
Digital Systems and Binary
Numbers

COE 202

Digital Logic Design

Dr. Abdulaziz Tabbakh

College of Computer Sciences and Engineering

King Fahd University of Petroleum and Minerals

COE 202 – Digital Logic Design – KFUPM slide 2

Outline

 Introduction

 Numbering Systems

Weighted Number Systems

 Binary, Octal & Hexadecimal Systems

 Number Base Conversions

 Binary Addition, Subtraction, Multiplication

 Binary Codes and Binary Logic

COE 202 – Digital Logic Design – KFUPM slide 3

Introduction

 The natural world around us is predominantly Analog

 Analog means Continuous (both in time and amplitude)

 Value changes smoothly over time

 Have a continuous (infinite) range of amplitudes (Values)

 Examples:

 Sound

 Temperature

 Speed

 Voltage/Current

COE 202 – Digital Logic Design – KFUPM slide 4

Why Digital ?

 Digital systems are everywhere

 Finite (discrete) number of possible states (values)

 Can present and manipulate information and elements

 Dealing with finite states is easier than a infinite number of

states

 Examples:

 Alphabet

 Playing cards

 Chessboard

Only 4 allowed levels

Special Case of Digital: only two signal levels Binary signal

Values between such levels

are not allowed (Ignored)

COE 202 – Digital Logic Design – KFUPM slide 5

Signals in Digital Systems

 Information is represented in digital systems by signals

Most common types of signals are currents and voltages

 Signals in digital systems can have two possible values:

 0 (OFF)

 1 (ON)

 These digital systems are called binary systems

 Each digit is called bit and a group of bits is called binary

code

COE 202 – Digital Logic Design – KFUPM slide 6

Numbering Systems

 Numbering systems are characterized by their base

(radix) number.

 In general a numbering system with a base r will have r

different digits (including the 0) in its number set. These

digits will range from 0 to r-1.

 The most widely used numbering systems are listed in

the table below:

COE 202 – Digital Logic Design – KFUPM slide 7

Weighted Number Systems

 A number D consists of n digits with each digit having a

particular position.

 Every digit position is associated with a fixed weight.

 If the weight associated with the ith position is wi, then

the value of D is given by:

COE 202 – Digital Logic Design – KFUPM slide 8

Example of Weighted Number Systems

 The Decimal number system is a weighted system.

 For integer decimal numbers, the weight of the rightmost

digit (at position 0) is 1, the weight of position 1 digit is

10, that of position 2 digit is 100, position 3 is 1000, etc.

 Thus, w0 = 1, w1 = 10, w2=100, w3 = 1000, etc.

 Example:

 Show how the value of the

decimal number 9375 is

estimated.

COE 202 – Digital Logic Design – KFUPM slide 9

The Radix (Base)

 For digit position i, most weighted number systems use

weights (wi) that are powers of some constant value

called the radix (r) or the base such that wi = ri.

 A number system of radix r, typically has a set of r

allowed digits ∈ {0,1, …,(r-1)}.

 The leftmost digit has the highest weight Most

Significant Digit (MSD).

 The rightmost digit has the lowest weight Least

Significant Digit (LSD).

COE 202 – Digital Logic Design – KFUPM slide 10

The Radix (Base)

 Example: Decimal Number System

 1. Radix (Base) = Ten

 2. Since wi = ri, then

 w0 = 100 = 1,

 w1 = 101 = 10,

 w2= 102 = 100,

 w3 = 103 = 1000, etc.

 3. Number of Allowed Digits is Ten:

 {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

COE 202 – Digital Logic Design – KFUPM slide 11

The Radix Point

 A number D of n integral digits and m fractional digits is

represented as shown:

 Digits to the left of the radix point (integral digits) have

positive position indices, while digits to the right of the

radix point (fractional digits) have negative position

indices.

