Digital Systems and Binary Numbers

COE 202

Digital Logic Design

Dr. Abdulaziz Tabbakh

College of Computer Sciences and Engineering King Fahd University of Petroleum and Minerals

Outline

- Introduction
- Numbering Systems
- Weighted Number Systems
- Binary, Octal & Hexadecimal Systems
- Number Base Conversions
- Binary Addition, Subtraction, Multiplication
- Binary Codes and Binary Logic

Introduction

- The natural world around us is predominantly Analog
- Analog means Continuous (both in time and amplitude)
 - \diamond Value changes smoothly over time
 - ♦ Have a continuous (infinite) range of amplitudes (Values)
- Examples:
 - \diamond Sound
 - ♦ Temperature
 - ♦ Speed
 - ♦ Voltage/Current

Why Digital ?

- Digital systems are everywhere
- Finite (discrete) number of possible states (values)
 - \diamond Can present and manipulate information and elements
 - Dealing with finite states is easier than a infinite number of states
- Examples:
 Alphabet
 Playing cards
 Chessboard

Special Case of Digital: only two signal levels → Binary signal

Signals in Digital Systems

- Information is represented in digital systems by signals
- Most common types of signals are currents and voltages
- Signals in digital systems can have two possible values:
 \$ 0 (OFF)
 - ♦ 1 (ON)
- These digital systems are called binary systems
- Each digit is called bit and a group of bits is called binary code

Numbering Systems

- Numbering systems are characterized by their base (radix) number.
- In general a numbering system with a base r will have r different digits (including the 0) in its number set. These digits will range from 0 to r-1.
- The most widely used numbering systems are listed in the table below:

Numbering System	Base	Digits Set
Binary	2	10
Octal	8	76543210
Decimal	10	9876543210
Hexadecimal	16	F E D C B A 9 8 7 6 5 4 3 2 1 0

Weighted Number Systems

A number D consists of *n* digits with each digit having a particular *position*.

- Every digit *position* is associated with a *fixed weight*.
- If the weight associated with the *ith* position is w_i, then the value of D is given by:

 $\mathbf{D} = \mathbf{d}_{n-1} \mathbf{w}_{n-1} + \mathbf{d}_{n-2} \mathbf{w}_{n-2} + \ldots + \mathbf{d}_2 \mathbf{w}_2 + \mathbf{d}_1 \mathbf{w}_1 + \mathbf{d}_0 \mathbf{w}_0$

Example of Weighted Number Systems

- The Decimal number system is a weighted system.
- For integer decimal numbers, the weight of the rightmost digit (*at position 0*) is 1, the weight of *position 1* digit is 10, that of *position 2* digit is 100, *position 3* is 1000, etc.
- ✤ Thus, $w_0 = 1$, $w_1 = 10$, $w_2 = 100$, $w_3 = 1000$, etc.
- Example:
- Show how the value of the decimal number 9375 is estimated.

The Radix (Base)

- For digit position i, most weighted number systems use weights (w_i) that are powers of some constant value called the radix (r) or the base such that w_i = rⁱ.
- A number system of radix r, typically has a set of r allowed digits ∈ {0,1, ...,(r-1)}.
- ✤ The leftmost digit has the highest weight → Most Significant Digit (MSD).
- ✤ The rightmost digit has the lowest weight → Least Significant Digit (LSD).

The Radix (Base)

- Example: Decimal Number System
- ✤ 1. Radix (Base) = Ten
- * 2. Since $w_i = r^i$, then

$$\Rightarrow \mathbf{w}_0 = 10^0 = 1,$$

$$\Rightarrow$$
 w₁ = 10¹ = 10,

$$\Rightarrow$$
 w₂= 10² = 100,

 \Rightarrow w₃ = 10³ = 1000, etc.

✤ 3. Number of Allowed Digits is Ten:

 \diamond {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

$$\begin{array}{c|c} \text{MSD} & \text{LSD} \\ 9375 &= 5x10^0 + 7x10^1 + 3x10^2 + 9x10^3 \end{array}$$

$$= 5x1 + 7x10 + 3x100 + 9x 1000$$

Position	3	2	1	0
	1000	100	10	1
Weight	$= 10^{3}$	$= 10^{2}$	= 10 ¹	= 10 ⁰

The Radix Point

A number D of *n* integral digits and *m* fractional digits is represented as shown:

Digits to the left of the radix point (*integral digits*) have positive position indices, while digits to the right of the radix point (*fractional digits*) have negative position indices.

