#### Asynchronous Transfer Mode: ATM

- 1990's/00 standard for high-speed (155Mbps to 622 Mbps and higher) Broadband Integrated Service Digital Network architecture
- Goal: integrated, end-end transport of carry voice, video, data
  - meeting timing/QoS requirements of voice, video (versus Internet best-effort model)
  - "next generation" telephony: technical roots in telephone world
  - packet-switching (fixed length packets, called "cells") using virtual circuits

## ATM architecture



adaptation layer: only at edge of ATM network

 data segmentation/reassembly
 roughly analagous to Internet transport layer

 ATM layer: "network" layer

 cell switching, routing
 physical layer

## ATM: network or link layer?

Vision: end-to-end transport: "ATM from desktop to desktop" • ATM *is* a network technology Reality: used to connect IP backbone routers ○ "IP over ATM" ATM as switched link layer, connecting IP

routers



## ATM Adaptation Layer (AAL)

- ATM Adaptation Layer (AAL): "adapts" upper layers (IP or native ATM applications) to ATM layer below
- □ AAL present only in end systems, not in switches
- AAL layer segment (header/trailer fields, data) fragmented across multiple ATM cells
  - o analogy: TCP segment in many IP packets



#### ATM Adaptation Layer (AAL) [more]

Different versions of AAL layers, depending on ATM service class:

- □ AAL1: for CBR (Constant Bit Rate) services, e.g. circuit emulation
- AAL2: for VBR (Variable Bit Rate) services, e.g., MPEG video
- AAL5: for data (eg, IP datagrams)



#### ATM Layer

Service: transport cells across ATM network

- analogous to IP network layer
- very different services than IP network layer

|              | Network  | Service     | Guarantees ?          |      |       |        | Congestion                |
|--------------|----------|-------------|-----------------------|------|-------|--------|---------------------------|
| Architecture |          | Model       | Bandwidth             | Loss | Order | Timing | feedback                  |
|              | Internet | best effort | none                  | NO   | no    | no     | no (inferred<br>via loss) |
|              | ATM      | CBR         | constant<br>rate      | yes  | yes   | yes    | no<br>congestion          |
|              | ATM      | VBR         | guaranteed<br>rate    | yes  | yes   | yes    | no<br>congestion          |
|              | ATM      | ABR         | guaranteed<br>minimum | no   | yes   | no     | yes                       |
|              | ATM      | UBR         | none                  | no   | yes   | no     | no                        |

## ATM Layer: Virtual Circuits

□ VC transport: cells carried on VC from source to dest

- o call setup, teardown for each call before data can flow
- each packet carries VC identifier (not destination ID)
- every switch on source-dest path maintain "state" for each passing connection
- link,switch resources (bandwidth, buffers) may be *allocated* to VC: to get circuit-like perf.
- Permanent VCs (PVCs)

long lasting connections

• typically: "permanent" route between to IP routers

Switched VCs (SVC):

dynamically set up on per-call basis



#### □ Advantages of ATM VC approach:

- QoS performance guarantee for connection mapped to VC (bandwidth, delay, delay jitter)
- Drawbacks of ATM VC approach:
  - Inefficient support of datagram traffic
  - one PVC between each source/dest pair) does not scale (N\*2 connections needed)
  - SVC introduces call setup latency, processing overhead for short lived connections

#### ATM Layer: ATM cell

- □ 5-byte ATM cell header
- 48-byte payload
  - Why?: small payload -> short cell-creation delay for digitized voice
  - o halfway between 32 and 64 (compromise!)



# ATM cell header

VCI: virtual channel ID

• will *change* from link to link thru net

**PT:** Payload type (e.g. RM cell versus data cell)

**CLP:** Cell Loss Priority bit

 CLP = 1 implies low priority cell, can be discarded if congestion

□ HEC: Header Error Checksum

• cyclic redundancy check



## ATM Physical Layer (more)

*Two* pieces (sublayers) of physical layer:

- Transmission Convergence Sublayer (TCS): adapts ATM layer above to PMD sublayer below
- Physical Medium Dependent: depends on physical medium being used

#### TCS Functions:

- Header checksum generation: 8 bits CRC
- O Cell delineation
- With "unstructured" PMD sublayer, transmission of idle cells when no data cells to send

# ATM Physical Layer

Physical Medium Dependent (PMD) sublayer

SONET/SDH: transmission frame structure (like a container carrying bits);

- o bit synchronization;
- o bandwidth partitions (TDM);
- several speeds: OC3 = 155.52 Mbps; OC12 = 622.08
   Mbps; OC48 = 2.45 Gbps, OC192 = 9.6 Gbps
- TI/T3: transmission frame structure (old telephone hierarchy): 1.5 Mbps/ 45 Mbps
- unstructured: just cells (busy/idle)

## IP-Over-ATM

#### Classic IP only

- 3 "networks" (e.g., LAN segments)
- MAC (802.3) and IP addresses



#### IP over ATM

- replace "network" (e.g., LAN segment) with ATM network
- ATM addresses, IP addresses







#### Datagram Journey in IP-over-ATM Network

#### □ at Source Host:

- IP layer maps between IP, ATM dest address (using ARP)
- o passes datagram to AAL5
- AAL5 encapsulates data, segments cells, passes to ATM layer
- □ ATM network: moves cell along VC to destination
- at Destination Host:
  - AAL5 reassembles cells into original datagram
  - if CRC OK, datagram is passed to IP

### IP-Over-ATM

#### Issues:

- IP datagrams into ATM AAL5 PDUs
- from IP addresses to ATM addresses
  - just like IP
     addresses to
     802.3 MAC
     addresses!