COE 202 – Digital Logic Design – KFUPM slide 12

The Radix Point

 Position indices of digits to the left of the radix point (the

integral part of D) start with a 0 and are incremented as

we move left (dn-1dn-2…..d2d1d0).

 Position indices of digits to the right of the radix point

(the fractional part of D) start with a -1 and are

decremented as we move right(d-1d-2…..d-m).

 The weight associated with digit position i is given by wi

= ri, where i is the position index ∀i= -m, -m+1, …, -2, -1,

0, 1, ……, n-1.

 The Value of D is Computed as:

COE 202 – Digital Logic Design – KFUPM slide 13

The Radix Point

 Example: Show how the value of the decimal number

52.946 is estimated.

COE 202 – Digital Logic Design – KFUPM slide 14

Notation

 Let (D)r denote a number D expressed in a number

system of radix r.

 In this notation, r will be expressed in decimal.

 Examples:

 (29)10 Represents a decimal value of 29. The radix “10”

here means ten.

 (100)16 is a Hexadecimal number since r = “16” here

means sixteen. This number is equivalent to a decimal

value of 162=256.

 (100)2 is a Binary number (radix =2, i.e. two) which is

equivalent to a decimal value of 22 = 4.

COE 202 – Digital Logic Design – KFUPM slide 15

Binary System

 r=2

 Each digit (bit) is either 1 or 0

 Every binary number is a sum of powers of 2

1 1 1 1 1 1 1 1

27 26 25 24 23 22 21 20

COE 202 – Digital Logic Design – KFUPM slide 16

Binary System

 Examples: Find the decimal value of the two Binary

numbers (101)2 and (1.101)2

COE 202 – Digital Logic Design – KFUPM slide 17

Octal System

 r = 8 (Eight = 23)

 Eight allowed digits {0, 1, 2, 3, 4, 5, 6, 7}

 Examples: Find the decimal value of the two Octal

numbers (375)8 and (2.746)8

COE 202 – Digital Logic Design – KFUPM slide 18

Hexadecimal System

 r = 16 (Sixteen = 24)

 Sixteen allowed digits {0-to-9 and A, B, C, D, E, F}

Where: A = Ten, B = Eleven, C = Twelve, D = Thirteen,

E = Fourteen & F = Fifteen.

 Examples: Find the decimal value of the two

Hexadecimal numbers (9E1)16 and (3B.C)16

COE 202 – Digital Logic Design – KFUPM slide 19

Binary, Octal, and Hexadecimal

Decimal Binary Octal
Hexa

decimal
Decimal Binary Octal

Hexa

decimal

0 0000 00 0 8 1000 10 8

1 0001 01 1 9 1001 11 9

2 0010 02 2 10 1010 12 A

3 0011 03 3 11 1011 13 B

4 0100 04 4 12 1100 14 C

5 0101 05 5 13 1101 15 D

6 0110 06 6 14 1110 16 E

7 0111 07 7 15 1111 17 F

COE 202 – Digital Logic Design – KFUPM slide 20

Important Properties

 The Largest value that can be expressed in n integral

digits is (rn-1).

 The Largest value that can be expressed in m fractional

digits is (1-r-m).

 The Largest value that can be expressed in n integral

digits and m fractional digits is (rn -r–m)

 Total number of values (patterns) representable in n

digits is rn.

COE 202 – Digital Logic Design – KFUPM slide 21

Important Properties

 Q. What is the result of adding 1 to the largest digit of

some number system??

 For the decimal number system, (1)10 + (9)10 = (10)10

 For the binary number system, (1)2 + (1)2 = (10)2 = (2)10

 For the octal number system, (1)8 + (7)8 = (10)8 = (8)10

 For the hexadecimal system, (1)16 + (F)16 = (10)16 = (16)10

COE 202 – Digital Logic Design – KFUPM slide 22

Important Properties

 Q. What is the largest value representable in 3-integral

digits?

 A. The largest value results when all 3 positions are filled

with the largest digit in the number system.

