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Markov Chains: Applications to 
Multiplexing And Access
• Chapter 5 in Hayes’s Textbook

• Plan:
• Time-Division Multiplexing
• Arrival Process
• Asynchronous Time-Division Multiplexing
• Synchronous Time-Division Multiplexing
• Random Access Techniques (ALOHA)
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• Random Access Techniques (ALOHA)

• In this chapter the Markov chain is used to 
model techniques for multiplexing and 
access in telecommunications networks
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Time-Division Multiplexing (TDM)
• Example - T1 Line

• Rate: 15.44 Mb/s
• Frame length = 125 micro secondFrame length  125 micro second
• 24 channels with one framing bit

• Traffic flow is segmented into fixed-length slots 
(payloads)

• Markov chain is used to 
model the sequences 
formed by the information 
units (cells, bytes, packet, 
payloads etc ) in the
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payloads, etc.) in the 
system at the slot 
boundaries

• Analysis of TDM and Time-
Division Multiple Access 
(TDMA) are identical.

The Arrival Process
• The output of a traffic source is segmented 

into fixed-size units (cells, packets, etc.) –( , p , )
Packetization
• E.g. ATM cell = 48B data + 5B header

• In analysis, packetization is equivalent to 
transformation of random variables.
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transformation of random variables.
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The Arrival Process – cont’d
• Example: Message of i bits segmented into 

I-bit packetsp
• Let B(i) = Prob[ message = i bits]
• Then the probability distribution of 

number of packets in a message is given 
by

     packets in a message
kI

M k P k B i  
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• Stuff bits are used to round messages into 
an integral number of packets

• For O overhead bit in each packet

     
 1 1

p g
i k I  


The Arrival Process – cont’d
• For O overhead bit in each packet, the 

total number of bits in a packetized p
message has the distribution 

    P k B k I O
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The Arrival Process – cont’d
• Example 5.1
• Suppose the number of bits in a message• Suppose the number of bits in a message 

is the sum of a constant number of 
overhead bits O plus a geometrically 
distributed components with distribution

Let the number of information bits in a
   1 1 ; 1,2,iB i B B i   
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Let the number of information bits in a 
packet be I and assume I > O. What is the 
distribution of the number of packets in a 
message

The Arrival Process – cont’d
• Example 5.1 - Solution
• Let the distribution of number of packets• Let the distribution of number of packets, 

k, in a message be denoted by P(k)
• For k = 1

   one packet in a messageP P M I O  

 1

1

1
I O

j

j

B B






 
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1j

1 I OB  
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The Arrival Process – cont’d
• Example 5.1 – Solution – cont’d
• For k > 1• For k > 1

   
1

1

0

1
I

j k I O

j

B B


  



 
   1k I O I

   
 

 1

1 2

 packets in a message; 1
I O k I

i I O k I

P k k B i
  

    

  
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   1 1k I O IB B  

The Arrival Process – cont’d
• Example 5.1 – Solution – cont’d
• It can be shown that 

( ) k b(k k ) b i bM(z) = Σz^k prob(k packets) can be given by

• For O = 0 (i.e. no overhead header), M(z) 
reduces to 

     1
1

1

I O I

I O
I

zB B
M z z B

zB






  


 1 Iz B
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• This mean the number of packets is 
geometrically distributed with mean 1/(1-BI)

   1

1 I

z B
M z

zB





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Compound Arrivals
• Messages arrive to a slot containing a 

RANDOM number of packets
• The arrival pattern itself may be also 

RANDOM
• Example: Assume n sources are connected to 

a multiplexer
• Each source generates a message in a slot with 

probability P (i.e. Bernoulli arrivals)
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• Total number of messages in a slot follows a 
Binomial distribution with parameters n and 
P.
• When n is large, the limiting distribution is Poisson 

with average equal to λ = nP.

Compound Arrivals – Generalized 
Case
• Suppose the number of message arrivals in a 

slot has an arbitrary distribution with 
probabilities a1 a2probabilities a1, a2, ….

• The corresponding PGF for number of arrived 
MESSAGES, AS(z), is given by Σzk ak.

