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Introduction

 The natural world around us is predominantly Analog

 Analog means Continuous (both in time and amplitude)

 Value changes smoothly over time 

 Have a continuous (infinite) range of amplitudes (Values)

 Examples:

 Sound

 Temperature

 Speed

 Voltage/Current
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Why Digital ?

 Digital systems are everywhere

 Finite (discrete) number of possible states (values)

 Can present and manipulate information and elements

 Dealing with finite states is easier than a infinite number of 

states

 Examples:

 Alphabet

 Playing cards

 Chessboard

Only 4 allowed levels 

Special Case of Digital: only two signal levels  Binary signal  

Values between such levels

are not allowed (Ignored)
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Signals in Digital Systems

 Information is represented in digital systems by signals

Most common types of signals are currents and voltages

 Signals in digital systems can have two possible values:

 0 (OFF)

 1 (ON)

 These digital systems are called binary systems

 Each digit is called bit and a group of bits is called binary 

code
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Numbering Systems

 Numbering systems are characterized by their base 

(radix) number. 

 In general a numbering system with a base r will have r

different digits (including the 0) in its number set. These 

digits will range from 0 to r-1.

 The most widely used numbering systems are listed in 

the table below: 
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Weighted Number Systems

 A number D consists of n digits with each digit having a 

particular position.

 Every digit position is associated with a fixed weight.

 If the weight associated with the ith position is wi, then 

the value of D is given by:
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Example of Weighted Number Systems

 The Decimal number system is a weighted system.

 For integer decimal numbers, the weight of the rightmost 

digit (at position 0) is 1, the weight of position 1 digit is 

10, that of position 2 digit is 100, position 3 is 1000, etc.

 Thus, w0 = 1, w1 = 10, w2=100, w3 = 1000, etc.

 Example:

 Show how the value of the

decimal number 9375 is 

estimated.
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The Radix (Base)

 For digit position i, most weighted number systems use 

weights (wi) that are powers of some constant value 

called the radix (r) or the base such that wi = ri.

 A number system of radix r, typically has a set of r

allowed digits ∈ {0,1, …,(r-1)}.

 The leftmost digit has the highest weight  Most 

Significant Digit (MSD).

 The rightmost digit has the lowest weight  Least 

Significant Digit (LSD).



COE 202 – Digital Logic Design – KFUPM                           slide 10

The Radix (Base)

 Example: Decimal Number System

 1. Radix (Base) = Ten

 2. Since wi = ri, then

 w0 = 100 = 1,

 w1 = 101 = 10,

 w2= 102 = 100,

 w3 = 103 = 1000, etc.

 3. Number of Allowed Digits is Ten:

 {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
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The Radix Point

 A number D of n integral digits and m fractional digits is 

represented as shown:

 Digits to the left of the radix point (integral digits) have 

positive position indices, while digits to the right of the 

radix point (fractional digits) have negative position 

indices.
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The Radix Point

 Position indices of digits to the left of the radix point (the 

integral part of D) start with a 0 and are incremented as 

we move left (dn-1dn-2…..d2d1d0).

 Position indices of digits to the right of the radix point 

(the fractional part of D) start with a -1 and are 

decremented as we move right(d-1d-2…..d-m).

 The weight associated with digit position i is given by wi

= ri, where i is the position index ∀i= -m, -m+1, …, -2, -1, 

0, 1, ……, n-1.

 The Value of D is Computed as:
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The Radix Point

 Example: Show how the value of the decimal number 

52.946 is estimated.
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Notation

 Let (D)r denote a number D expressed in a number 

system of radix r.

 In this notation, r will be expressed in decimal.

 Examples:

 (29)10 Represents a decimal value of 29. The radix “10” 

here means ten.

 (100)16 is a Hexadecimal number since r = “16” here 

means sixteen. This number is equivalent to a decimal 

value of 162=256.