The Radix Point

- Position indices of digits to the left of the radix point (the integral part of D) start with a 0 and are incremented as we move left (d_{n-1}d_{n-2}....d₂d₁d₀).
- Position indices of digits to the right of the radix point (the fractional part of D) start with a -1 and are decremented as we move right(d₋₁d₋₂....d_{-m}).
- ★ The weight associated with digit position *i* is given by w_i = rⁱ, where *i* is the position index *∀i*= -*m*, -*m*+1, ..., -2, -1, 0, 1,, n-1.
- The Value of D is Computed as:

$$D = \sum_{i = -m}^{n-1} d_i r^i$$

The Radix Point

Example: Show how the value of the decimal number 52.946 is estimated.

$$D = 52.946$$

$$d_{1} d_{0} d_{-1} d_{-2} d_{-3}$$

Number	5	2	•	9	4	6		
Position	1	0	•	-1	-2	-3		
Weight	10 ¹	10^{0}		10⁻¹	10 ⁻²	10 ⁻³		
	=	=		=	=	=		
	10	1	•	0.1	0.01	0.001		
	5	2		9	4	6		
Value	х	х		х	х	х		
	10	1	•	0.1	0.01	0.001		
Value $50 + 2 + 0.9 + 0.04 + 0.006$								

$$\mathbf{D} = 5\mathbf{x}\mathbf{10}^1 + 2\mathbf{x}\mathbf{10}^0 + 9\mathbf{x}\mathbf{10}^{-1} + 4\mathbf{x}\mathbf{10}^{-2} + 6\mathbf{x}\mathbf{10}^{-3}$$

Notation

- Let (D)_r denote a number D expressed in a number system of radix r.
- ✤ In this notation, r will be expressed in decimal.

Examples:

- (29)₁₀ Represents a decimal value of 29. The radix "10" here means ten.
- (100)₁₆ is a Hexadecimal number since r = "16" here means sixteen. This number is equivalent to a decimal value of 16²=256.
- ✤ (100)₂ is a Binary number (radix =2, i.e. two) which is equivalent to a decimal value of $2^2 = 4$.

Binary System

☆ r=2

Each digit (bit) is either 1 or 0

Every binary number is a sum of powers of 2 $\mathbf{D} = \mathbf{d}_{n-1} \mathbf{w}_{n-1} + \mathbf{d}_{n-2} \mathbf{w}_{n-2} + \ldots + \mathbf{d}_2 \mathbf{w}_2 + \mathbf{d}_1 \mathbf{w}_1 + \mathbf{d}_0 \mathbf{w}_0$

2 ⁿ	Decimal Value	2 ⁿ	Decimal Value
2 ⁰	1	2 ⁸	256
2 ¹	2	2 ⁹	512
2 ²	4	2 ¹⁰	1024
2 ³	8	2 ¹¹	2048
24	16	212	4096
2 ⁵	32	2 ¹³	8192
2 ⁶	64	214	16384
27	128	2 ¹⁵	32768

Table 1-3 Binary Bit Position Values.

Binary System

Examples: Find the decimal value of the two Binary numbers (101)₂ and (1.101)₂

MSB

$$(1 \ 0 \ 1)_2 = 1x2^0 + 0x2^1 + 1x2^2$$

 $= 1x1 + 0x2 + 1x4$
 $= (5)_{10}$

MSB
(1.101)₂ =
$$1x2^{0} + 1x2^{-1} + 0x2^{-2} + 1x2^{-3}$$

= 1 + 0.5 + 0 + 0.125
= (1.625)₁₀

Octal System

✤ r = 8 (Eight = 2³)

- Eight allowed digits {0, 1, 2, 3, 4, 5, 6, 7}
- Examples: Find the decimal value of the two Octal numbers (375)₈ and (2.746)₈

Hexadecimal System

- ✤ r = 16 (Sixteen = 2⁴)
- Sixteen allowed digits {0-to-9 and A, B, C, D, E, F}
- Where: A = Ten, B = Eleven, C = Twelve, D = Thirteen, E = Fourteen & F = Fifteen.
- Examples: Find the decimal value of the two Hexadecimal numbers (9E1)₁₆ and (3B.C)₁₆

MSD LSD MSD LSD

$$(9E1)_{16} = 1x16^{0} + Ex16^{1} + 9x16^{2}$$

 $= 1x1 + 14x16 + 9x256$
 $= (2529)_{10}$
MSD LSD
 $(3B.C)_{16} = Cx16^{-1} + Bx16^{0} + 3x16^{1}$
 $= 12x16^{-1} + 11x16^{0} + 3x16$
 $= (59.75)_{10}$

Binary, Octal, and Hexadecimal

Decimal	Binary	Octal	Hexa decimal	Decimal	Binary	Octal	Hexa decimal
0	0000	00	0	8	1000	10	8
1	0001	01	1	9	1001	11	9
2	0010	02	2	10	1010	12	А
3	0011	03	3	11	1011	13	В
4	0100	04	4	12	1100	14	С
5	0101	05	5	13	1101	15	D
6	0110	06	6	14	1110	16	Е
7	0111	07	7	15	1111	17	F

- The Largest value that can be expressed in n integral digits is (rⁿ-1).
- The Largest value that can be expressed in m fractional digits is (1-r^{-m}).
- The Largest value that can be expressed in n integral digits and m fractional digits is (rⁿ -r^{-m})
- Total number of values (patterns) representable in n digits is rⁿ.

- Q. What is the result of adding 1 to the largest digit of some number system??
 - \diamond For the decimal number system, $(1)_{10} + (9)_{10} = (10)_{10}$
 - ♦ For the binary number system, $(1)_2 + (1)_2 = (10)_2 = (2)_{10}$
 - ♦ For the octal number system, $(1)_8 + (7)_8 = (10)_8 = (8)_{10}$
 - ♦ For the hexadecimal system, $(1)_{16} + (F)_{16} = (10)_{16} = (16)_{10}$ OCTAL System
 HEX System

- Q. What is the largest value representable in 3-integral digits?
- A. The largest value results when all 3 positions are filled with the largest digit in the number system.
 - \diamond For the decimal system, it is (999)₁₀
 - \diamond For the octal system, it is (777)₈
 - \diamond For the hex system, it is (FFF)₁₆
 - \diamond For the binary system, it is $(111)_2$
- Q. What is the result of adding 1 to the largest 3-digit number?
 - ♦ For the decimal system, $(1)_{10}$ + $(999)_{10}$ = $(1000)_{10}$ = $(10^3)_{10}$
 - ♦ For the octal system, $(1)_8 + (777)_8 = (1000)_8 = (8^3)_{10}$

- In general, for a number system of radix r, adding 1 to the largest *n*-digit number = rⁿ.
- Accordingly, the value of largest *n*-digit number = $r^n 1$.

Number Base Conversion

- Given the representation of some number (X_B) in a number system of radix B, we need to obtain the representation of the same number in another number system of radix A, i.e. (X_A).
- For a number that has both integral and fractional parts, conversion is done separately for both parts, and then the result is put together with a system point in between both parts.

Converting Whole (Integer) Numbers

- Assume that X_B has n digits (b_{n-1}.....b₂ b₁ b₀)_B, where b_i is a digit in radix B system, i.e. b_i ∈ {0, 1,, "B-1"}.
- Assume that X_A has m digits (a_{m-1}....a₂ a₁ a₀)_A, where a_i is
 a digit in radix A system, i.e. a_i ∈ {0, 1,, "A-1"}.

• Dividing X_B by A, the remainder will be a_0 .

↔ In other words, we can write $X_B = Q_0 A + a_0$

 $\mathbf{Q}_0 = \mathbf{Q}_1 \mathbf{A} + \mathbf{a}_1$

 $Q_1 = Q_2A + a_2$ $Q_{m-3} = Q_{m-2}A + a_{m-2}$ $Q_{m-2} = a_{m-1} < A \text{ (not divisible by A)}$ $= Q_{m-1}A + a_{m-1}$ Where $Q_{m-1} = 0$

- This division procedure can be used to convert an integer value from some radix number system to any other radix number system.
- The first digit we get using the division process is a₀, then a₁, then a₂, till a_{m-1}
- **\therefore Example:** Convert (53)₁₀ to (?)₂

Thus (53)₁₀=(110101.)₂

Since we always divide by the radix, and the quotient is re-divided again by the radix, the solution table may be compacted into 2 columns only as shown:

755

 $(755)_{10}$

• Example: Convert $(755)_{10}$ to $(?)_8$

						94
Divis	ion S	step	Quotient	Remainder		
755	÷	8	$Q_0 = 94$	$3 = a_0$	LSB	
94	÷	8	Q ₁ =11	$6 = a_1$		1
11	÷	8	Q ₂ =1	$3 = a_2$		0
1	÷	8	0	$1 = a_3$	MSB	U

Example: Convert (1606)₁₀ to (?)₁₂

1606 $\div 12$ •For radix twelve, the allowed digit set is:133 $\div 12$ 10 = ALSB{0-9, A, B}11 $\div 12$ 1(1606)_{10} (B1A.)_{12}011 = BMSB

1363.)₈

Another Procedure for Converting from Decimal to Binary

- Start with a binary representation of all 0's
- Determine the highest possible power of two that is less or equal to the number.
- Put a 1 in the bit position corresponding to the highest power of two found above.
- Subtract the highest power of two found above from the number.
- Repeat the process for the remaining number

Another Procedure for Converting from Decimal to Binary

- Example: Converting (76)₁₀ to Binary
 - \diamond The highest power of 2 less or equal to 76 is 64, hence the seventh (MSB) bit is 1
 - \diamond Subtracting 64 from 76 we get 12.
 - \diamond The highest power of 2 less or equal to 12 is 8, hence the fourth bit position is 1 0 0 1
 - \diamond We subtract 8 from 12 and get 4.
 - \diamond The highest power of 2 less or equal to 4 is 4, hence the third bit position is 1 1 1 0. 0.
 - \diamond Subtracting 4 from 4 yield a zero, hence all the left bits are set to 0 to yield the final answer 1 0 0

Converting Binary to Decimal

Weighted positional notation shows how to calculate the decimal value of each binary bit:

 $\begin{aligned} Decimal &= (d_{n-1} \times 2^{n-1}) + (d_{n-2} \times 2^{n-2}) + \ldots + (d_1 \times 2^1) + (d_0 \times 2^0) \\ d &= \text{binary digit} \end{aligned}$

✤ binary 10101001 = decimal 169:

 $(1 \times 2^7) + (1 \times 2^5) + (1 \times 2^3) + (1 \times 2^0) = 128+32+8+1=169$

Binary to Octal Conversion

Each octal digit corresponds to 3 binary bits.

 $(b_n..., b_5 b_4 b_3 b_2 b_1 b_0, b_{-1} b_{-2} b_{-3} b_{-4} b_{-5}...)_2$

* Example: Convert $(1110010101.1011011)_2$ into Octal. $001_110_010_101_101_101_100 = (1625.554)_8$ $1 \quad 6 \quad 2 \quad 5 \quad 5 \quad 4$

Binary to Hexadecimal Conversion

Each hexadecimal digit corresponds to 4 binary bits.

Binary to Hexadecimal Conversion

Example: Translate the binary integer 00010110100011110010100 to hexadecimal

1	6	А	7	9	4
0001	0110	1010	0111	1001	0100

M1023.swf

Binary, Octal, & Hexadecimal Conversions

- ✤ Octal (or Hexadecimal) to Binary:
 - Express each octal (hexadecimal) digit as three (four) binary bits starting at the radix point and going <u>both ways</u>.
- Binary to Octal (or Hexadecimal):
 - Group the binary bits into three (four) bit groups starting at the radix point and going <u>both ways</u>, padding LH zeros in the integer part and RH zeros in the fractional part as needed
 - Replace each group of three (four) bits with the equivalent octal (hexadecimal) digit
- ♦ Octal ⇔ Hexadecimal
 - ♦ Go through **binary** as an intermediate step (use above)

e.g. Octal \leftrightarrow <u>**Binary</u>** \leftrightarrow Hexadecimal</u>

Converting Hexadecimal to Binary

Each Hexadecimal digit can be replaced by its 4-bit binary number to form the binary equivalent.

Converting Hexadecimal to Decimal

Multiply each digit by its corresponding power of 16:

Decimal = $(d_3 \times 16^3) + (d_2 \times 16^2) + (d_1 \times 16^1) + (d_0 \times 16^0)$

d = hexadecimal digit

Examples:

- ↔ (1234)₁₆ = (1 × 16³) + (2 × 16²) + (3 × 16¹) + (4 × 16⁰) = (4,660)₁₀
- ↔ (3BA4)₁₆ = (3 × 16³) + (11 * 16²) + (10 × 16¹) + (4 × 16⁰) = (15,268)₁₀

Converting Fractions

- Assume that X_B has n digits, $X_B = (0.b_{-1} b_{-2} b_{-3}...b_{-n})_B$
- Assume that X_A has m digits, $X_A = (0.a_{-1} a_{-2} a_{-3}...a_m)_A$

Converting Fractions

• Example: Convert $(0.731)_{10}$ to $(?)_2$

Converting Fractions

✤ Example: Convert (0.357)₁₀ to (?)₁₂

System Point 12*0.357 = 4.284 12*0.284 = 3.408 12*0.408 = 4.896 $12*0.896 = 10,752 \longrightarrow A = 10$ $(0.357)_{10} \longrightarrow (0.434A)_{12}$

Binary Addition

- 1 + 1 = 2, but 2 is not allowed digit in binary
- Thus, adding 1 + 1 in the binary system results in a Sum bit of 0 and a Carry bit

Binary Addition Table

Binary Addition

- Start with the least significant bit (rightmost bit)
- ✤ Add each pair of bits
- Include the carry in the addition, if present

Binary Subtraction

Borrow

Difference

 $+2^{0}$

The borrow digit is negative and has the weight of the next higher digit.

Binary Multiplication

- Binary multiplication is performed similar to decimal multiplication.
- ✤ Example: 11 * 5 = 55

Multiplica	nd		1	0	1	1	
Multiplier				1	0	1	X
•			1	0	1	1	
		0	0	0	0		+
	1	0	1	1			+
•	1	1	0	1	1	1	

Hexadecimal Addition

Divide the sum of two digits by the number base (16). The quotient becomes the carry value, and the remainder is the sum digit.

Binary Codes

- Digital systems and circuits work with signals that have only one of two states corresponding to digital 1 and 0.
- Any discrete element of information among a group of quantities (elements) can be represented by a binary code.
- One bit can represent up to two elements (1 or 0).
- ✤ A binary code is a group of bits (1's and 0's)
- ✤ A Byte is a binary code of 8 bits
- ✤ A group of 2ⁿ distinct elements requires a minimum of n bits
- The bit combination of an n-bit code is determined from the count in binary from 0 to 2ⁿ-1. Each element is assigned a unique binary bit combination, and no two elements can have the same code to remove ambiguity.
- ✤ To code a group of <u>m</u> elements, we need to use <u>n</u> bits such that: 2ⁿ ≥ m

Using Binary Bits to Represent Information: Numbers and Codes

- We can assign any combination of binary bits (called a code word) to represent any information item as long as data is uniquely represented
- Two Basic Types of Information:
 - ♦ Numeric (e.g. signed or unsigned integers)
 - Code tied to binary numbers
 - Better use codes that allow simple implementation of common arithmetic operations
 - ♦ Non-numeric (e.g. symbols, colors, the alphabet)
 - Code not tied to binary numbers
 - Greater flexibility: No arithmetic operations involved

Binary Codes

Examples:

- ♦ A group of four elements can be represented by two bit code [00, 01, 10, and 11].
- ♦ A binary code to represent the decimal digits [0-9], must contain at least 4 bits because $(2^4=16) \ge 10 \ge (2^3=8)$.

Binary Coded Decimal

Computer systems (binary), People (Decimal)

 \diamond Decimal \rightarrow Binary \rightarrow calculation \rightarrow Decimal

Store numbers in Decimal.	ecimal Digit	BCD 8421
\diamond $ ightarrow$ code decimal numbers by binary	0	0000
codes	1	0001
	2	0010
♦ $(2^4=16) \ge 10 \ge (2^3=8) \rightarrow 4$ bits needed.	3	0011
* 6 andre are not used	4	0100
	5	0101
♦ A decimal number in BCD is the same as	6	0110
	7	0111
its equivalent binary number.	8	1000
	9	1001
(185) ₁₀ = (0001 1000 0101) _{BCD} = (10111001)	2	

Other Decimal Codes

Table 1.5

Four Different Binary Codes for the Decimal Digits

Decimal Digit	BCD 8421	2421	Excess-3	8, 4, -2, -1
0	0000	0000	0011	0000
1	0001	0001	0100	0111
2	0010	0010	0101	0110
3	0011	0011	0110	0101
4	0100	0100	0111	0100
5	0101	1011	1000	1011
6	0110	1100	1001	1010
7	0111	1101	1010	1001
8	1000	1110	1011	1000
9	1001	1111	1100	1111
	1010	0101	0000	0001
Unused	1011	0110	0001	0010
bit	1100	0111	0010	0011
combi-	1101	1000	1101	1100
nations	1110	1001	1110	1101
	1111	1010	1111	1110

ASCII Code

- American Standard Code for Information Interchange (ASCII)
- Represents numbers (10), letter (26), special characters (%, *, and \$) and controlls
- This type of code is called alpha-numeric code.
- ✤ 7-bits $b_7b_6b_5b_4b_3b_2b_1$ to code 128 characters
- The ASCII code also contains 94 graphic characters that can be printed and 34 nonprinting characters used for various control functions

American Standard Code for Information Interchange (ASCII)

				b ₇ t	06 b 5				ASCTT Code
b ₄ b ₃ b ₂ b ₁	000	001	010	011	100	101	110	111	ADCII COUE
0000	NUL	DLE	SP	0	@	Р		р	
0001	SOH	DC1	!	1	Α	Q	a	q	100 0001
0010	STX	DC2	"	2	в	R	b	r	$A = 100\ 0001$
0011	ETX	DC3	#	3	С	S	с	S	
0100	EOT	DC4	\$	4	D	Т	d	t	
0101	ENQ	NAK	%	5	E	U	e	u	$a = 110\ 0001$
0110	ACK	SYN	&	6	F	V	f	v	
0111	BEL	ETB	6	7	G	W	g	w	
1000	BS	CAN	(8	Н	Х	h	х	$DEI = 111 \ 1111$
1001	HT	EM)	9	Ι	Y	i	У	
1010	LF	SUB	*	:	J	Z	j	Z	
1011	VT	ESC	+	;	K	[k	{	
1100	FF	FS	,	<	L	\ \	1		
1101	CR	GS	-	=	Μ]	m	}	
1110	SO	RS	:	>	N	^	n	~	
1111	SI	US	/	?	0	-	0	DEL	

Control Characters

NUL	Null	DLE	Data-link escape	
SOH	Start of heading	DC1	Device control 1	
STX	Start of text	DC2	Device control 2	
ETX	End of text	DC3	Device control 3	
EOT	End of transmission	DC4	Device control 4	
ENQ	Enquiry	NAK	Negative acknowledge	
ACK	Acknowledge	SYN	Synchronous idle	
BEL	Bell	ETB	End-of-transmission block	
BS	Backspace	CAN	Cancel	
HT	Horizontal tab	EM	End of medium	
LF	Line feed	SUB	Substitute	
VT	Vertical tab	ESC	Escape	
FF	Form feed	FS	File separator	
CR	Carriage return	GS	Group separator	
SO	Shift out	RS	Record separator	
SI	Shift in	US	Unit separator	
SP	Space	DEL	Delete	L

Design – KFUPM

UNICODE

Extends ASCII to 65,536 universal characters codes

- \diamond 2 byte (16-bit) code words
- \diamond For encoding characters in world languages
- ♦ Used in many modern applications
- ♦ Arabic codes: from 0600 to 06FF (hex)

Gray Code

- Used in applications that require encoding of continuous data and its transmission
- Only one bit is changing at a time
- Eliminates the problem of wrong intermediate coding when multiple bits are changed for a step transition,
- A change from 0111→1000! may produce an intermediate erroneous number if some bits takes longer to change than others.

Table 1.6 Gray Code

Gray Code	Decimal Equivalent	
0000	0	
0001	1	
0011	2	
0010	3	
0110	4	
0111	5	
0101	6	
0100	7	
1100	8	
1101	9	
1111	10	
1110	11	
1010	12	
1011	13	
1001	14	
1000	15	

Error-Detection Code

- The parity bit is an <u>extra bit included</u> in the message to make to total number of 1's EVEN or ODD.
- Parity bits are used to detect errors encountered during data transmission, the transmitter inserts the parity bit, and the receiver checks against it. If an error is detected, the data is retransmitted.
- Parity can detect error in 1, 3 or any odd combination of errors.

	Even Parity	Odd Parity
A = 1000001	<u>0</u> 1000001	<u>1</u> 1000001
T = 1010100	<u>1</u> 1010100	<u>0</u> 1010100