• Conditioning on j messages arrive in a time 
slot, the corresponding PGF for number of 
arrived PACKETS is denoted by Mj(z)
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• Therefore, the PGF for the PACKET arrival 
process should be given by

      
0

k
k S

k

A z a M z A M z




 
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Compound Arrivals – Generalized 
Case
• Let  be average packet arrival rate.
• Using the PGF A(z) we have• Using the PGF A(z) we have

where      is the average number of 
i i i l d i h

       
1

1 1S

S S

z

dA M z
A A M M A M

dz




    

SA
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messages arriving in a slot and      is the 
average number of packets per slot. 

M

Compound Arrivals – Example
• Example 5.2 – Suppose that the arrival 

process is Poisson with an average of λp g
messages per time slot, and the messages 
have two lengths: P(one packet) = 0.3 and 
P(four packets) = 0.7. 

1. Compute the PGF for number of arriving 
packets per slot
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2. What is the mean number of arriving 
packets.
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Compound Arrivals – Example
• Solution:
• The PGF is given byg y

• You can use a tool such as Matlab or Maple 
to evaluate the PMF and CDF. Figure 5.2 in 

       41 0.3 0.74

0

0.3 0.7
!

k T
k T z z

k

T e
A z z z e

k


 

  



  
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g
textbook page 190 shows the CDF for 
different values of λT. 

Asynchronous Time-Division 
Multiplexing (ATDM)
• For bursty sources

• No capacity is dedicated for the sources
• In contrast, for Synchronous Time-Division 

Multiplexing (STDM) capacity is reserved for every 
source

• Assume aggregate arrival 
process from all sources: 
λ messages per second

• The transmission rate on 
the synchronous line out
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the synchronous line out 
of the buffer is 1/T slots 
per second – a slot 
carries exactly one 
packet

• Newly arriving packets 
are stored in the buffer
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Asynchronous Time-Division 
Multiplexing (ATDM) - Analysis
• Embed a Markov chain at the slot boundaries
• LetLet

• Ni be the number of packets in the buffer at the end 
of the ith slot

• Ai(Ni-1) denote the number of packets that arrive 
during the ith slot, assuming that there are Ni-1
packets at the end of (i-1)st slot in the system.

• Assume finite buffer
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Assume finite buffer 
• Packets arriving during (in) a slot can not be 

transmitted until the beginning of the next 
slot

Asynchronous Time-Division 
Multiplexing (ATDM) – Analysis – cont’d
• Suppose that the ith departing message leaves behind a nonempty 

system (i.e. Ni>0). 
• The state of the system is the end of next slot is given by

Ni+1 = Ni – 1 + Ai+1(Ni);     Ni >= 1

• If the system is empty at the beginning of a slot (i.e. Ni = 0), then 
Ni+1 is given by

Ni+1 = Ai+1(Ni);   Ni = 0;

• The above two equations can be combined to describe the system
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The above two equations can be combined to describe the system 
dynamics as

Ni+1 = Ni – U(Ni) + Ai+1(Ni); Ni = 0, 1, 2, …

where U(.) is 1 when the argument is greater than zero and zero 
otherwise.

Main result
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Asynchronous Time-Division 
Multiplexing (ATDM) – Finite Buffer
• Buffer can hold at most B packets 
• State transition matrix has B+1 rows and B+1 

columnscolumns
• Review the MUX problem in Section 2.7.2 

• Let an be prob [n arrivals in a slot]
• Therefore, the state transition matrix can be written 

as

0 1 2 1

0 1 2 1

B jj B

B jj B

a a a a a

a a a a a


 


 

 
 
 
 
 







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Asynchronous Time-Division 
Multiplexing (ATDM) – Finite Buffer –
cont’d
• Let Pi be the steady state probability that 

there are i packets in buffer at the beginning 
of a slotof a slot

• Pis are encapsulated in the raw vector P = 
(P0, P1, …, PB).

• From material in chapter 2, the vector P 
should satisfy 

P = P R
• The above system of equations can be solved,
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The above system of equations can be solved, 
together with the constraint that Σ Pi = 1, 
using the Matlab
Get_Steady_State_Distribution routine 
provided by instructor for MUX problems.
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Asynchronous Time-Division 
Multiplexing (ATDM) – Finite Buffer –
cont’d
• The previous system of equations can be solved also as 

follows
The linear system of equations can be written as• The linear system of equations can be written as

• We can solve for Pj+1 as

0 10

1
0

0 10

0
i

B i j i jj

i j ij B
j

j j kj B j k B j

P a P a i B
P P r

P a P a i B

 

  


   

     
 




  

1 01
1

0

; 0

i

i k i k ik
j

P P a P a
P i B

a
 



 
  
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where a0 > 0. If a0 <= 0, the system would be full all the 
time

• Assume P’0 = 1, use the above equation to compute P’1, P’2, 
…, P’B, then normalize P’i’s to obtain P0, P1, …, PB as 

0

0
; 0,1, ,

B

i i jj
P P P i B


    Main result

Asynchronous Time-Division 
Multiplexing (ATDM) – Finite Buffer –
Performance Figures
• Given the Pi’s one can compute several quantities of interest
• The expected number of packets in the buffer is given by

• The rate on the output line is (1-P0)/T packets per second. The 
rate of packet arrivals is given by Σ iai/T packets/sec. Therefore, 
the loss rate should be given by

• Using Little’s formula, the average delay of s packet in seconds is

0

B

p ii
N iP




 0 1
1 1 ii

L P ia



   
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Using Little s formula, the average delay of s packet in seconds is 
given by 

   0 00
1 1

B

P P ii
D TN P T iP P


   
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Asynchronous Time-Division 
Multiplexing (ATDM) – Finite Buffer –
Example

• Example 5.3 (textbook page 193):

• For Quiz5 – Generate Figures 5.4a and 5.4b. 
Due Monday Jan 11th – class time.

• In addition plot the average number of 
packets in the b ffer as a f nction of offered
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packets in the buffer as a function of offered 
load.

Asynchronous Time-Division 
Multiplexing (ATDM) – Infinite Buffer –
Analysis
• For the finite buffer case, the system dynamics were governed by 

Ni+1 = Ni – U(Ni) + Ai+1(Ni); Ni = 0, 1, 2, …

• The infinite buffer case can be used to approximate the case when the buffer is so large and 
the overflow probability is negligible

• If the steady state distribution exists, then

where            is the average number of arrivals per time slot. The dependence on the number 
of packets in the buffer is dropped since the buffer is of infinite size and not packets are lost. 

Th t U(Ni) i th i di t f ti f th t th t th b f k t

   1lim limi ii i
E N E N N 

 

   1 1lim limi i ii i
E A N E A A  

   
A 
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• The term U(Ni) is the indicator function of the event that the number of packets 
in the system is greater than 0. Therefore

and     00 1i iE U N P N P     

0 1P  
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Asynchronous Time-Division 
Multiplexing (ATDM) – Infinite Buffer –
Analysis – cont’d
• The goal is to obtain the PFG for number of packets in 

the buffer defined as
   N iP E P


• Using the equation:  Ni+1 = Ni – U(Ni) + Ai+1(Ni); Ni = 

0, 1, 2, … we can write

since the arrivals are independent of the content of 
the buffer

    0
iN i

i ii
P z E z Pz


 

           11 1
1

i i i i ii iN U N A N U NN A
iP z E z E z E z E z   
  
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• Now we can also write

• Combining the above two results we get 

        1
0

0 1

i iN U N k U k k
i i

k k

E z z P N k P z P N k
 

  

 

     
   1 1

0 0 0 0
0

k
i i

k

P z z P N k P P z P z P


 



 
          



      1
1 0 0 1i i iP z P z P z P A z
     

Asynchronous Time-Division 
Multiplexing (ATDM) – Infinite Buffer –
Analysis – cont’d
• If the Ni process is stationary, then

     1lim limi i
i i

P z P z P z  

• Therefore, the steady state distribution is given by 

• This PGF can used to find the moments of the 
distribution. 

     1i i
i i

 

     
 

0 1 ,

,

P z A z T
P z

A z T z




 Main result
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• The PFG can also be used to compute Pi’s through 
successive differentiations and setting z = 1.