 For the decimal system, it is (999)10

 For the octal system, it is (777)8

 For the hex system, it is (FFF)16

 For the binary system, it is (111)2

 Q. What is the result of adding 1 to the largest 3-digit

number?

 For the decimal system, (1)10+ (999)10 = (1000)10 = (103)10

 For the octal system, (1)8+ (777)8 = (1000)8= (83)10

COE 202 – Digital Logic Design – KFUPM slide 23

Important Properties

 In general, for a number system of radix r, adding 1 to

the largest n-digit number = rn.

 Accordingly, the value of largest n-digit number = rn - 1.

COE 202 – Digital Logic Design – KFUPM slide 24

Number Base Conversion

 Given the representation of some number (XB) in a

number system of radix B, we need to obtain the

representation of the same number in another number

system of radix A, i.e. (XA).

 For a number that has both integral and fractional parts,

conversion is done separately for both parts, and then

the result is put together with a system point in between

both parts.

 Converting Whole (Integer) Numbers

 Assume that XB has n digits (bn-1………..b2 b1 b0)B, where bi is a

digit in radix B system, i.e. bi ∈ {0, 1, ….., “B-1”}.

 Assume that XA has m digits (am-1………..a2 a1 a0)A, where ai is

a digit in radix A system, i.e. ai ∈ {0, 1, ….., “A-1”}.

COE 202 – Digital Logic Design – KFUPM slide 25

Converting Whole (Integer) Numbers

 Dividing XB by A, the remainder will be a0.

 In other words, we can write XB = Q0.A+a0

COE 202 – Digital Logic Design – KFUPM slide 26

Converting Whole (Integer) Numbers

COE 202 – Digital Logic Design – KFUPM slide 27

Converting Whole (Integer) Numbers

 This division procedure can be used to convert an

integer value from some radix number system to any

other radix number system.

 The first digit we get using the division process is a0,

then a1, then a2, till am-1

 Example: Convert (53)10 to (?)2

COE 202 – Digital Logic Design – KFUPM slide 28

Converting Whole (Integer) Numbers

 Since we always divide by the radix, and the quotient is

re-divided again by the radix, the solution table may be

compacted into 2 columns only as shown:

COE 202 – Digital Logic Design – KFUPM slide 29

Converting Whole (Integer) Numbers

 Example: Convert (755)10 to (?)8

 Example: Convert (1606)10 to (?)12

COE 202 – Digital Logic Design – KFUPM slide 30

Another Procedure for Converting from
Decimal to Binary

 Start with a binary representation of all 0’s

 Determine the highest possible power of two that is less

or equal to the number.

 Put a 1 in the bit position corresponding to the highest

power of two found above.

 Subtract the highest power of two found above from the

number.

 Repeat the process for the remaining number

COE 202 – Digital Logic Design – KFUPM slide 31

Another Procedure for Converting from
Decimal to Binary

 Example: Converting (76)10 to Binary

 The highest power of 2 less or equal to 76 is 64, hence

the seventh (MSB) bit is 1

 Subtracting 64 from 76 we get 12.

 The highest power of 2 less or equal to 12 is 8, hence the

fourth bit position is 1

 We subtract 8 from 12 and get 4.

 The highest power of 2 less or equal to 4 is 4, hence the

third bit position is 1

 Subtracting 4 from 4 yield a zero, hence all the left bits are

set to 0 to yield the final answer

COE 202 – Digital Logic Design – KFUPM slide 32

Converting Binary to Decimal

Weighted positional notation shows how to calculate

the decimal value of each binary bit:

Decimal = (dn-1 2n-1) + (dn-2 2n-2) + ... + (d1 21) + (d0 20)

d = binary digit

 binary 10101001 = decimal 169:

(1 27) + (1 25) + (1 23) + (1 20) = 128+32+8+1=169

COE 202 – Digital Logic Design – KFUPM slide 33

Binary to Octal Conversion

 Each octal digit corresponds to 3 binary bits.

 Example: Convert (1110010101.1011011)2 into Octal.

COE 202 – Digital Logic Design – KFUPM slide 34

Binary to Hexadecimal Conversion

 Each hexadecimal digit corresponds to 4 binary bits.

 Example: Convert (1110010101.1011011)2 into hex.

COE 202 – Digital Logic Design – KFUPM slide 35

Binary to Hexadecimal Conversion
 Example: Translate the binary integer

000101101010011110010100 to hexadecimal

M1023. swf

COE 202 – Digital Logic Design – KFUPM slide 36

Binary, Octal, & Hexadecimal Conversions

 Octal (or Hexadecimal) to Binary:

 Express each octal (hexadecimal) digit as three (four) binary bits
starting at the radix point and going both ways.

 Binary to Octal (or Hexadecimal):

 Group the binary bits into three (four) bit groups starting at the
radix point and going both ways, padding LH zeros in the integer
part and RH zeros in the fractional part as needed

 Replace each group of three (four) bits with the equivalent octal
(hexadecimal) digit

 Octal Hexadecimal

 Go through binary as an intermediate step (use above)

e.g. Octal Binary Hexadecimal

COE 202 – Digital Logic Design – KFUPM slide 37

Converting Hexadecimal to Binary

 Each Hexadecimal digit can be replaced by its 4-bit

binary number to form the binary equivalent.

M1021. swf

COE 202 – Digital Logic Design – KFUPM slide 38

Converting Hexadecimal to Decimal

 Multiply each digit by its corresponding power of 16:

Decimal = (d3 163) + (d2 162) + (d1 161) + (d0 160)

d = hexadecimal digit

 Examples:

 (1234)16 = (1 163) + (2 162) + (3 161) + (4 160) =

(4,660) 10

 (3BA4)16 = (3 163) + (11 * 162) + (10 161) + (4 160) =

(15,268)10

COE 202 – Digital Logic Design – KFUPM slide 39

Converting Fractions

 Assume that XB has n digits, XB = (0.b-1 b-2 b-3…….b-n)B

 Assume that XA has m digits, XA = (0.a-1 a-2 a-3…….a-m)A

COE 202 – Digital Logic Design – KFUPM slide 40

Converting Fractions

 Example: Convert (0.731)10 to (?)2

COE 202 – Digital Logic Design – KFUPM slide 41

Converting Fractions

 Example: Convert (0.731)10 to (?)8

 Example: Convert (0.357)10 to (?)12

COE 202 – Digital Logic Design – KFUPM slide 42

Binary Addition

 1 + 1 = 2, but 2 is not

allowed digit in binary

 Thus, adding 1 + 1 in the

binary system results in a

Sum bit of 0 and a Carry bit

of 1.

COE 202 – Digital Logic Design – KFUPM slide 43

Binary Addition

 Start with the least significant bit (rightmost bit)

 Add each pair of bits

 Include the carry in the addition, if present

0 0 0 0 0 1 1 1

0 0 0 0 0 1 0 0

+

0 0 0 0 1 0 1 1

1

(4)

(7)

(11)

carry:

01234bit position: 567

COE 202 – Digital Logic Design – KFUPM slide 44

Binary Subtraction

 The borrow digit is negative

and has the weight of the

next higher digit.

COE 202 – Digital Logic Design – KFUPM slide 45

Binary Multiplication

 Binary multiplication is performed similar to decimal

multiplication.

 Example: 11 * 5 = 55

COE 202 – Digital Logic Design – KFUPM slide 46

Hexadecimal Addition

 Divide the sum of two digits by the number base (16).

The quotient becomes the carry value, and the

remainder is the sum digit.

36 28 28 6A
42 45 58 4B
78 6D 80 B5

11

21 / 16 = 1, remainder 5

COE 202 – Digital Logic Design – KFUPM slide 47

Binary Codes
 Digital systems and circuits work with signals that have only

one of two states corresponding to digital 1 and 0.

 Any discrete element of information among a group of
quantities (elements) can be represented by a binary code.

 One bit can represent up to two elements (1 or 0).

 A binary code is a group of bits (1’s and 0’s)

 A Byte is a binary code of 8 bits

 A group of 2n distinct elements requires a minimum of n bits

 The bit combination of an n-bit code is determined from the
count in binary from 0 to 2n-1. Each element is assigned a
unique binary bit combination, and no two elements can have
the same code to remove ambiguity.

 To code a group of m elements, we need to use n bits such
that: 2n ≥ m

COE 202 – Digital Logic Design – KFUPM slide 48

Using Binary Bits to Represent
Information: Numbers and Codes

We can assign any combination of binary bits (called a

code word) to represent any information item as long as

data is uniquely represented

 Two Basic Types of Information:

 Numeric (e.g. signed or unsigned integers)

 Code tied to binary numbers

 Better use codes that allow simple implementation of common

arithmetic operations

 Non-numeric (e.g. symbols, colors, the alphabet)

 Code not tied to binary numbers

 Greater flexibility: No arithmetic operations involved

COE 202 – Digital Logic Design – KFUPM slide 49

Binary Codes

 Examples:

 A group of four elements can be represented by two bit

code [00, 01, 10, and 11].

 A binary code to represent the decimal digits [0-9], must

contain at least 4 bits because (24=16) ≥ 10 ≥ (23=8).

COE 202 – Digital Logic Design – KFUPM slide 50

Binary Coded Decimal

 Computer systems (binary), People (Decimal)

 Decimal Binary calculation Decimal

 Store numbers in Decimal.

 code decimal numbers by binary

codes

 (24=16) ≥ 10 ≥ (23=8) 4 bits needed.

 6 codes are not used.

 A decimal number in BCD is the same as

its equivalent binary number.

(185)10 = (0001 1000 0101)BCD = (10111001)2

COE 202 – Digital Logic Design – KFUPM slide 51

Other Decimal Codes

COE 202 – Digital Logic Design – KFUPM slide 52

ASCII Code

 American Standard Code for Information Interchange

(ASCII)

 Represents numbers (10), letter (26), special characters

(%, *, and $) and controlls

 This type of code is called alpha-numeric code.

 7-bits b7b6b5b4b3b2b1 to code 128 characters

 The ASCII code also contains 94 graphic characters

that can be printed and 34 nonprinting characters used

for various control functions

COE 202 – Digital Logic Design – KFUPM slide 53

ASCII Code

A = 100 0001

a = 110 0001

DEL = 111 1111

COE 202 – Digital Logic Design – KFUPM slide 54

UNICODE

 Extends ASCII to 65,536 universal characters codes

 2 byte (16-bit) code words

 For encoding characters in world languages

 Used in many modern applications

 Arabic codes: from 0600 to 06FF (hex)

COE 202 – Digital Logic Design – KFUPM slide 55

Gray Code

 Used in applications that

require encoding of continuous

data and its transmission

 Only one bit is changing at a

time

 Eliminates the problem of

wrong intermediate coding

when multiple bits are changed

for a step transition,

 A change from 01111000! may

produce an intermediate erroneous

number if some bits takes longer to

change than others.

COE 202 – Digital Logic Design – KFUPM slide 57

Error-Detection Code

 The parity bit is an extra bit included in the message to

make to total number of 1’s EVEN or ODD.

 Parity bits are used to detect errors encountered during

data transmission, the transmitter inserts the parity bit,

and the receiver checks against it. If an error is detected,

the data is retransmitted.

 Parity can detect error in 1, 3 or any odd combination of

errors.

Even Parity Odd Parity

A = 1000001 01000001 11000001

T = 1010100 11010100 01010100