 (100)2 is a Binary number (radix =2, i.e. two) which is 

equivalent to a decimal value of 22 = 4.
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Binary System

 r=2

 Each digit (bit) is either 1 or 0

 Every binary number is a sum of powers of 2

1 1 1 1 1 1 1 1

27 26 25 24 23 22 21 20
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Binary System

 Examples: Find the decimal value of the two Binary 

numbers (101)2 and (1.101)2
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Octal System

 r = 8 (Eight = 23 )

 Eight allowed digits {0, 1, 2, 3, 4, 5, 6, 7}

 Examples: Find the decimal value of the two Octal 

numbers (375)8 and (2.746)8
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Hexadecimal System

 r = 16 (Sixteen = 24)

 Sixteen allowed digits {0-to-9 and A, B, C, D, E, F}

Where: A = Ten, B = Eleven, C = Twelve, D = Thirteen, 

E = Fourteen & F = Fifteen.

 Examples: Find the decimal value of the two 

Hexadecimal numbers (9E1)16 and (3B.C )16
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Binary, Octal, and Hexadecimal

Decimal Binary Octal
Hexa

decimal
Decimal Binary Octal

Hexa

decimal

0 0000 00 0 8 1000 10 8

1 0001 01 1 9 1001 11 9

2 0010 02 2 10 1010 12 A

3 0011 03 3 11 1011 13 B

4 0100 04 4 12 1100 14 C

5 0101 05 5 13 1101 15 D

6 0110 06 6 14 1110 16 E

7 0111 07 7 15 1111 17 F
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Important Properties

 The Largest value that can be expressed in n integral 

digits is (rn-1). 

 The Largest value that can be expressed in m fractional 

digits is (1-r-m).

 The Largest value that can be expressed in n integral 

digits and m fractional digits is (rn -r–m)

 Total number of values (patterns) representable in n

digits is rn.



COE 202 – Digital Logic Design – KFUPM                           slide 21

Important Properties

 Q. What is the result of adding 1 to the largest digit of 

some number system??

 For the decimal number system, (1)10 + (9)10 = (10)10

 For the binary number system, (1)2 + (1)2 = (10)2 = (2)10

 For the octal number system, (1)8 + (7)8 = (10)8 = (8)10

 For the hexadecimal system, (1)16 + (F)16 = (10)16 = (16)10
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Important Properties

 Q. What is the largest value representable in 3-integral 

digits?

 A. The largest value results when all 3 positions are filled 

with the largest digit in the number system.

 For the decimal system, it is (999)10

 For the octal system, it is (777)8

 For the hex system, it is (FFF)16

 For the binary system, it is (111)2

 Q. What is the result of adding 1 to the largest 3-digit 

number?

 For the decimal system, (1)10+ (999)10 = (1000)10 = (103)10

 For the octal system, (1)8+ (777)8 = (1000)8= (83)10
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Important Properties

 In general, for a number system of radix r, adding 1 to 

the largest n-digit number = rn.

 Accordingly, the value of largest n-digit number = rn - 1.
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Number Base Conversion

 Given the representation of some number (XB) in a 

number system of radix B, we need to obtain the 

representation of the same number in another number 

system of radix A, i.e. (XA).

 For a number that has both integral and fractional parts, 

conversion is done separately for both parts, and then 

the result is put together with a system point in between 

both parts.

 Converting Whole (Integer) Numbers

 Assume that XB has n digits (bn-1………..b2 b1 b0)B, where bi is a 

digit in radix B system, i.e. bi ∈ {0, 1, ….., “B-1”}.

 Assume that XA has m digits (am-1………..a2 a1 a0)A, where ai is 

a digit in radix A system, i.e. ai ∈ {0, 1, ….., “A-1”}.
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Converting Whole (Integer) Numbers

 Dividing XB by A, the remainder will be a0.

 In other words, we can write XB = Q0.A+a0
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Converting Whole (Integer) Numbers
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Converting Whole (Integer) Numbers

 This division procedure can be used to convert an 

integer value from some radix number system to any 

other radix number system.

 The first digit we get using the division process is a0, 

then a1, then a2, till am-1

 Example: Convert (53)10 to (?)2
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Converting Whole (Integer) Numbers

 Since we always divide by the radix, and the quotient is 

re-divided again by the radix, the solution table may be 

compacted into 2 columns only as shown:
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Converting Whole (Integer) Numbers

 Example: Convert (755)10 to (?)8

 Example: Convert (1606)10 to (?)12
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Another Procedure for Converting from 
Decimal to Binary 

 Start with a binary representation of all 0’s

 Determine the highest possible power of two that is less 

or equal to the number. 

 Put a 1 in the bit position corresponding to the highest 

power of two found above. 

 Subtract the highest power of two found above from the 

number. 

 Repeat the process for the remaining number
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Another Procedure for Converting from 
Decimal to Binary

 Example: Converting (76)10 to Binary 

 The highest power of 2 less or equal to 76 is 64, hence 

the seventh (MSB) bit is 1

 Subtracting 64 from 76 we get 12. 

 The highest power of 2 less or equal to 12 is 8, hence the 

fourth bit position is 1

 We subtract 8 from 12 and get 4.

 The highest power of 2 less or equal to 4 is 4, hence the 

third bit position is 1

 Subtracting 4 from 4 yield a zero, hence all the left bits are 

set to 0 to yield the final answer 
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Converting Binary to Decimal

Weighted positional notation shows how to calculate 

the decimal value of each binary bit:

Decimal = (dn-1  2n-1) + (dn-2  2n-2) + ... + (d1  21) + (d0  20)

d = binary digit

 binary 10101001 = decimal 169:

(1  27) + (1  25) + (1  23) + (1  20) = 128+32+8+1=169
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Binary to Octal Conversion

 Each octal digit corresponds to 3 binary bits.

 Example: Convert (1110010101.1011011)2 into Octal.
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Binary to Hexadecimal Conversion

 Each hexadecimal digit corresponds to 4 binary bits.

 Example: Convert (1110010101.1011011)2 into hex.
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Binary to Hexadecimal Conversion
 Example: Translate the binary integer 

000101101010011110010100 to  hexadecimal

M1023. swf
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Binary, Octal, & Hexadecimal Conversions

 Octal (or Hexadecimal) to Binary:

 Express each octal (hexadecimal) digit as three (four) binary bits 
starting at the radix point and going both ways.

 Binary to Octal (or Hexadecimal):

 Group the binary bits into three (four) bit groups starting at the 
radix point and going both ways, padding LH zeros in the integer 
part and RH zeros in the fractional part as needed 

 Replace each group of three (four) bits with the equivalent octal 
(hexadecimal) digit

 Octal  Hexadecimal

 Go through binary as an intermediate step (use above)

e.g. Octal  Binary Hexadecimal
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Converting Hexadecimal to Binary 

 Each Hexadecimal digit can be replaced by its 4-bit 

binary number to form the binary equivalent. 

M1021. swf



COE 202 – Digital Logic Design – KFUPM                           slide 38

Converting Hexadecimal to Decimal

 Multiply each digit by its corresponding power of 16:

Decimal = (d3  163) + (d2  162) + (d1  161) + (d0  160)

d = hexadecimal digit

 Examples:

 (1234)16 = (1  163) + (2  162) + (3  161) + (4  160) =

(4,660) 10

 (3BA4)16 = (3  163) + (11 * 162) + (10  161) + (4  160) =

(15,268)10
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Converting Fractions

 Assume that XB has n digits, XB = (0.b-1 b-2 b-3…….b-n)B

 Assume that XA has m digits, XA = (0.a-1 a-2 a-3…….a-m)A
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Converting Fractions

 Example: Convert (0.731)10 to (?)2
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Converting Fractions

 Example: Convert (0.731)10 to (?)8

 Example: Convert (0.357)10 to (?)12
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Binary Addition

 1 + 1 = 2, but 2 is not 

allowed digit in binary

 Thus, adding 1 + 1 in the 

binary system results in a 

Sum bit of 0 and a Carry bit 

of 1.
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Binary Addition

 Start with the least significant bit (rightmost bit)

 Add each pair of bits

 Include the carry in the addition, if present

0 0 0 0 0 1 1 1

0 0 0 0 0 1 0 0

+

0 0 0 0 1 0 1 1

1

(4)

(7)

(11)

carry:

01234bit position: 567
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Binary Subtraction

 The borrow digit is negative 

and has the weight of the 

next higher digit.
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Binary Multiplication

 Binary multiplication is performed similar to decimal 

multiplication.

 Example: 11 * 5 = 55
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Hexadecimal Addition

 Divide the sum of two digits by the number base (16). 

The quotient becomes the carry value, and the 

remainder is the sum digit.

36 28 28 6A
42 45 58 4B
78 6D 80 B5

11

21 / 16 = 1, remainder 5
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Binary Codes
 Digital systems and circuits work with signals that have only 

one of two states corresponding to digital 1 and 0.

 Any discrete element of information among a group of 
quantities (elements) can be represented by a binary code.

 One bit can represent up to two elements (1 or 0).

 A binary code is a group of bits (1’s and 0’s)

 A Byte is a binary code of 8 bits

 A group of 2n distinct elements requires a minimum of n bits

 The bit combination of an n-bit code is determined from the 
count in binary from 0 to 2n-1. Each element is assigned a 
unique binary bit combination, and no two elements can have 
the same code to remove ambiguity.

 To code a group of m elements, we need to use n bits such 
that: 2n ≥ m
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Using Binary Bits to Represent 
Information: Numbers and Codes

We can assign any combination of binary bits   (called a 

code word) to represent any information item as long as 

data is uniquely represented

 Two Basic Types of Information:

 Numeric (e.g. signed or unsigned integers)

 Code tied to binary numbers

 Better use codes that allow simple implementation of common 

arithmetic operations

 Non-numeric (e.g. symbols, colors, the alphabet)

 Code not tied to binary numbers 

 Greater flexibility: No arithmetic operations involved
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Binary Codes

 Examples:

 A group of four elements can be represented by two bit 

code [00, 01, 10, and 11].

 A binary code to represent the decimal digits [0-9], must 

contain at least 4 bits because (24=16) ≥ 10 ≥ (23=8).
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Binary Coded Decimal

 Computer systems (binary), People (Decimal)

 Decimal  Binary  calculation  Decimal

 Store numbers in Decimal.

  code decimal numbers by binary 

codes

 (24=16) ≥ 10 ≥ (23=8)  4 bits needed.

 6 codes are not used.

 A decimal number in BCD is the same as

its equivalent binary number.

(185)10 = (0001 1000 0101)BCD = (10111001)2
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Other Decimal Codes
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ASCII Code

 American Standard Code for Information Interchange 

(ASCII)

 Represents numbers (10), letter (26), special characters 

(%, *, and $) and controlls

 This type of code is called alpha-numeric code.

 7-bits    b7b6b5b4b3b2b1 to code 128 characters

 The ASCII code also contains 94 graphic characters 

that can be printed and 34 nonprinting characters used 

for various control functions
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ASCII Code

A = 100 0001

a = 110 0001

DEL = 111 1111
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UNICODE

 Extends ASCII to 65,536 universal  characters codes

 2 byte (16-bit) code words

 For encoding characters in world languages

 Used in many modern applications

 Arabic codes: from 0600 to 06FF (hex)
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Gray Code

 Used in applications that 

require encoding of continuous 

data and its transmission

 Only one bit is changing at a 

time

 Eliminates the problem of 

wrong intermediate coding 

when multiple bits are changed 

for a step transition, 

 A change from 01111000! may 

produce an intermediate erroneous 

number if some bits takes longer to 

change than others. 
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Error-Detection Code

 The parity bit is an extra bit included in the message to 

make to total number of 1’s EVEN or ODD.

 Parity bits are used to detect errors encountered during 

data transmission, the transmitter inserts the parity bit, 

and the receiver checks against it. If an error is detected, 

the data is retransmitted. 

 Parity can detect error in 1, 3 or any odd combination of 

errors.

Even Parity Odd Parity

A = 1000001 01000001 11000001

T = 1010100 11010100 01010100