• Be careful in regard to the notation –
• Pi is the ss probability that the buffer has i packets
• P(i) is the PGF evaluated at z = i;
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Asynchronous Time-Division 
Multiplexing (ATDM) – Infinite Buffer –
Performance Figures
• From the PGF we can write

• Differentiating yields

       0, 1 ,P z A z T z P z A z T    

               0 0, , 1 1 , 1 ,P z A z T z P z A z T P A z T P z A z T              

• Now if we set z to 1, we have                          ,                            , and
• The system is stable as long as  < 1

• Differentiating again results in

• Now setting z to 1, we have 

 1,A T TM      1, 1 1A T P  0 1 1P TM    

           
       0 0

, 2 , 1 ,

2 1 , 1 ,

P z A z T z P z A z T P z A z T

P A z T P z A z T

            
    

     1 1, 2 1PN P A T        Main result (1)
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• Since the buffer is infinite and there is no packet loss  average arrival rate is 

• Therefore, the average packet delay is given by

     ,P    

 1,A T A T T

   1, 2 1PD T TA T      

Main result (1)

Main result (2)

Asynchronous Time-Division 
Multiplexing (ATDM) – Infinite Buffer –
Example
• Example 5.4: Assume that traffic is generated by N sources. 

In a slot, each source , acting independently, generates a 
message with probability P The messages have twomessage with probability P. The messages have two 
possible lengths: one packet and four packets. The 
probability of one packet message is designated as Q. 

1. Write the PGF for the number of packet arrivals to the 
system in a slot

2. Write the PGF for the number of packets in the buffer
3. For P = 0.05, Q = 0.8, and N = 10, Compute the load, the 

mean number of packets in the buffer and the mean delay

1/5/2010 Dr. Ashraf S. Hasan Mahmoud 28

mean number of packets in the buffer, and the mean delay 
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Asynchronous Time-Division 
Multiplexing (ATDM) – Infinite Buffer –
Example – cont’d
• Solution:
 From the given info, M(z) = Qz+(1-Q)z4. AS(z) = Pz+(1-P), 

therefore A(z) = AS(M(z)) should be given by A(z) = [P(Qz+(1-therefore A(z) = AS(M(z)) should be given by A(z) = [P(Qz+(1
Q)z4) + 1-P]N.

from this expression  = A’(z=1) = NP(3Q+4), and P0 = 1- . Also 
A’’(z=1) = N(N-1)[P(3Q+4]^2+NP(12(1-Q))

 The PGF P(z) is equal to P0(1-z)A(z)/(A(z)-z) or (1-NP(3Q+4))(1-
z)/(1-z/[P(Qz+(1-Q)z4) + 1-P]N) 
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 The mean number packets in buffer is given by  = A’’(1)/(2*(1-
)) – Substitute in the above expressions …

 The mean packet delay in the system is given by T + TA’’(1)/(2* 
(1- )) – Assume T = 1, and substitute in the above expression 
…

Synchronous Time-Division 
Multiplexing (STDM)
• For STDM each source is allocated a specific capacity –

justified if the source is mostly active (high rate).
Flow on the line is blocked into fixed length frames• Flow on the line is blocked into fixed-length frames

• Since capacities allocated to sources are independent of one 
another, queueing for each source may be analyzed 
independently!!
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Synchronous Time-Division 
Multiplexing (STDM) - Analysis
• Assumptions

• Fixed length frame, TF – includes all slots, guard time, etc.
• A source may transmit UP TO b >= 1 slots during a frame 
• Gated service – as opposed to exhaustive. Packets arriving 

during the frame must wait until the next frame

• The equation for the embedded Markov chain for the 
number of packets in the buffer is given by

N = max(0 N -b) + A
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Ni+1 = max(0, Ni-b) + Ai+1

where Ni is the number of packets in the system at 
the beginning of the ith frame, Ai is the number of 
packets arriving during the ith frame

Synchronous Time-Division 
Multiplexing (STDM) – Analysis – cont’d
• The objective is to compute the PGF for the number packets in the system

           11 1max 0, max 0,
1

i i ii iN b A N bN A
iP z E z E z E z E z   
   

• After simple manipulation

• Assume the steady state solution exists and that Lim Pji = Pj, then

h A( TF) i th PGF f th b f i i k t d i f
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where A(z, TF) is the PGF for the number of arriving packets during a frame
• Therefore, the required PGF is given by

• There are b unknowns: P0, P1, …, Pb-1
• Note that if b = 1, the above PGF reduces the one on slide 26!!

 
   
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0
,

,

b b j
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b
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A z T P z z
P z
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






 Main result
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Synchronous Time-Division 
Multiplexing (STDM) - Analysis
• How to find the unknowns P0, P1, …, Pb-1?
• If it was only for P0 (i.e. b = 1), then the y ( ),

condition that P(1) (i.e. PGF evaluated at z = 1) 
must be 1 is sufficient to find the unknown P0.

• For the case of b > 1, we need extra b-1 
conditions or equations to find P1, P2, …, Pb-1.

• These equations can be obtained by applying 
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Rouche’s theorem.
• The provided solution restricts the arrival process to 

Poisson
• But the concept is applicable to any arrival process.

Synchronous Time-Division 
Multiplexing (STDM) – Rouche’s
Theorem
• Consider the properties of the PGF P(z), zb, and A(z, TF).
• P(z) is analytic within the unit disk |z| 1

  

• The arrival process is assumed to Poisson; then

• For stability, we require that average packet arrivals not exceed b. 

• Therefore, where     is the mean number of packets in a message.

 
0 0 0

1j j
j j j

j j j

P z z P z P P
  

     

     , exp 1F FA z T T M z  

 1F Fb T M T M  

M

1/5/2010 Dr. Ashraf S. Hasan Mahmoud 34

• Now consider the zeros, zi’s where |zi|<=1 for the denominator of 
P(z)

• The textbook shows that for all these zi’s the root MUST be simple

    1
, F iT M zb

i i Fz A z T e
  
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Synchronous Time-Division 
Multiplexing (STDM) – Rouche’s
Theorem – cont’d
• Let zb = f(z), -e-TF(1-M(z)) = g(z), region R |z|  1 + , where 

 > 0.
The objective is to show that for a closed contour C in R if• The objective is to show that for a closed contour C in R, if 
f(z) is not zero and |f(z)| > |g(z)|  then by the theorem 
f(z) and f(z) + g(z) have the same NUMBER of roots with in 
C.

• For small enough , f(z) and g(z) are analytic in R
• Define the contour C to be |z| = 1+ ’ where 0 < ’ < . 

Then using Tailor series expansions we can write

1/5/2010 Dr. Ashraf S. Hasan Mahmoud 35

• And

• Then |f(z)| > |g(z)| on C

1 1
bbz b     

       1 1 1 1 1 1F FT M z T M

F Fe e T M T M               

Synchronous Time-Division 
Multiplexing (STDM) – Rouche’s
Theorem – cont’d

• This means that the conditions for Rouche’s
theorem are satisfied. Since f(z)= zb has b ( )
(repeated) roots at z = 0, then f(z)+g(z) = zb

- e-TF(1-M(z)) must have b roots.
• The textbook shows that these b roots MUST 

be distinct (refer to page 199).
• Denote these roots by z0, z1, …, zb-1.
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Denote these roots by z0, z1, …, zb 1. 
• We know that z0 is equal to 1.

• These b roots provide the needed set of 
equations to compute P0, P1, …, Pb-1.
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Synchronous Time-Division 
Multiplexing (STDM) – Rouche’s
Theorem – cont’d

• The b equations are:
and  1

0
0; 1,2, , 1

b b j
j i ij

P z z i b



    

• These are sufficient to find P0, P1, …, Pb-1
• The textbook proves that a solution must exist

• The determinant of  can not be zero, and therefore the 
coefficient matrix is not singular

 0 jj
   1

0
1,

b

j Fj
P b j b A T




  
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coefficient matrix is not singular

• The textbook proposes a simple method for 
finding the roots of                 when the arrival 
process is Poisson (refer to equation 5.38)

 ,b
Fz A z T

Synchronous Time-Division 
Multiplexing (STDM) – Mean Number of 
Packets in the System

• Refer to equation 5.39
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Synchronous Time-Division 
Multiplexing (STDM) – Example

• Example 5.5

• The author uses Matlab’s function “root” to• The author uses Matlab s function root  to 
find the needed four roots z0, z1, z2, and z3.

• The rest is direct substitution in the formulas

• Result: P0 = 0.1037, P1 = 0.1778, P2 = 
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, ,
0.1926, and P3 = 0.1666. This completes the 
specification of P(z).


