together with a communication
medium (typically a system bus). Each IP has its own clock and communication needs.
This, coupled with the ever increasing demands on shorter time-to-market, necessitates
developing efficient design flows that can achieve time closure of the whole SoC in short
time while satisfying the communication needs of its various components. Many bus-based
SoC design methodologies have been developed requiring either asynchronous or
synchronous interfaces (Salminen, Lahtinen, Kuusilinna, and Hamalainen 2002). Due to
the limitations of buses, Networks-on-Chip were proposed as scalable interconnections by
Dally and Towles (2001) and later on by Henkel, Wolf, and Chakradhar (2004). Also, due
to the difficulty of globally synchronising SoC components, another interconnection
scheme has emerged; globally asynchronous locally synchronous (GALS) systems
(Chapiro 1984) where asynchronous interconnects synchronous blocks.

GALS employ one of three communication schemes (Teehan, Greenstreet, and
Lemieux 2007); pausible clocks, asynchronous and loosely synchronous. Pausible clock
systems stop (or pause) the clock of a block during data transfers. With each additional
input/output channel, the percentage of idle time would increase. This goes against the
fundamental concept of decoupling ‘computations’ from ‘communications’ rendering this
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design style impractical. Dasgupta and Yakovlev (2007) have shown that this technique is
not suited for interfacing large high-speed IP cores in SoCs. Fully asynchronous
interconnects can adapt to a wide range of temperature, process and voltage variations, as
well as varying data rates. As such, they stand to offer the highest degree of robustness and
decoupling of different SoC design activities. The data transfer rates and latencies,
however, are limited due to the required handshaking. Loosely synchronous techniques
with dedicated point-to-point connections require some form of a FIFO between the
sender and receiver to move data across their clock domains. Communication throughput
and latency depends on the design of the FIFO, transmitter/receiver clock rates and
communication patterns. An asynchronous FIFO, albeit being simple to design, would at
most achieve a throughput of 1 datum/three clock cycles of the slower of the two clocks
due to handshaking and synchronisation between the two domains (Teehan et al. 2007).
In this study, a new data transfer interface (DTI) FIFO is proposed with the following key
features:

(1) Fully synchronous interfaces: Both producer and consumer put and get data using
their own clock with very simple synchronous interfaces, easing the SoC
integration and timing closure without exposing the designers to asynchronous
designs that most of them are not familiar with and is not compatible with most
design flows.

(2) Simplicity of design: Can be synthesised in a standard cell-based flow.
(3) Flexibility: Can be adapted to different producer/consumer data widths or data

rates.
(4) Robustness: Relatively independent of gates’ sizing; the transfer latency adjusts

automatically to gates’ delays. Furthermore, full/empty conditions are detected
and handled in a very simple manner.

The basic concept of the newly developed DTI FIFO is described in Section 2. The
design and verification of the basic FIFO cell is introduced in Section 3 followed by the
FIFO construction methodology for different use cases in Section 4. Performance
evaluation of an 8-cell FIFO using SPICE simulations along with gate count calculations
are presented in Section 5 followed by conclusions in Section 6.

2. Basic concept of the proposed DTI FIFO

Conventionally, synchronous FIFOs are usually designed as circular (or cyclic) buffers
with two pointers pointing to the head and tail of the data within the buffer. The pointers’
values are exchanged between the PUT and GET controllers to determine the FIFO status.
This becomes complicated when the PUT and GET clocks are different and unrelated and
may lead to a reduced throughput and increased latency. Several FIFO designs have been
proposed to overcome this problem and allow data transfer between two different clock
domains at maximum possible data rate. Chakraborty and Greenstreet (2003) proposed
using complex training circuitry to estimate the frequency difference so that synchroni-
sations are only limited to high-risk transfers. Seizovic (1994) proposed pipelining both
data and synchronisation alongside one another reducing the synchronisation probability
of failure and eliminating the need for detecting full/empty conditions. This not only
increased latency with capacity, but the sender and receiver had to operate at the same
data rate. Chelcea and Nowick (2004) proposed a FIFO that enables maximum data
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transfer rates but requires elaborate circuitry to detect when the FIFO is empty, full, near
empty and near full. Ono and Greenstreet (2009) proposed a very similar FIFO with
standard cell implementation that increased the number of gates. Strano, Ludovici, and
Bertozzi (2010) proposed a similar family of dual-clock FIFOs but used ring counters for
the read/write pointers with asynchronous comparisons. The comparison result is then
synchronised to each clock domain. A point-to-point bidirectional link based on an
asynchronous FIFO was proposed by Chattopadhyay and Zilic (2005) with a minimum of
three clock cycles (of the slower of the two clocks) transfer latency and limited capacity.
A FIFO based on dual-port SRAM was proposed by Apperson, Yu, Meeuwsen,
Mohsenin, and Baas (2007). Suited for large buffers, it uses Grey-coded pointers to limit
the synchronisation to one-bit when they are exchanged between the write/read ports.
Configurable logic is used to reserve space in the FIFO to compensate for the
synchronisation latency and to control the skew of data and control signals on both
sides, increasing both complexity and latency.

The proposed DTI FIFO is a latch-based circular buffer, but instead of having cells
made of regular latches, it uses simple asynchronous pipelines as the basic cell. These
pipelines (with a minimum of two latch stages) independently operate from one another
(no signals are passed between different pipelines) with separate control, as shown in
Figure 1. The total FIFO capacity in bits is:

FIFO capacity ¼ n� k�m ð1Þ

where n is the number of cells, k the number of stages per pipeline and m the data width.
Data synchronously enter a pipeline from one clock domain (the producer’s), asynchro-
nously propagate through the pipeline and synchronously leaves from the other end to the
second clock domain (the consumer’s). So both the producer and the consumer see a fully
synchronous interface. Synchronisation of the control signals is required at both ends of
the pipeline, but by simultaneously overlapping putting/getting data to/from several cells,
these delays are hidden and the put/get rates are maximised. Two modulo binary counters
are used as PUT and TAKE pointers. Each pointer operates at its side’s clock, and its

D0      Dn     D2n 

D1     Dn+1 

Dn-1  D2n–1 

CLK PCLK C

PUT 

OK_to_PUT 

TAKE 

OK_to_TAKE 

PUT 0
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Figure 1. Block diagram of the proposed DTI FIFO structure.
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value is not passed to the other domain, since data are automatically taken in the same
order that they were put. The producer can put a new data item whenever the OK_to_PUT
signal is high and the consumer can take a data item out whenever the OK_to_TAKE
signal is high. The PUT pointer is incremented after each put operation and so is the
TAKE pointer after each take operation. No special circuits for detecting empty/full FIFO
conditions are required. If data cannot be put to the cell currently selected by the PUT
pointer, the external OK_to_PUT signal is not activated and the producer cannot put any
new data. Similarly, if the cell currently selected by the TAKE pointer is not ready, the
external OK_to_TAKE signal is not activated and the consumer cannot get any new data.
The transfer latency through a cell depends on the producer/consumer clock frequencies
and number of stages in the pipeline. If this latency is less than the clock period of the
faster of the two clocks, then the FIFO’s latency could be as low as two cycles of the slower
clock.

The use of an asynchronous pipeline as a FIFO cell instead of a single latch, or
dual-ported SRAM as in other FIFOs greatly simplifies the design by decoupling the PUT
(to the producer’s side latch) and GET (from the consumer’s side latch) operations. It also
gives another alternative for increasing the FIFO’s capacity by increasing the cell capacity
instead of increasing the number of cells.

3. Design of the asynchronous pipeline

3.1. Basic structure

The basic structure of the asynchronous pipeline is illustrated in Figure 2. Simple
four-phase micropipeline latch control with Muller-C elements as in Furber and Day
(1996) is adopted to simplify the timing constraints and thus the circuit design. This
reduces the pipeline capacity since when the pipeline is full only half of the stages will
contain data. Implementing full buffer stages would require pulsed latch control with
stricter timing constraints, increasing the design complexity and reducing reliability.

3.2. Signalling protocol

The signalling protocol for transferring data through a pipeline is shown in Figure 3
(using signal names from Figure 2) for equal producer and consumer clock frequencies

Asynchronous Pipeline   K m-bit Latches 

L

EN

L

EN

L

EN

L

EN

TAKE      EN C           ACK out

Consumer-side Controller 

OK_to_TAKE              Reqin

CCCC

Req out            ENp        PUT 

Producer-side Controller 

ACK in       OK_to_PUT 

DinDout

CLK PCLK C

L

EN 
mm

Figure 2. Structure of the asynchronous pipeline used as the basic DTI FIFO cell.
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(worst case condition). The producer initiates a transfer (when OK_to_PUT is high) by

setting up the data and asserting the PUT signal. The pipeline controllers transfer the data

to the other side of the pipeline and set the OK_to_TAKE signal high to indicate a data

item is ready to be taken. This signal is reset when the consumer removes the data,

indicated by setting the TAKE signal high. The larger the difference in frequency between

the producer and the consumer, the lesser is the number of cycles it takes to transfer data

through the pipeline. This number could have been reduced by overlapping data transfers

within the same pipeline at the expense of more complexity (more timing constraints to

meet). Overlapping transfers in different pipelines, however, increases the throughput to

one datum per cycle with latency as low as one cycle of the lower clock without any added

complexity.
The Reqin and ACKin signals are synchronised to the consumer and producer clocks,

respectively, using two D-FF synchronisers. A two-FF synchroniser is a fairly safe method

for signal synchronisation (Ginosar 2003) but may not provide a large enough mean time

between failures (MTBF) at high clock rates. The MTBF could be increased by adding

more synchronisation stages. Throughput can still be maintained by increasing the number

of cells to hide the increased cell’s latency.

3.3. Controller design

Figure 4 shows the design of the producer/consumer-side controllers. Each controller is a

simple two-state FSM. SR latches are used to generate the OK_to_PUT and

OK_to_TAKE signals that indicate the status of the pipeline (empty/full) to ensure that

these signals remain constant when a pipeline is not selected and do not evaporate.

CLK C

PUT Req 

ENC

ACK out 

OK_to_TAKE

TAKE

Req out

Di

CLK P

ENP

OK_to_PUT

PUT 

Figure 3. Signalling protocol for data transfer across an asynchronous pipeline. PUTReq is the Reqin
signal after synchronisation with the consumer’s clock.
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3.4. Pipeline design verification

To verify the functionality of the asynchronous pipeline, gate-level simulations of a

six-stage, 1-bit wide pipeline was conducted with unit gate delays under different producer/

consumer clock frequency ratios (Figure 5). When the rate mismatch is relatively small

(25%), both producer and consumer are initially able to PUT/TAKE data every four

cycles of their clocks with an initial latency of two cycles of the slower clock (Figure 5a).

The PUT/TAKE rates eventually converge to 1 datum every four cycles of the slower

clock. Figure 5(b) shows the waveforms for 5� frequency ratio. The pipeline gets filled

after three puts, stalls till the consumer starts taking data and then the put operations

(a)

(b)

CLKP

PUTACKACKin

    

Synchroniser

ReqOut

PUT 
FF

A

PUTACK

CLKP

A

A
PUTACK

PUT 
ENP

OK_to_PUT 

A
PUTACK

PUT 
 S 

L
 R A

S0: A=0 
S1: A=1 

FF FF

PUTACK / ReqOut

S0 

PUT | PUTACK

PUTACK

S1 

PUT & PUTACK /  
ENP , ReqOut

OK_to_TAKE 

PUTReq ACKout

FF

A

CLKC

A

OK_to_TAKE

TAKE

ENC

    

    
Synchroniser

FF FF

CLKC

PUTReqReqin

S0 

PUTReq | OK_to_TAKE 

S1 

PUTReq / ACKout

PUTReq

S0: A=0 
S1: A=1 

PUTReq & OK_to_TAKE /     
  ENC , ACKout

 S 
L

 R 

A
OK_to_TAKE 

PUTReq
ENC

Figure 4. Design of the asynchronous pipeline controllers: (a) design of the producer-side controller
and (b) design of the consumer-side controller.
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(b)
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Figure 5. Gate-level simulation results for a six-stage asynchronous pipeline: (a) producer/consumer
clock ratio¼ 1.25� and (b) producer/consumer clock ratio¼ 5�.
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resume at a rate of 1 datum every four clock cycles of the consumers clock. For these

results, the delay of a pipeline stage was less than the smallest clock period. If it was more,

then the maximum PUT/TAKE rate would have dropped to 1 datum every five clock

cycles or even less.

4. FIFO construction

There are many possible manifestations of the DTI FIFO architecture depending on the

use case. The two design parameters number of cells and number of latch stages per cell

determine the FIFO’s design and performance. The objective would be to construct an

FIFO with the required capacity that will allow the producer and consumer to put and

take data at the maximum rate of 1 datum/cycle of their respective clocks. Assuming that

the delay per asynchronous pipeline stage TAS is smaller than both the producer’s and

consumer’s clock periods (TCLKP and TCLKC, respectively) the initial latency (IL) of the

FIFO is:

IL � TDMP þ TPCU þ k � TAS þ 3 � TCLKC þ TCCU þ TMC ð2Þ

where TDMP and TMC are the delays through the PUT/Data demultiplexer/multiplexer on

the producer/consumer sides, respectively, and TPCU and TCCU are the delays through the

producer/consumer control units. It is assumed that the consumer will consume the data

one clock cycle after the assertion of the OK_to_TAKE signal; hence, the 3*TCLKC term

above (a maximum of 2 TCLKC are needed for the Reqin synchronisation). FIFO

construction for several design cases is discussed below:

(1) Consumer limited case (TCLKP·TCLKC): The minimum number of cells in this case

should be four to allow the maximum put rate. For equal frequencies, three latches

would suffice for maximum PUT/TAKE rates. For greater frequency ratio, the

FIFO would get filled after a number of puts that depends on the FIFO’s total

capacity C. The number of latch stages per cell could be increased to the point

where a whole packet or burst of data is put before the FIFO gets filled.
(2) Producer limited case (TCLKC_TCLKP): For this case, increasing the cell size

beyond three latches is not beneficial. So using 8 cells with two latches per cell

would ensure maximum put rate (1 datum/producer’s cycle) for any frequency

difference. The consumer, however, would eventually take data at the same put

rate.
(3) Different producer/consumer data widths: This situation may arise when the

different IPs being integrated are not compatible in terms of data widths. The

construction of the FIFO for all possible data width mismatches is illustrated in

Figure 6. Some of the details (e.g. muxing/demuxing) were omitted for clarity.

The case of integer data width ratio (l) is illustrated in Figure 6(a) and (b). When the

producer has a larger data width, it simultaneously puts data to a group of l cells while the

consumer would take the data from one cell at a time. When the producer has a smaller

data width, it puts data to one cell at a time while the consumer takes data from the l group

of cells. The general case of non-integer data width ratio is illustrated in Figure 6(c). Now,

l represents the common divider for producer/consumer data widths (could be 1-bit). The

producer’s data width is m� l, whereas the consumer’s is q� l. The producer now puts
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Figure 6. FIFO construction for non-equal producer and consumer data widths: (a) producer/
consumer data width ratio¼ l; (b) consumer/producer data width ratio¼ l; and (c) general case; l is
the common divider for producer/consumer data widths.
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data to m-cells at a time and the consumer takes data from q cells at a time. The total
FIFO capacity in this case is l� n�max(m, q) bits.

5. FIFO performance evaluation

An 8-cell, two-latches/cell FIFO with a datawidth of 8-bit was designed at the transistor

level using a 0.13 mm, 1.2V CMOS technology. Transistors were sized to achieve a
producer and consumer clock rates of 2 and 3.125GHz, respectively. SPICE simulation
results (bit 0 of input/output data, OK_to_PUT and OK_to_TAKE signals) are shown in
Figure 7 with waveforms being shifted along the vertical axis by various amounts for

clarity. The input data were kept high and a datum was taken every time
the OK_to_TAKE signal was high. The producer is able to PUT data every cycle

0.0
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Figure 7. SPICE simulation waveforms of the new FIFO.
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(the OK_to_PUT signal remained high during the whole simulation time), while the

consumer was taking data at a rate of 2 datum every three cycles of its own clock, or an

effective transfer rate of 2GB/s. This is a remarkable performance at this technology node.

The total gate count for this FIFO is �1250 gates and the measured average power was

721 mW (�90 mW/cell), a very reasonable consumption.
Table 1 gives a comparison between the new FIFO and published FIFOs with similar

capabilities based on 8-cell FIFOs with 8-bit data width. Though the FIFO reported by

Seizovic (1994) has the lowest gate count, its latency is directly proportional to the FIFO

size. It also restricts the producer and consumer to operate at the same data rate. This is

not the case for the other FIFOs. The new FIFO achieves a performance comparable to

the best reported FIFO with significantly fewer gate count and simpler design.

6. Conclusions

A new interface FIFO that can efficiently transfer data between two unrelated clock

domains has been developed. With a relatively low gate count, it allows fully synchronous

data communication between the two domains at the maximum rate of 1 datum per cycle

of the lower frequency of the two no matter what is the frequency ratio between the two

domains. Different manifestations of the new FIFO have been developed for various use

cases including data width mismatch between communicating IPs. The correct operation

of the developed circuits was verified with both gate- and transistor-level simulations. An

8-cell FIFO with a total gate count of 1250 gates operating at producer/consumer clocks of

2 and 3.125GHz consumed an average power of 721 mW. Compared to other FIFOs with

similar capabilities, the new FIFO is simpler to design due to the absence of timing

constraints.

Acknowledgement

The author acknowledges the support provided by King Abdulaziz City for Science and Technology
through the Science and Technology Unit at King Fahd University of Petroleum and Minerals
(KFUPM) for funding this study through project no. 08-ELE-43-4 as part of the National Science,
Technology and Innovation Plan.

Table 1. Comparison between different FIFOs based on 8-cells/FIFO and 8-bit data width.

FIFO Number of gatesa Initial latency Maximum throughput

This work 1250 One to two cycles One data per slower
clock cycle

Seizovic (1994) �300 Eight cycles One data per slower
clock cycleb

Chelcea and Nowick (2004) �1500 One to two cycles One data per slower
clock cycle

Notes: aEstimated by the author based on logic diagrams in published work. bThe circuit imposes the
restriction that the producer and consumer must operate at the same data rate.
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