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Time Reversed Processes
• Refer to Leon Garcia’s textbook section 8.5 for 

discussion of Time-Reversed Markov Chains

• Consider a continuous-time process X(t)

• Define the following process Xr(t) = X(T-t), for an 
arbitrary T. For simplicity we set T to 0
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• Xr(t) is the reverse process for X(t)
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Time Reversed Processes –
cont’d
• Time reversibility – a process is time reversible if 

the following is true
      

• We say the process reversed in time has the same 
probabilistic properties as the forward process
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Time Reversed Processes –
Observations
• For a process to be reversible, it is not 

enough for the marginal probabilities for 
the forward and reverse processes to be 
equal.

1

X(t)

• Example: consider the process X(t) 
depicted in figure. X(t) goes 
clockwise through states i(i+1) 
mod 8. The probability of X(t) being 
in any of the state is 1/8. The same 
i f h hi h
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37is true for the reverse process which 
travels counter clockwise. However, 
the process is clearly not reversible 
since state 2 can not follow state 1 
in the reverse process, for example.
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Reversibility and Birth and Death 
Processes
• Review:

  

• Local balance equation: Pn λn = Pn+1 μn –
where P is the probability of being in
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where Pn is the probability of being in 
state n

Reversibility and Birth and Death 
Processes – cont’d
• State = population equal to n

• Time spends in state is exponentially distributed with 
mean 1/(λ +μ )mean 1/(λn+μn)

• Probability of decrease (i.e. jumping to state n-1) = 
Probability of an departure occurring before an 
arrival

• Probability of increase (i.e. jumping to state n+1) = 
Probability of an arrival occurring before an 
departure

 Increase
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• Show that: 
• Prob[Increase] = λn/(λn+μn)
• Prob[Decrease] = μn/(λn+μn)

n

n- Increase

n- decrease
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Reversibility and Birth and Death 
Processes – cont’d
• A birth-death process is reversible if and 

only if the local balance equations holdy q

• Proof: Refer to textbook – section 4.2.2
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Reversibility and Birth and Death 
Processes – Proof Part 1
• Reversible birth-death process  Local balance equations hold

• Proof: Assume X(t) is a reversible BD process 

P(X(t)=j, X(t+δ) = k) = P(X(t)=k, X(t+δ) = j)

Let Pj = P(X(t)=j) and Pk = P(X(t)=k), for δ 0, we can assume k = j + 1 (i.e. one 
transition is possible), we can write:

Pj P(X(t+δ) = j+1 / X(t) = j) = Pj+1 P(X(t+δ) = j / X(t) = j+1)

recognizing that, 

P(X(t+δ) = j+1/X(t)=j)
lim ----------------------------- = λj
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j
δ 0

P(X(t+δ) = j/X(t)=j+1)
lim ----------------------------- = μj+1
δ 0

Therefore, Pj λj = Pj+1 μj+1
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Reversibility and Birth and Death 
Processes – Proof Part 2
• Local balance equations hold  Reversible birth-death process 

• Proof:
Consider the sample path depicted of a birth death process theConsider the sample path depicted of a birth-death process, the 

probability of the process taking this “exact path” is given by the following 
expression:
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t1

Note: 
- Pj is the probability of starting from
state j

- The term (λj+μj)exp[-(λj+μj)t1]dt1 is
probability density of the first
interval

- exp[-(λj+2+μj+2)t7] is the probability 
that the process remains in state j+2 
for at least t7

Reversibility and Birth and Death 
Processes – Proof Part 2 cont’d
• The previous expression is simplified to be

   1 1 1 2j j j jt t
P dt dt

         

• Using the local balance equation (Pj λj = 
Pj+1 μj , we can write:
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Reversibility and Birth and Death 
Processes – Proof Part 2 cont’d
• Substitute the above equation in the 

former path evolution probability formula, 
we obtain

• Which is the probability of the process 
i i h j 2 d ki h
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starting with state j+2 and taking the 
same sample path in reverse 

•  Process is reversible

Burke’s Theorem 
• Consider an M/M/1 or M/M/S or M/M/∞ 

queueing system at steady state with q g y y
arrival rate λ, then

• The departure process is Poisson with rate λ
• At each time t, the number of customers in 

the system N(t) is independent of the 
sequence of departure times prior to t.
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λ
μ

M/M/1 example λ
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Burke’s Theorem – cont’d
• Theorem: The departure process from an M/M/S 

queue is Poisson and is independent of the 
content of the queue

• Proof: Refer to textbook pages 118 and 119.
• Part 1: The departure process from an M/M/S queue is a 

Poison
• Part 2: The number of messages in a system at time t is 

independent of the sequence of departures prior to t.
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FeedForward Networks
• Consider the system depicted in figure where two 

are in tandem.
• How would the following system be analyzed?

• Assume infinite storage and a single server with 
exponential service time for each queue
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λ
μ1 μ2

queue 1 queue 2
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Two Queues in Tandem
• Approach 1 – using global 

balance equations
• We can use the state

μ2 μ2

λ

μ1 μ2

λ

μ1 μ2

λ

μ1

3

• We can use the state 
diagram to solve this 
problem:

• State = (n1, n2) where 
ni is the number of 
customers in ith queue 

• Refer to Garcia’s textbook 
section 9.8 for solution of 
this two dimensional state 
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diagram
0 1 2 3

n1

• We can show
P(N1 = n1, N2 = n2) = (1-ρ1) ρ1

n1(1-ρ2) ρ2
n2

Where ρ1= λ1/μ1 and ρ2= λ2/μ2

Two Queues in Tandem – cont’d
• Since for a single queue, 

P(N1 = n1) = (1-ρ1) ρ1
n1

Then it is clear that

P(N1 = n1, N2 = n2) = P(N1 = n1)P(N2 = n2)
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• Therefore, the number of customers at queue 1 
and the number of customers at queue 2 are 
independent random variables!!
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Two Queues in Tandem – cont’d
• Approach 2: using Burke’s Theorem:
• Since the second queue does not affect the first 

queue, thequeue, the 
P(N1 = n1) = (1-ρ1) ρ1

n1

where ρ1 = λ/μ1.
• For the second queue – apply Burke’s theorem: the 

departure process of the first queue is a Poisson 
process. Therefore, by 

P(N2 = n2) = (1-ρ2) ρ2
n2

where ρ2 = λ/μ2.
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ρ2 μ2
• The joint pmf is given by P(N1 = n1, N2 = n2) can be 

computed using the 2nd part of Burke’s theorem, 
therefore,

P(N1 = n1, N2 = n2) = P(N1 = n1) P(N2 = n2) 
= (1-ρ1) ρ1

n1 (1-ρ2) ρ2
n2

Feedforward Networks – Example 1
• An application of Burk’s theorem
• Example 1: M queues in tandem• Example 1: M queues in tandem

• Direct extension to the two queues in 
tandem case

        
M

kiktQktQktQP 1
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Feedforward Networks – Example 2
• Example2: feedforward acyclic networks 

(i.e. no feedback paths)( p )

λ1

λ2

λ

λ4 1.0

0.8

0.2

0.6

0.25
0.75
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λ3 0.4

• Since joining and splitting of Poisson streams results in Poisson 
streams – Burks’ theorem still applicable

• Solution key: deal with the individual queues after determining the 
total flow to the queue

Traffic Equation and Routing Matrix
• Consider a network of N queues, each 

having an independent exponential server g p p
and an infinite buffer

• External arrivals at each node – Poisson 
with rate λi

• Messages are routed probabilistically:
• qji: i,j = 1, 2, 3, …, N is the probability of a
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qji: i,j  1, 2, 3, …, N is the probability of a 
message being routed from node j to node i

• qjN+1: is the probability of a message being 
routed outside the network

• Note: 
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Traffic Equation and Routing Matrix 
– cont’d
• Let Λi: total flow into the ith node 
• Clearly one can write• Clearly, one can write

• The matrix version is 
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or
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Note:
qjj = 0 – no routing to
same source node

Traffic Equation and Routing Matrix 
– cont’d
• Normally the inputs and the routing matrix 

are known, the total flow to each node can ,
be found using

where I is the NxN identity matrix

  1 QI

12/26/2009 Dr. Ashraf S. Hasan Mahmoud 22

where I is the NxN identity matrix
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Example:
• Problem: Consider the network of queue 

depicted in figure. If the arrival rates are p g
given by λ = [2.0, 1.0, 0.5, 3.0], and the 
service rates are μ = [4.0, 6.0, 11.0, 9.9], 

• a) compute the total flow into each node
• b) Find the joint pmf for number of 

customers in queues
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Example:
• Solution:
a)   The routing matrix for the network is given by
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Therefore, total flows are given by
Λ = [2.0, 1.5, 2.0, 4.5]

b)   The loads for the queues are given by
R = Λ./μ (./ is the element-by-element division –

Matlab notation)
= [1/2 1/4 2/11 5/11]
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= [1/2 , 1/4, 2/11, 5/11]
The joint pmf for the number of customers is given by
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Open Network – Flows within 
Feedback Paths
• Open networks – at least one external 

source of arrivals  there must be a flow 
to outside network (exit path)

• i.e. sum qki < 1 for at least one k = 1, 2, …, N
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Example: M/M/1 queue with 
Feedback
• Problem: Consider the following system – Find the pmf for number 

of customers in the system.

S l ti• Solution:
Λ = λ + p Λ Λ = λ/(1-p)
Therefore, traffic load, R is given by
R = Λ/μ = λ/[μ(1-p)]
Prob(N = k) = (1-R)Rk k=0, 1, 2, …

Note R < 1  λ/[μ(1-p)] < 1 or λ < μ(1-p) – this imposes a limit on 
the maximum arrival rate

μ

p

1-p
λ

What is the average number of 
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E[N] = R/(1-R)
E[T]  = E[N] / λ - direct application of Little’s formula

For a general solution of an M/G/1 with Bernoulli feedback check: 
L. Takács, “A Single-Server Queue with Feedback,” Bell Technical 
Journal, March 1963, pp. 505-519.

g
customer visits to the queue?
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Exercise – Using OPNET
• Use example 9.23 of Leon Garcia’s textbook to do the 

following:
• (a) Using the theoretical analysis supplied in the solved(a) Using the theoretical analysis supplied in the solved 

example in the textbook:
• Plot the average total number of customers in network 

versus the external arrival rate
• Plot the average end-to-end delay of a customer versus the 

external arrival rate
• (b) Develop an opnet simulation model and produce 

simulation results and compare them against those 
obtained in part (a)

• Produce comparative curves similar to those found on slide
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Produce comparative curves similar to those found on slide 
39.

• For part (a) and (b) use p = 0.9 and p = 0.6 (note p is the 
probability of exiting the network from queue 1)

Feedback Violates the Poisson 
Departure process
• Let us examine the following system*

μ

p

μ

queue 0 queue 1

• Solution: The analytic solution for the depicted system is as follows:
Λ = λ + p Λ Λ = λ/(1-p)
Therefore, traffic load, R is given by
R0 = R1 =  R = Λ/μ = λ/[μ(1-p)]
Prob(N0 = k) = Prob(N1 = k) = (1-R)Rk k=0, 1, 2, …

Note R < 1  λ/[μ(1-p)] < 1 or λ < μ(1-p)
E[N0] = E[N1] = R/(1-R) = λ/[μ(1-p) - λ]

μ

1-p
λ

μ
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E[N0]  E[N1]  R/(1 R)  λ/[μ(1 p) λ]
E[N] = E[N0] + E[N1] = 2R/(1-R) = 2λ/[μ(1-p) - λ]
End-to-end delay for a customer is computed as 
E[T]  = E[N] / λ = 2/[μ(1-p) - λ]

*I can show the same behavior using the single-server queue system considered in the last example – but I am using the 
system proposed the textbook to give another example on opnet modeling
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Feedback Violates the Poisson 
Departure process – cont’d
• To depict the violation of the Poisson arrival/departure 

process 
• Assume a very low external arrival rate λ – say 1 packetAssume a very low external arrival rate λ say 1 packet 

every 2 hours – i.e. mean interarrival time of 7200 seconds
• Assume a very small mean service time 1/μ – say 10-9 second
• Let p = 0.999

• This setting translates the following:
• One customer arrives – the next arrival is 1000s of seconds 

away on average
• The customer is TRAPPED in the system circulating (since p 
≈ 1
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 1
• So if we monitor the customer departures of queue 0 or 1 

(prior to the feedback branching) – we expect to see 
departure bursts 

External arrival

Queue 1 departure

time

Proof Of the Product Form: Two-
Node Network
• Consider the two queues network depicted in figure
• The total flow equations are given by

• System state: (k0, k1) where k0 is number of customers in 
queue 0 while k1 is number of customers in queue 1

• Define P(Q0(t)=k0, Q1(t)=k1) = P(k0, k1; t) – as the 
probability of ki customers in the respective queue at time
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probability of ki customers in the respective queue at time 
t.

0
q10

1

q01

1-q01 1-q10

λ1λ0
μ0λ0 μ1

λ1

q12

q10

q01

q02
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Proof Of the Product Form: Two-
Node Network – cont’d
• The Kolmogorov differential equation for P(k0, k1; t):

P(k0, k1; t+δ) = P(k0-1, k1; t)λ0δ+ P(k0, k1-1; t)λ1δ
+ P(k0+1, k1; t)μ0(1-q01)δ
+ P(k k +1; t)μ (1-q )δ+ P(k0, k1+1; t)μ1(1-q10)δ
+ P(k0+1, k1-1; t)μ0q01δ
+ P(k0-1, k1+1; t)μ1q10δ
+ P(k0, k1; t)(1- (λ0+λ1+μ0+μ1))δ

• The terms on the RHS:
• First two terms – arrivals to either queues
• Second pair – departures from system
• Third pair – transfers between queues
• Final term – no arrivals, departures, or transfers

• The Kolmogorov D.E is given by

dP(k0, k1; t)/dt = P(k0-1, k1; t)λ0 + P(k0, k1-1; t)λ1
+ P(k0+1, k1; t)μ0(1-q01)
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+ P(k0+1, k1; t)μ0(1 q01) 
+ P(k0, k1+1; t)μ1(1-q10) 
+ P(k0+1, k1-1; t)μ0q01
+ P(k0-1, k1+1; t)μ1q10
- P(k0, k1; t)(λ0+λ1+μ0+μ1)

• At steady state dP(k0, k1; t)/dt = 0

Proof Of the Product Form: Two-
Node Network – cont’d
• The steady state probabilities are then given by:

P(k0, k1)(λ0+λ1+μ0+μ1) = P(k0-1, k1)λ0 + P(k0, k1-1)λ1
+ P(k +1 k )μ (1 q )+ P(k0+1, k1)μ0(1-q01) 
+ P(k0, k1+1)μ1(1-q10) 
+ P(k0+1, k1-1)μ0q01
+ P(k0-1, k1+1)μ1q10  k0,k1 ≥ 0

• Note that the set of equilibrium equations stated 
above together with the normalizing condition             
can be solved to obtain the complete pmf –
h ill h h l d f

  1,
10 ,

10 
 kk

kkP
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however, as we will show, the closed form 
solution  turns out to be simple

• The state transition flow diagram is shown on the 
next slide
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Proof Of the Product Form: Two-Node 
Network – State Transition Flow Diagram

k0,k1+1 k0,+1,k1+1k0,-1,k1+1

k0,k1 k0+1,k1k0-1,k1

λ0

μ0(1-q01)μ0(1-q01)

λ0

0, 1

λ1

μ 1
(1

-q
10

)

0, , 10, , 1

?
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k0,k1-1

λ1

μ 1
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10
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k0,-1,k1-1 k0,+1,k1-1

?

Proof Of the Product Form: Two-Node 
Network – State Transition Flow Diagram 
– more detailed
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Proof Of the Product Form: Two-Node 
Network – Rewriting the equations In 
Terms of Total Flow
• Rewriting the pervious equations in terms of the total flows Λ0

and Λ1 results in:

P(k0, k1)(Λ0+Λ1+μ0+μ1) 
+ P(k0-1, k1)q10Λ1 + P(k0, k1-1) q01Λ0
+ P(k0+1, k1)μ0q01+ P(k0, k1+1)μ1q10

= P(k0+1, k1)μ0+ P(k0, k1+1)μ1
+ P(k0-1, k1) Λ0+ P(k0, k1-1) Λ1
+ P(k0+1, k1-1)μ0q01+ P(k0-1, k1+1)μ1q10
+ P(k0, k1)(q01Λ0+q10Λ1)     k0,k1 ≥ 0

• Solving the above equations, yields
P(k0, k1)Λ0 = P(k0+1, k1)μ0
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P(k0, k1+1)μ1 = P(k0, k1)Λ1

• These can be written as 
P(k0+1, k1) = ρ0 P(k0, k1)
P(k0, k1+1) = ρ1 P(k0, k1)

where ρi is given by Λi/μi

Proof Of the Product Form: Two-Node 
Network – Final Solution

• Therefore, solving iteratively and using 
the normalizing condition, one can writeg ,

P(k0,k1) = (1-ρ0)(1-ρ1) ρ0
k0 ρ1

k1

k0,k1 = 0, 1, …

i h d f li
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i.e. the product form applies.
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Example: Two-Node Network

• Problem: Let λ = [2.0, 1.0], and the 
service rates are μ = [15.625, 3.75] – Let 
the routing parameters q01 = 0.4 and q10 
= 0.5. 

• A) compute the total flow into each queue
• B) Compute the traffic utilization of each 

queue – write an expression for the joint pmf 
of number of customers in the network
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• C) Compute the average number of messages 
in node 0 and the average number of 
messages in node 1

• D) Calculate the average end-to-end delay for 
a customer 

Example: Two-Node Network – cont’d
• Solution:
A) The total flow is found by solving the following set of equations:

[Λ0 Λ1] = [λ0 λ1 ] + [Λ0 Λ1] [0     q01]
[q10 0    ]

Therefore, [Λ0 Λ1] = [3.125 2.25]
B) Traffic Utilization: R = Λ./μ

= [0.2 0.6]
P(k0, k1) = 0.32(0.2)k0(0.6)k1 for k0, k1 = 0, 1, …

C) E[N0] = R0/(1 – R0) = 0.25 
E[N1] = R1/(1 – R1) = 1.5 
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Note that E[N] = E[N0] + E[N1] 
= 1.75

D) E[T] = E[N]/(λ0+λ1) = 0.583 seconds
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N-Node Open Jackson Networks –
Problem Specification
• Consider an N-Node open network that is 

characterized by
• Probabilistic routing matrix Q = {qij}
• Set of external flows λi; i=1, 2, …, N - Poisson 

processes
• Infinite storage at each node

• Assume Si servers at each node i – each 
having exponentially distributed service
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having exponentially distributed service 
time

• Departure rate from state ki (i.e. ki customers 
in node i) is equal to 
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N-Node Open Jackson Networks –
Problem Specification
• The total flow to the ith node is computed 

using: Ng

• The queue at node i is stable if  Λi < μiSi ; 
i=1,2, …, N

1

N

i i ji j
j

q
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N-Node Open Jackson Networks –
Global Balance Equations
• Along the same lines we followed for the 

two-node system, the global balance y , g
equations are given by
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Flow out of state

Due to an arrival

Due to a departure to 
outside the network
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Flow out of state
(k1,k2, …, kN)

Flow into of state
(k1,k2, …, kN)

Due to a departure 
from node i to node j

N-Node Open Jackson Networks –
Global Balance Equations – cont’d
• We use the following substitutions in the 

previous global balance equation:p g q

1

1,2, ,
N

i i i ji
j

q i N
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1j
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N-Node Open Jackson Networks –
Global Balance Equations – cont’d
• Rewriting the global balance equation:
      

N

NN kdkkkkPkkkP 2121 1      
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N-Node Open Jackson Networks –
Joint Probability Mass Function
• The global balance equation is satisfied if

     NiiNiii kkkkPkkkkPkd ,,,,,,,1,,,1 2121  

or 

where Ri = Λi / μi

• The solution to the above equation is given by
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where G-1 is the normalization constant 
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N-Node Open Jackson Networks – Joint 
Probability Mass Function – Single 
Server Nodes

• Assume single server nodes – i.e. Si = 1  i
= 1, 2, …, N, , ,

• Therefore,
• The joint PMF is given by 

• Hence, the normalization constant is given 
by

  Njjd ,,2,1;1 

N
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by

• Rewriting the PMF results in
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N-Node Open Jackson Networks – Joint 
Probability Mass Function – Infinite 
Server Nodes

• Assume infinite server nodes – i.e. Si = ∞ 
 i = 1, 2, …, N

• Therefore,
and 

• The joint PMF is given by 

• Hence, the normalization constant is given 
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, g
by

• Rewriting the joint PMF results in
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N-Node Open Jackson Networks –
Performance Calculations
• The marginal probability of node i having 

ki messages is given by

• If the nodes in the system have limited 
buffer size M, then probability of buffer 
overflow may be approximated by

h d i f l b f

    NiRRkQP ii k
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iii ,,2,1;1 

    NiRRRMQP M
i

Mk

k
i

k
ii

i

ii ,,2,1;1  




12/26/2009 Dr. Ashraf S. Hasan Mahmoud 47

• The mean and variance of total number of 
customers in N nodes is given by
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- Prove these two equations?
- For large number of nodes, one may invoke 
the central-limit theorem to approximate the
distribution of the total number of customers 
in the system by a Gaussian distribution

Example: N-Node Open Jackson 
Networks
• Problem: Consider the network of queues 

depicted in figure. Assume λ = [2.0, 1.0, p g [ , ,
0.5, 0.3] and μ = [0.1, 0.07, 0.03, 0.075]

3λ3

a) Find the routing matrix
b) Calculate the total traffic flow 

vector, and the resulting loads at 
each queue node

c) Approximate the probability mass 
function of the total number of 

t i th t i th
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1 2

4

λ1

λ2

λ4

0.5

0.3

0.6

0.4

0.2 0.4

0.6

customers in the system using the 
Gaussian distribution

d) Find the exact probability mass 
function of the total number of 
customers and compare it to the 
one obtained in part (c).
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Example: N-Node Open Jackson 
Networks – cont’d
• Solution: 
a) The routing matrix, Q, is given by














6.0000

3.05.002.0

000.10

Q

b) Therefore the total traffic flow is given by
and the loads are

c) The mean total messages in system is given by
while the variance is given





 0004.0

   4.0714    3.3929    5.7857    4.78571  QI

 0.3054    0.1018    0.4050    0.4786R
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while the variance is given

or the standard deviation is 

  2.1514
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Example: N-Node Open Jackson 
Networks – cont’d
• Solution-cont’d: 
c) Assuming the total number of customersc) Assuming the total number of customers 

can be approximated by a Gaussian 
distribution, then 
where m and σ quantities are computed 
earlier.
Then CDF of total number of customers

     22 2/

2

1 


mxexf 
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Then CDF of total number of customers 
can be computed using   
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Refer to the Gaussian distribution material
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Example: N-Node Open Jackson 
Networks – cont’d
• Solution-cont’d: 
d) To calculate the exact distribution we need to 

evaluation the followingevaluation the following

to obtain the PMF function.

Subsequently, the CDF is given by
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A Matlab code is used to find all the (k1, k2, k3, 
k4) that add to a particular j and then the kis are 
substituted in the above expression to calculate 
the PMF.

Example: N-Node Open Jackson 
Networks – cont’d
• Solution-cont’d: 
d) The probability density/mass functions for the total number of customers 

in system are shown in figure (I)
The cumulative probability functions for the total number of customers inThe cumulative probability functions for the total number of customers in 

system are shown in figure (II)
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Example: N-Node Open Jackson 
Networks – cont’d (Matlab Code)
• Main Code: Example4_3_1.m
0001 %
0002 % example 4.3 of Hayes
0003 clear all
0004 LineWidth = 2;
0005 Lambda = [2.0, 1.0,  0.5,  0.3];
0006 M      = 1./[0.1, 0.07, 0.03, 0.075];
0007 Q = [0 1.0 0 0 ; ...

• GetExactDistribution function
0001 function P = GetExactDistribution(R, N);
0002 %
0003 % example 4.3 of Hayes 
0004 % computation of exact pmf for total 
0005 % number of customers, N
0006 % R is a vector of loads
00070007 Q  [0    1.0  0    0  ; ...

0008      0.2  0    0.5  0.3; ...
0009      0    0    0    0.6; ...
0010      0.4  0    0    0];
0011 
0012 Omega = Lambda * inv(eye(4) - Q);
0013 R     = Omega ./ M;
0014 
0015 MeanTotal = 0;
0016 VarTotal  = 0;
0017 for i=1:4
0018     MeanTotal = MeanTotal + R(i)/(1-R(i));
0019     VarTotal  = VarTotal  + R(i)/(1-R(i))^2;
0020 end
0021 Nmax = 15; % max range for probability functions
0022 %
0023 % compute the Gaussian 
0024 nG  = 0:0.1:Nmax;
0025 f1  = 1/sqrt(2*pi*VarTotal)*exp(-(nG-

MeanTotal).^2/(2*VarTotal));
0026 F1  = 0.5 + 0.5*erf((nG-MeanTotal)/(sqrt(2*VarTotal)));
0027 %
0028 % Compute the exact

0007 
0008 P = zeros(1,N+1);
0009 for i=0:N;
0010     [AllKs, m] = GetAllKs( i );
0011     for j=1:m
0012         P(i+1) = P(i+1) + 

ComputeFromJoint(AllKs(j,:), R);
0013     end
0014 end

• GetAllKs function
0001 function [AllKs, m] = GetAllKs( N );
0002 %
0003 % function returns all possible 4 numbers that add 

to N
0004 m     = 0;
0005 AllKs = [];
0006 for i1=0:N
0007     for i2=0:N
0008         for i3=0:N
0009 for i4=0:N
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p
0029 f2  = GetExactDistribution(R, Nmax);
0030 F2 = cumsum(f2);
0031 [nE, FF2] = stairs(0:15, F2);
0032 %
0033 % plot results
0034 figure(1);
0035 h = plot(nG, f1, '-', 0:Nmax, f2,'or');
0036 set(h, 'LineWidth', LineWidth);
0037 ylabel('probability density/mass function');
0038 xlabel('total number of customers');
0039 legend('Gaussian approx', 'Exact');
0040 grid
0041 
0042 figure(2);
0043 h = plot(nG, F1, '-', nE, FF2,'--r');
0044 set(h, 'LineWidth', LineWidth);
0045 ylabel('cumulative distribution function');
0046 xlabel('total number of customers');
0047 legend('Gaussian approx', 'Exact');
0048 grid

0009             for i4 0:N
0010                 if (N == (i1+i2+i3+i4)) % found one
0011                     % check if it is not aready 

included
0012                     %[i1 i2 i3 i4]
0013                     if (NotIncludedYet([i1 i2 i3 

i4], AllKs, m))
0014                        %
0015                        % include it
0016                        m = m + 1;
0017                        AllKs(m,:) = [i1 i2 i3 i4];
0018                    end
0019                end
0020            end
0021        end
0022    end
0023 end

Example: N-Node Open Jackson 
Networks – cont’d (Matlab Code)
• ComputeFromJoint fuction
0001 function P = ComputeFromJoint(Vector, R);
0002 %
0003 % use the product form to evaluate
0004 P = 1;
0005 for i=1:length(R)0005 for i=1:length(R)
0006     P = P*(1-R(i))*(R(i)^Vector(i));
0007 end 

• NotIncludedYet function
0001 function Flag = NotIncludedYet(Vector, AllKs, m)
0002 %
0003 % check if Vector is already included in AllKs
0004 Flag = 1;
0005 if (m)
0006     for i=1:m
0007         if (sum(Vector == AllKs(i,:)) == 4) 
0008             % i.e. vector found
0009             Flag = 0;
0010             break;
0011         end
0012     end
0013 end
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Average Message Delay 
• In an open network of N nodes, we have shown 

that the mean number of customers in network 
is given by N Ris given by

• Therefore, using Little’s formula we have
where E[T] is the mean delay for a customer

• We can also apply Little’s formula on the 
individual nodes as in
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where E[Ti] is the mean delay of a customer 
originating at node i

• However, obtaining E[Ti] is not straight 
forward!!

 i
i

i
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Average Message Delay –
cont’d 
• Assume Λi is the total flow into node i and Di is 

the customer delay at node i – then another 
Napplication of Little’s formula results in

• Combining the previous results, we obtain

Therefore the final result is given by
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Remember 
ΛiE[Di] = Ri/(1-Ri)
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• Therefore, the final result is given by

which is the results used in previous examples 
to compute the mean end-to-end delay
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Store-and-Forward Message 
Switched Networks 
• Consider the 3-node store-and-

forward network depicted in figure
• The focus is on the queueing delay 

in the output buffersin the output buffers
• Arrival of messages to output 

buffers is rapid and can be 
modeled by Poisson arrivals

• Prob of more than one arrival in 
an infinitesimal time period ≈ 0

• Accumulation of traffic from 
multiple lines

• Independence!!
• Is message service time 

i d d t f th i l

CP

Node B
input buffer

output buffer
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independent of the arrival 
process?

• Independent Assumption: the 
service time of a message is 
chosen independently at each 
node

• Many sources feed into one 
queue – valid approximation

CP

Node A

CP

Node C

Store-and-Forward Message Switched 
Networks – Delay Optimization 

• Objective: Determine link capacities (bit/sec) so 
that mean end-to-delay for network is minimum

• Assumptions and notations:
• Packet size = B bits
• ith link/node/server capacity = Ci bit/sec  mean 

service time is equal to

• Previously, we have derived the mean delay to 
be 

    ii CBEME 
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Note that Ri = Λi/μi = ΛiE[Mi]=ΛiE[B]/Ci – α = Σλi
(i.e. sum of external arrivals) – Ii = ΛiE[Bi]
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Store-and-Forward Message Switched 
Networks – Delay Optimization – cont’d

• One can refine the mean delay formula 
by including the link propagation time, Piy g p p g , i
– The resulting formula is 
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Store-and-Forward Message Switched 
Networks – Delay Optimization – cont’d

• Let us define the following performance 
figure kk 1

 
g

• Special cases:
• For k=1  mean delay
• For k=2  standard deviation of delay 

(assuming the delays are independent)
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Store-and-Forward Message Switched 
Networks – Delay Optimization – cont’d

• Special cases (cont’d):
• For k=∞ (refer to reference below)

1 k

where k* is the value of i for which Ii/(Ci-Ii) is maximum 
over i=1,2,…,N

• Two applications:
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• Given Ii; i=1,2, …, N determine Cis such that mean 
delay is minimum – This will be tackled later

• Given Ci; i=1,2, …, N determine the routing scheme 
(i.e. Iis) such that mean delay is minimum

Meister, B.; Muller, H.; Rudin, H., Jr.; “New Optimization Criteria for Message-Switching Networks,”
IEEE Transactions on Communications, Volume: 19 , Issue: 3 , Jun 1971, Pages:256 - 26

Example: Store-and-Forward Message 
Switched Networks

• Problem: Example 4.5 in textbook is 
missing information (average packet size g ( g p
for example – refer to Errata sheet)

• Network topology is a bit challenging
• Given table is packet routing table and 

NOT our Q (probabilistic routing matrix)!!
• Mere numerical substitution once the
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• Mere numerical substitution once the 
missing information is given
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Capacity Allocation
• Consider the following optimization problem that occurs 

in store-and-forward networks (switches for example)
• The switch hardware/software allocate capacities for the• The switch hardware/software allocate capacities for the 

individual output links such that the sum does exceed the 
total available capacity

• How would the capacities be allocated?
• How about minimizing the average delay?

output
buffers

I1
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ATM
Switch

Common
Channel

ATM Multiplexing

in
pu

ts

I1

IL

I2
I3

Capacity Allocation – cont’d
• We have shown the average delay to be

  
L
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assuming we have L links. We require the sum of 
the individual capacities be less than some 
upper bound C, i.e.
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• You can show that the individual Cls should be 
give by
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Capacity Allocation – cont’d
• Note the allocated capacity is the 

minimum required (Il) plus a fraction of q ( l) p
the remaining capacity (C-ΣIl)

• The minimum average is equal to
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Example: Capacity Allocation
• Problem: Assume 10 OC-1 (51.84 Mb/s) 

inputs are multiplexed on an output link p p p
who is total capacity is OC-12 (622.08 
Mb/s) – If the volume of the input lines is 
chosen at random, determine the optimal 
allocation for each case and the average 
and standard deviation of the overall 
d l
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delay.

For a nice table of the OC hierarchy please refer to 
http://www.linktionary.com/o/oc.html
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Example: Capacity Allocation –
cont’d
• Solution: It can be seen that if 

the optimum capacity allocation 
is always used, the mean delay 
is 1.07e-5 while the standard

1.8

2
x 10

-5 minimum delay allocation

Mean = 1.0708e-005 - Std = 1.8962e-006

is 1.07e 5 while the standard 
deviation is 1.9e-6

0001 clear all
0002 OC1  = 51.84e6;
0003 OC12 = 622.08e6;
0004 L    = 10; % L inputs
0005 N    = 100;
0006 for i=1:N
0007     Is   = OC1 * rand(1,L);
0008     RemC = OC12 - sum(Is);
0009     Cs   = Is + RemC * sqrt(Is)./sum(sqrt(Is));
0010     Alpha = sum(Is)/(53*8);
0011     T(i) = sum(sqrt(Is))^2/RemC/Alpha;

0 10 20 30 40 50 60 70 80 90 100
0.6

0.8

1

1.2

1.4

1.6

de
la

y
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0012 end
0013 for i=1:N % compute mean
0014     TM(i) = mean(T(1:i));
0015 end
0016 
0017 figure(1);
0018 h = plot(1:N, T, '-', 1:N, TM,'--r');
0019 title('minimum delay allocation');
0020 xlabel('combination');
0021 ylabel('delay');
0022 legend(['Mean = ' num2str(mean(T)) ' - Std = '

num2str(std(T))]);
0023 grid

0 10 20 30 40 50 60 70 80 90 100
combination

What are the units of the delay in the above curve?

Closed Jackson Networks
• Closed: fixed number of messages 

circulate within the network with neither 
arrivals to nor departures from the 
network

• Classic application – computer system
• Over a short period it can be assumed that 

tasks/processes/customers neither enter 
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nor leave the system
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Closed Jackson Networks –
Traffic Equation
• Since there are no external arrivals, the traffic 

equation reduces to
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Note that Λ is the transpose of the eigenvector for 
the matrix QT corresponding to the eigenvalue 
1!!

For a nice and very breif introduction to eigenvalues and eigenvectors please refer to 
http://www.sosmath.com/matrix/eigen0/eigen0.html or
http://maths.ucd.ie/courses/math1200/algebra/algebranotes7-1.pdf
In Matlab do “help eig” to get help regarding eigenvalues/vectors calculations

Q 

Example: Traffic Equation for 
Closed Networks
• Problem: For the closed network shown 

in figure,g ,
a) Find the routing matrix, Q?
b) Compute the total flows into each node?

3

0.1
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0.70.6
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Example: Traffic Equation for 
Closed Networks
• Solution: 
A) The routing matrix Q:A) The routing matrix, Q:

3

0 2

0.1





















06.004.0

7.002.01.0

3.05.002.0

000.10

Q
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1 2

4

0.5

0.3

0.4

0.2

0.70.6

Example: Traffic Equation for 
Closed Networks
• Solution: 
B) The 

>> [Vectors, Values] = eig(Q');

>> Vectors

Vectors =)
eigenvectos/values 
are calculated as 
shown

Hence, the relative flows 
are 

Λ = [1.0 1.31 1.53 1.46]

0.3728             0.0490 - 0.2601i   0.0490 + 0.2601i  -0.2709          

0.4870            -0.7672            -0.7672             0.5362          

0.5710             0.2160 + 0.1956i   0.2160 - 0.1956i  -0.6822          

0.5458             0.5022 + 0.0645i   0.5022 - 0.0645i   0.4169          

>> Values

Values =

1.0000                  0                  0                  0          

0            -0.1202 + 0.2880i        0                  0          

0                  0            -0.1202 - 0.2880i        0          

0                  0                  0            -0.7596          

>> Vectors(:,1)./Vectors(1,1)
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Λ  [1.0 1.31 1.53 1.46]
ans =

1.0000

1.3063

1.5315

1.4640
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Closed Jackson Networks – Global 
Balance Equations
• Same assumptions as before

• Exponential and independent service timeExponential and independent service time
• Si servers at node i

• K – total number of customers
• An easy extension to the equations 

derived for open networks

       
N NN
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Closed Jackson Networks – Global 
Balance Equations – cont’d
• It can be shown (following the same 

derivation process as that for open 
networks), the joint pmf is given by
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where Λ1, Λ2, …, ΛN, is the solution to the 
traffic equation. Ri = Λi/μi and G(K,N) is a 
the normalization constant

 


 

!
, 11

i

i i

k
NKG infinite server nodes
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Convolution Algorithm
• How to calculate the normalization 

constant?
• Exhaustive method: find all (k1, k2, …, kN) 

such that Σki = K – substitute in joint pmf
and compute the constant G(K,N) such 
that the sum is equal to 1.
• There are (N+K-1)!/(K!(N-1)!) ways  - e.g. N 
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( ) ( ( ) ) y g
= 4, K = 7  120 combinations!!

• Prohibitive!!

• Use convolution algorithms

Convolution Algorithm – Buzen –
Simplified Version
• Single server nodes  service rate is 

always μ – does not depend on number y μ p
of customers at node

• Define S(k,n) = {k1, k2, …, kn / Σki = k; 
0≤k≤K; 1≤n≤N}

• Define G(k,n) by summing over the set 
S(k,n) n
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S(k,n)

• G(k, n) is the sum over all possible ways 
of dispersing k messages among n nodes.
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Convolution Algorithm – Buzen –
Simplified Version – cont’d
• How to compute G(k,n)? – consider splitting the 

summation into 
• kn = 0kn  0
• kn > 0

• Therefore we can write G(k,n) as

• But the first summation is just the sum over the first n-1 
nodes since the nth node is empty. i.e. G(k,n-1)
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p y ( , )
• For the second summation – there is at least one message 

in node n – i.e. there are at most k-1 other messages in 
the total network. i.e. G(k-1,n)

• Hence, the G(k,n) can be written as

     nkGRnkGnkG n ,11,, 

Convolution Algorithm – Buzen –
Simplified Version – cont’d
• We can show that

     nkGRnkGnkG 11 

• The initiating values:

     nkGRnkGnkG n ,11,, 

  KkRkG k ,,2,1;1, 1 
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• What is G(1,n) equal to for n >0?

  1;1,0  nnG
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Example: Convolution Algorithm
• Problem: Assume a four node network 

with the routing matrix Qg Q
Assume μ = [2.5 2.5 2.5 2.5] and finite 
population of K = 7.
A) Find the relative total flows
B) Compute the joint distribution P(k1, 
k k k )
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k2, k3, k4) 





















025.035.04.0

5.0025.025.0

8.015.0005.0

025.075.00

Q

Example: Convolution Algorithm
• Solution: Closed Network K = 7, N = 4

A) Relative flows (found in the same manner as 
previous exampleprevious example
Λ = [1.0000    1.5844    0.9195    1.7273]

B) To compute the joint distribution P(k1, k2, k3, 
k4), we need to compute:
R = Λ./μ
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= [0.4000    0.6338    0.3678    0.6909]
Note R is the RELATIVE loading
We also need to compute G(K,N) using Buzen’s 
convolution algorithm
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Example: Convolution Algorithm –
cont’d
• Solution: cont’d

Using the recursive algorithm (Refer toUsing the recursive algorithm (Refer to 
Matlab code) – G(7,4) = 1.7036

Therefore the joint pmf is equal to 

   NKGRkkkP
N

k
iN
i ,,,, 21 
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i 1

        7036.16910.0.03678.0.06338.04.0 4321 kkkk

Example: Convolution Algorithm –
cont’d
• Solution: cont’d

The following code implements the recursive alogorithm:
0001 %
0002 % Example 4.8
0003 
0004 K 7

Program output:

>> RFlows0004 K = 7;
0005 N = 4;
0006 M = 2.5*ones(1,N);
0007 
0008 Q = [0    0.75  0.25  0; ...
0009      0.05 0     0.15  0.8; ...
0010      0.25 0.25  0     0.5; ...
0011      0.4  0.35  0.25  0];
0012 
0013 [Vectors, Values] = eig(Q');
0014 RFlows = Vectors(:,1)'./Vectors(1,1); % relative flows
0015 RR     = RFlows./M; % compute relative loads
0016 
0017 ks = 0:K;
0018 ns = 1:N;
0019 G K N (K+1 N)

>> RFlows

RFlows =

1.0000    1.5844    0.9195    1.7273

>> RR

RR =

0.4000    0.6338    0.3678    0.6909

>> G_K_N

G_K_N =
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0019 G_K_N = zeros(K+1,N);
0020 %
0021 % fill initial values
0022 G_K_N(1,:) = ones(1,N); 
0023 G_K_N(:,1) = RR(1).^ks';
0024 %
0025 % fill the remaining of the matrix
0026 for n=2:N
0027     for k=1:K
0028         G_K_N(k+1, n) = G_K_N(k+1, n-1) + RR(n)*G_K_N(k, n);
0029     end
0030 end

1.0000    1.0000    1.0000    1.0000
0.4000    1.0338    1.4016    2.0925
0.1600    0.8152    1.3306    2.7764
0.0640    0.5806    1.0700    2.9882
0.0256    0.3936    0.7871    2.8517
0.0102    0.2597    0.5492    2.5195
0.0041    0.1687    0.3707    2.1114
0.0016    0.1085    0.2449    1.7036

>> 
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Example: Two-Node Network
• Problem: Assume a network as shown in 

Figure with K total number of customers. g
The service rate for nodes 1 and 2 are μ1 
and μ2, respectively. Using the theory of 
closed networks

A) Derive the joint probability mass 
function
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B) Derive the marginal distributions for 
each of the nodes

μ2μ1

K circulating customers

Example: Two-Node Network –
cont’d
• Solution:

μ2μ1

This problem was solved in Assignment 
#2 as an example of a birth-and-death 
process.

Apply the theory of closed networks and

K circulating customers
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Apply the theory of closed networks and 
make sure get matching answers 
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Example: Two-Node Network –
cont’d
• Solution:

μ2μ1

K circulating customers

The routing matrix is given by
QT has two eigen values: 1 and -1. The 
vector corresponding to the eigen value 1 
is √2(1,1)T. 
Therefore the relative total flow is given











01

10
Q
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Therefore, the relative total flow is given 
by Λ = [1 1] and the relative loading is 
given by R = [1/μ1 1/μ2]

Example: Two-Node Network –
cont’d
• Solution:

μ2μ1

K circulating customers

From the closed network theory, the joint pmf is 
given by

To find G(K,2) we either use the exhaustive 
method or follow the convolution algorithm 
explained in class

K circulating customers
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explained in class
The exhaustive method: all (k1, k2) states such 
that k1+k2 = K can be written as (k1, K-k1) for k1
= 0, 1, …, K
Therefore 
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Example: Two-Node Network –
cont’d
• Solution:

μ2μ1

K circulating customers

The convolution method: is shown in table 
on the side – Again, G(K,2) is given by

K circulating customers

1 2
0 1 1
1 R1 R1+R2

2 R1
2 R1

2+R1R2+R2
2

3 R1
3 R1

3+R1
2R2+R1R2

2+R2
3

. . .
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Therefore the final joint PMF is given by

. . .
K R1
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Example: Two-Node Network –
cont’d
• Solution:

The marginal distribution for node 1 isThe marginal distribution for node 1 is 
given by    
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*The same result obtained before*
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Mean Number of Message in Each 
Queue
• Consider a closed network with K 

messages and N nodesg
• Probability of node i having k customers 

or more (i.e. K-k or less are dispersed in 
the rest of N-1 nodes) is given by
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Mean Number of Message in Each 
Queue – cont’d
• Therefore, Probability of node i having 

exactly k customers is given byy g y

• Therefore, the mean number of 
customers in node i is given by
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customers in node i is given by
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Mean Number of Message in Each 
Queue – cont’d
• The previous formula can be simplified to 

be

• Can you do the above simplification?

h i l ? ?

      NiNkKGR
NKG
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k
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• What is             equal to? Prove?  
i

iKE
1

Absolute Flows
• The derived quantities Λi and Ri were all 

relative
• Let us derive ρi or the ith node utilization
• From definition of ρi = Prob(Qi ≥ 1), 

therefore

The absolute flow is equal to ρ divided

   
 NKG

NKGR
Qob i

ii ,

,1
1Pr
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• The absolute flow is equal to ρi divided 
by  the average service time, i.e.

 
  Ni
NKG

NKGi
i ,,2,1;

,

,1 



Remember Ri = Λi / μi = Λi Mi, 
where Mi is the average service time



47

Message Delays
• The average delay of a message through 

the ith node can be derived from the 
mean number of message in node 
through the application of Little’s 
formula

   
i

i
i

KE
DE
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Example: Four-node Networks
• Problem: Using the four node network 

specified on slide 77p
a) Compute the mean number of 

customers in each of the four nodes
b) Compute the absolute flow into each 

node
c) Compute the mean delay through each
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c) Compute the mean delay through each 
of the four nodes
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Example: Four-node Networks
• Solution: Refer to Matlab code on next slide for 

implementation of previous formula

a) The mean number of customers per node is given by 
[0.9071    2.3589    0.7858    2.9483]

b) Absolute flows: [1.2393    1.9636    1.1395    2.1407]
c) Mean delays: [0.7319    1.2013    0.6896    1.3773]

Note that sum of mean number of customers should be equal 
to K = 7!!
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• Regarding the Matlab code implementation: note that 
G_K_N matrix is of size K+1 by N – where 1st row 
corresponds to k=0, 2nd row to k=1, …, and K+1st row to 
k=K. 

• Therefore, G(K-1,N) in the previous formulas corresponds 
to G_K_N(K,N) in the Matlab code. Similary, G(K-2,N) in 
formula corresponds to G_K_N(K-1,N) in the Matlab code, 
and so on

Example: Four-node Networks
Solution: Matlab code for example
0001 %
0002 % Example 4.8
0003 K = 7;
0004 N = 4;
0005 M = 2.5*ones(1,N);
0006

>> Example_4_8
>> RFlows

RFlows =

1 0000 1 8 0 919 1 2 30006 
0007 Q = [0    0.75  0.25  0; ...
0008      0.05 0     0.15  0.8; ...
0009      0.25 0.25  0     0.5; ...
0010      0.4  0.35  0.25  0];
0011 
0012 [Vectors, Values] = eig(Q');
0013 RFlows = Vectors(:,1)'./Vectors(1,1); % relative flows
0014 RR     = RFlows./M; % compute relative loads
0015 
0016 ks = 0:K;
0017 ns = 1:N;
0018 G_K_N = zeros(K+1,N);
0019 %
0020 % fill initial values
0021 G_K_N(1,:) = ones(1,N); 
0022 G_K_N(:,1) = RR(1).^ks';
0023 %
0024 % fill the remaining of the matrix
002 2

1.0000    1.5844    0.9195    1.7273

>> RR

RR =

0.4000    0.6338    0.3678    0.6909

>> Kmean

Kmean =

0.9071    2.3589    0.7858    2.9483

>> Omega
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0025 for n=2:N
0026     for k=1:K
0027         G_K_N(k+1, n) = G_K_N(k+1, n-1) + RR(n)*G_K_N(k, n);
0028     end
0029 end
0030 %
0031 % Mean numbers
0032 for i=1:N
0033     Kmean(i) = sum(RR(i).^(1:K)' .* G_K_N(K:-1:1,N))/...
0034                G_K_N(K+1,N);
0035 end
0036 Omega = RFlows*G_K_N(K,N)/G_K_N(K+1,N);
0037 Dmean = Kmean./Omega;

Omega =

1.2393    1.9636    1.1395    2.1407

>> Dmean

Dmean =

0.7319    1.2013    0.6896    1.3773

>> 
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Infinite Server Case
• How to compute the normalizing 

constant

for an infinite server case

h b i h l i i l i
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• The above is the multinomial expansion, 
i.e.
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The binomial expansion is given by

This is generalized by the multinomial expansion:
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Infinite Server Case – Joint and 
Marginal Distributions
• Therefore, the joint pmf for the closed 

network case with infinite servers case is 
given by

• The marginal distribution of the Nth node 
can also be found as an application of the
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can also be found as an application of the 
multinomial expansion:
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Finite Server Case – Joint and 
Marginal Distributions – cont’d
• The previous expression can be applied 

to obtain the marginal distribution for g
any node
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Finite Server Case – Mean Number of 
Customers & Absolute Flows
• Show that the mean number of 

customers in the ith node is equal toq

Note that the sum of the mean is equal to 
K!!
The ith absolute flow is given by

  Ni
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KE N

i i

i
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• The ith absolute flow is given by

Ni
R

K
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Example: Infinite Server Case
• Problem: Consider the previous four node 

problem where the single servers are p g
replaced with infinite server models.

a) Calculate the average number of 
customers in each of the 4 nodes?

b) Calculate the absolute flows to each of 
the 4 nodes
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the 4 nodes

Example: Infinite Server Case
• Solution: 

a) K = 7, N = 4
In the p e io s e ample elati e flo s andIn the previous example, relative flows and 
loadings were found to be:
Λ = [1.0000    1.5844    0.9195    1.7273]
R = Λ./μ

= [0.4000    0.6338    0.3678    0.6909]

E[Ki] = KRi/ ΣRi
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E[Ki]  KRi/ ΣRi
E[Ki] = [1.3381    2.1202    1.2304    2.3113]
Check ΣKi = K = 7.

b) The absolute flows are given by: 
Ω = [3.3453    5.3004    3.0760    5.7783]



52

Example: Infinite Server Case
• Solution: 
0001 %
0002 % Example 4.8
0003 K = 7;
0004 N = 4;

>> Example_4_9
>> KMean

0004 N = 4;
0005 M = 2.5*ones(1,N);
0006 
0007 Q = [0    0.75  0.25  0; ...
0008      0.05 0     0.15  0.8; ...
0009      0.25 0.25  0     0.5; ...
0010      0.4  0.35  0.25  0];
0011 
0012 [Vectors, Values] = eig(Q');
0013 RFlows = Vectors(:,1)'./Vectors(1,1); % 

relative flows
0014 RR     = RFlows./M; % compute relative loads
0015 

/

KMean =

1.3381    2.1202    1.2304    2.3113

>> sum(KMean)

ans =

7

>> Omega
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0016 KMean = K*RR./sum(RR);
0017 Omega = K*RFlows./sum(RR); Omega =

3.3453    5.3004    3.0760    5.7783

>> 

Mean Value Analysis
• Numerical problems arise when attempting to compute 

the normalization constant using the convolutional 
method

• Alternative – Mean value analysis
• It yields averages rather than distributions
• Usually sufficient for most applications.

• Based on the arrival theorem:
• Within a closed chain containing k messages, the 

distribution of the number of messages of it own class seen 
by a message arriving at a node is the steady-state 
distribution for the case of one less message in the chain,
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distribution for the case of one less message in the chain, 
k-1.

• In contrast – for Poisson arrivals in an open network, the 
steady-state distribution and the distribution seen by an 
arriving message are identical

• For a simplified proof of the arrival theorem, refer to 
chapter 9 of Leon Garcia’s textbook.
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Mean Value Analysis – Closed Chains
• Consider a closed chain as shown in 

figureg
• Assume:

• no of circulating messages is k
• Service time in node i is Mi ; i=1,2, …, N

1
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5

3N-1

Mean Value Analysis – Closed Chains 
– cont’d
• Delay at node i, is di(k) = Mi[1+ni(k-1)]; k=1,2, 

…, K – where ni(k-1) is the average number of 
customers found in queue (or when there are k-
1 customers circulating) by the kth customer

• Throughput λ(k) = k/ Σdi(k); k=1,2, …, K – the 
sum is carried over all N nodes

• Note Σdi(k) is the total delay around the chain

• Applying Little’s formula again ni(k) = λ(k) di(k); 
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i i
i=1,2, …, N; and k=1,2, …, K.

• The above procedure is used iteratively to find 
di(K) and ni(K)  

• Initially ni(0) = 0; for i=1,2, …, N
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Example: Mean Value Analysis –
Closed Chains
• Problem: Consider the example of a 

closed chain with K = 14, and N = 6. ,
Assume M = [2.5, 0.75, 0.03, 0.2, 0.5, 
1.2].
a) Compute the mean number of 
message at each node.
b) Use the detailed method outlined on
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b) Use the detailed method outlined on 
slide 89 to calculate the mean number of 
message at each node

Example: Mean Value Analysis –
Closed Chains
• Solution:

Direct application of the iterativeDirect application of the iterative 
algorithm reveals that

ni(K) = [12.2999    0.4285    0.0121    0.0870    0.2500    0.9225]
di(K) = [30.7514    1.0713    0.0304    0.2174    0.6250    2.3063], 

and
λ(k) = 0.400
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The following slide shows the 
intermediate solutions
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Example: Mean Value Analysis –
Closed Chains
• Solution:
0001 %
0002 % Example 4.10ap
0003 K = 14;
0004 N = 6;
0005 M = [2.5 0.75 0.03 0.2 0.5 1.2];
0006 
0007 n_k_i = zeros(K+1,N);
0008 d_k_i = zeros(K,N);
0009 for k=1:K
0010     d_k_i(k,:) = M .* ( 1 + n_k_i(k,:) );
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0011     Lambda(k)  = k./sum(d_k_i(k,:));
0012     n_k_i(k+1,:) = Lambda(k) .* d_k_i(k,:);
0013 end

Example: Mean Value Analysis –
Closed Chains
• Solution:
Output is as shown:

>> Example 4 10a>> Example_4_10a
>> n_k_i
n_k_i =

0         0         0         0         0         0
0.4826    0.1448    0.0058    0.0386    0.0965    0.2317
1.0855    0.2514    0.0088    0.0608    0.1606    0.4328
1.7990    0.3239    0.0104    0.0732    0.2002    0.5933
2.6043    0.3695    0.0113    0.0799    0.2234    0.7116
3.4791    0.3966    0.0117    0.0834    0.2362    0.7930
4.4022    0.4118    0.0119    0.0852    0.2430    0.8459
5.3568    0.4200    0.0120    0.0861    0.2465    0.8786
6.3308    0.4242    0.0121    0.0865    0.2483    0.8980

k=0
k=1
k=2

.

.

.
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7.3163    0.4264    0.0121    0.0868    0.2492    0.9092
8.3083    0.4275    0.0121    0.0869    0.2496    0.9156
9.3040    0.4281    0.0121    0.0869    0.2498    0.9190

10.3018    0.4283    0.0121    0.0869    0.2499    0.9209
11.3006    0.4285    0.0121    0.0869    0.2500    0.9220
12.2999    0.4285    0.0121    0.0870    0.2500    0.9225

i=1 i=2 i=3 i=4 i=5 i=6

ni(K) k=13
k=14
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Example: Mean Value Analysis –
Closed Chains
• Solution:
Output is as 

shown:

>> d_k_i

d_k_i =

i=1 i=2 i=3 i=4 i=5 i=6

2.5000    0.7500    0.0300    0.2000    0.5000    1.2000
3.7066    0.8586    0.0302    0.2077    0.5483    1.4780
5.2137    0.9386    0.0303    0.2122    0.5803    1.7194
6.9975    0.9929    0.0303    0.2146    0.6001    1.9119
9.0109    1.0272    0.0303    0.2160    0.6117    2.0539

11.1978    1.0474    0.0304    0.2167    0.6181    2.1516
13.5056    1.0588    0.0304    0.2170    0.6215    2.2151
15.8920    1.0650    0.0304    0.2172    0.6233    2.2543
18.3270    1.0682    0.0304    0.2173    0.6241    2.2776
20.7907    1.0698    0.0304    0.2174    0.6246    2.2911
23.2708    1.0706    0.0304    0.2174    0.6248    2.2987
25.7601    1.0710    0.0304    0.2174    0.6249    2.3029

k=0
k=1
k=2

.

.

.
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28.2544    1.0712    0.0304    0.2174    0.6250    2.3051
30.7514    1.0713    0.0304    0.2174    0.6250    2.3063

>> Lambda

Lambda =
Columns 1 through 7 

0.1931    0.2929    0.3450    0.3722    0.3861    0.3931    0.3966
Columns 8 through 14 

0.3984    0.3992    0.3996    0.3998    0.3999    0.4000    0.4000 

di(K) k=13
k=14

λ(K)

Example: Mean Value Analysis –
Closed Chains
• Solution: 

b) Using the detailed method: The codeb) Using the detailed method: The code 
on slide 96 is modified to solve for this 
particular network.
The routing matrix Q is changed to reflect 
the new routing policy for this chain.
Furthermore the eigen vector
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Furthermore, the eigen vector 
corresponding to eigen value 1 is the 6th

column. 
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Example: Mean Value Analysis –
Closed Chains
• Solution: 
0001 %
0002 % Example 4.10a
0003 clear all
0004 K = 14;
0005 N = 6;
0006 M = 1./[2.5 0.75 0.03 0.2 0.5 1.2];

>> G_K_N
G_K_N =

1.0e+006 *

0.0000    0.0000    0.0000    0.0000    0.0000    0.0000
0.0000    0.0000    0.0000    0.0000    0.0000    0.0000
0.0000    0.0000    0.0000    0.0000    0.0000    0.0000
0 0000 0 0000 0 0000 0 0000 0 0000 0 00010006 M  1./[2.5 0.75 0.03 0.2 0.5 1.2];

0007 
0008 Q = [0  1  0  0  0  0; ...
0009      0  0  1  0  0  0; ...
0010      0  0  0  1  0  0; ...
0011      0  0  0  0  1  0; ...
0012      0  0  0  0  0  1; ...
0013      1  0  0  0  0  0];
0014 
0015 [Vectors, Values] = eig(Q');
0016 RFlows = Vectors(:,6)'./Vectors(1,1); % relative flows
0017 RR     = RFlows./M; % compute relative loads
0018 
0019 ks = 0:K;
0020 ns = 1:N;
0021 G_K_N = zeros(K+1,N);
0022 %
0023 % fill initial values
0024 G_K_N(1,:) = ones(1,N); 
0025 G K N(: 1) = RR(1) ^ks';

0.0000    0.0000    0.0000    0.0000    0.0000    0.0001
0.0000    0.0001    0.0001    0.0001    0.0001    0.0001
0.0001    0.0001    0.0001    0.0002    0.0002    0.0004
0.0002    0.0003    0.0004    0.0004    0.0005    0.0009
0.0006    0.0009    0.0009    0.0010    0.0012    0.0023
0.0015    0.0022    0.0022    0.0024    0.0030    0.0057
0.0038    0.0054    0.0055    0.0060    0.0075    0.0144
0.0095    0.0136    0.0138    0.0150    0.0187    0.0360
0.0238    0.0341    0.0345    0.0375    0.0468    0.0900
0.0596    0.0851    0.0862    0.0937    0.1171    0.2251
0.1490    0.2129    0.2155    0.2342    0.2927    0.5629
0.3725    0.5322    0.5386    0.5855    0.7319    1.4074

>> Kmean
Kmean =
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0025 G_K_N(:,1) = RR(1).^ks';
0026 %
0027 % fill the remaining of the matrix
0028 for n=2:N
0029     for k=1:K
0030         G_K_N(k+1, n) = G_K_N(k+1, n-1) + RR(n)*G_K_N(k, 

n);
0031     end
0032 end
0033 %
0034 % Mean numbers
0035 for i=1:N
0036     Kmean(i) = sum(RR(i).^(1:K)' .* G_K_N(K:-1:1,N))/...
0037                G_K_N(K+1,N);
0038 end
0039 Omega = RFlows*G_K_N(K,N)/G_K_N(K+1,N);
0040 Dmean = Kmean./Omega;

12.2999    0.4285    0.0121    0.0870    0.2500    0.9225

>> Dmean
Dmean =

30.7514    1.0713    0.0304    0.2174    0.6250    2.3063

>> Omega
Omega =

0.4000    0.4000    0.4000    0.4000    0.4000    0.4000

Mean Value Analysis - Generalization
• The previous iterative algorithm is a closed 

chain only
• The MVA algorithm is modified to accommodate• The MVA algorithm is modified to accommodate 

general N-node closed networks:
• di(k) = Mi[1+ni(k-1)]
• λ(k) = k/ Σ[ Λi di(k) ];   G(k) = G(k-1)/ λ(k)
• ni(k) = Λi λ(k) di(k) ; i=1,2, …, N
• Initially ni(0) = 0; i=1,2, …, N; G(0) = 1;
• The iterations are carried over k = 0, 1, …, K

• The above algorithm also computes the 
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g p
normalization constant required for the joint 
pmf distribution!

• The above is valid for one class of users – but 
can be generalized for C classes of users (refer 
to Hayes’s textbook)
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Example: Mean Value Analysis -
Generalization
• Problem: Consider the network shown in 

Figure for K = 6. The mean service times 
are given by M =[0.02 0.2 0.4 0.6]. 
Furthermore, the relative flows are given 
by Λ =[1 0.4 0.2 0.1].
a) Find the mean number of customers 
and mead delay for each node.
b) Use the detailed method to verify your
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b) Use the detailed method to verify your 
answer

μ3μ1

μ2

μ4

Example: Mean Value Analysis -
Generalization
• Solution: 

a) Applying the algorithm outlined for the MVA ) pp y g g
for closed networks, we find

ni(K) = [0.2436    2.2610    2.2610    1.2343]
di(K) = [0.0246    0.5698    1.1397    1.2443], and
λ(k)  = 9.9198
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Furthermore, the normalization constant G(K,N) 
is equal to 5.7562e-006     
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Example: Mean Value Analysis –
Generalization – cont’d
• Solution: 
0001 %
0002 % Example MVA for closed network
0003 K = 6;
0004 N = 4;
0005 M = [0.02 0.2 0.4 0.6];
0006 L = [1 0.4 0.2 0.1];
0007 n_k_i = zeros(K+1,N);
0008 d_k_i = zeros(K,N);
0009 G     = ones(K+1,1);
0010 for k=1:K
0011 d k i(k :) M * ( 1 + n k i(k :) );
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0011     d_k_i(k,:) = M .* ( 1 + n_k_i(k,:) );
0012     Lambda(k)  = k./sum(L.*d_k_i(k,:));
0013     G(k+1)     = G(k)/Lambda(k);
0014     n_k_i(k+1,:) = L .* Lambda(k) .* d_k_i(k,:);
0015 end

Example: Mean Value Analysis –
Generalization – cont’d
• Solution: 
> n_k_i

n k i =

>> G

G =_ _

0         0         0         0
0.0833    0.3333    0.3333    0.2500
0.1398    0.6882    0.6882    0.4839
0.1791    1.0608    1.0608    0.6993
0.2072    1.4485    1.4485    0.8958
0.2279    1.8491    1.8491    1.0738
0.2436    2.2610    2.2610    1.2343

>> d_k_i

G =

1.0000
0.2400
0.0372
0.0047
0.0005
0.0001
0.0000

>> Lambda

5.7562e-006
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d_k_i =

0.0200    0.2000    0.4000    0.6000
0.0217    0.2667    0.5333    0.7500
0.0228    0.3376    0.6753    0.8903
0.0236    0.4122    0.8243    1.0196
0.0241    0.4897    0.9794    1.1375
0.0246    0.5698    1.1397    1.2443

Lambda =

4.1667    6.4516    7.8547    
8.7860    9.4401    9.9198
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Example: Mean Value Analysis –
Generalization – cont’d
• Solution: 
b) using the detailed 

method
>> Example_MVA_CNb
>> G_K_N

Same as G(k) computed by 
the MVA algorithm

method
0001 %
0002 % Example MVA for closed networks - b
0003 clear all
0004 K = 6;
0005 N = 4;
0006 M = 1./[0.02 0.2 0.4 0.6];
0007 L = [1 0.4 0.2 0.1];
0008 RFlows = L; % relative flows
0009 RR     = RFlows./M; % compute relative loads
0010 
0011 ks = 0:K;
0012 ns = 1:N;
0013 G_K_N = zeros(K+1,N);
0014 %
0015 % fill initial values
0016 G_K_N(1,:) = ones(1,N); 
0017 G_K_N(:,1) = RR(1).^ks';
0018 %

G_K_N =

1.0000    1.0000    1.0000    1.0000
0.0200    0.1000    0.1800    0.2400
0.0004    0.0084    0.0228    0.0372
0.0000    0.0007    0.0025    0.0047
0.0000    0.0001    0.0003    0.0005
0.0000    0.0000    0.0000    0.0001
0.0000    0.0000    0.0000    0.0000

>> Kmean
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0018 %
0019 % fill the remaining of the matrix
0020 for n=2:N
0021     for k=1:K
0022         G_K_N(k+1, n) = G_K_N(k+1, n-1) + RR(n)*G_K_N(k, n);
0023     end
0024 end
0025 %
0026 % Mean numbers
0027 for i=1:N
0028     Kmean(i) = sum(RR(i).^(1:K)' .* G_K_N(K:-1:1,N))/...
0029                G_K_N(K+1,N);
0030 end
0031 Omega = RFlows*G_K_N(K,N)/G_K_N(K+1,N);
0032 Dmean = Kmean./Omega;

Kmean =

0.2436    2.2610    2.2610    1.2343

>> Dmean

Dmean =

0.0246    0.5698    1.1397    1.2443

BCMP Networks
• BCMP = Baskette, Chandy, Muntz, