KFUPM – CCSE - COMPUTER ENGINEERING DEPARTMENT CSE 642 – Computer Systems Performance (Take home quiz 1) Student Name: Student Number:

1) (10 points) Let X be a non-negative integer valued random variable, show that

$$E[X] = \sum_{k=0}^{\infty} P(X > k):$$

2) (5 points) Prove the identity given in (1) for a Geometric random variable whose PMF is given by $\operatorname{Prob}[X = k] = (1 - p)^{k-1} p$ for k = 1, 2, ... and 0 .

3) (**5 points**) Find the probability generating function (PGF) for the geometric distribution specified in (2).

4) Consider a normal random variable *X* with mean μ and standard deviation σ .

a) (**5 points**) Specify and plot the PDF for *X*, $f_X(x)$, for μ equal to 0 and σ equal to 1, 2, and 3. (all three curves on one plot with proper legend).

b) (5 points) Define the random variable *Y* as $y = \exp(x)$, then *Y* is said to follow the lognormal distribution. Specify and plot the PDF for *Y*, $f_Y(y)$, for the three given sets of parameters listed in (4.a).

c) (**bonus 10 points**) The characteristic function (CF) for the random variable *Y*, $\Phi_Y(\omega)$, can be computed using $\Phi_Y(\omega) = \int_{y=0}^{\infty} e^{j\omega y} f_Y(y) dy$ where $f_Y(y)$ is the PDF evaluated in part (4.b). The CF can also be evaluated using $\Phi_Y(\omega) = \int_{-\infty}^{\infty} e^{j\omega e^x} f_X(x) dx$ where $f_X(x)$ is the PDF for the corresponding normal random variable (i.e. specified in part 4.1). It is required to evaluate and plot $\Phi_Y(\omega)$ for $\omega \in [0, 10^4]$ and for the three given sets of parameters listed in (4.a). Use the log scale for both the CF axis and the frequency axis ω . Choose evenly spaced points on the *x*-axis using the Matlab command "logspace". Provide one plot for $|\text{real}(\Phi_Y(\omega))|$ and separate plot for $|\text{imag}(\Phi_Y(\omega))|$. *Comment* on the integrand $e^{j\omega e^x} f_X(x)$ and the relative ease or difficulty of computing $\Phi_Y(\omega)$.

Hint: Matlab is recommended for the plotting and evaluation of functions.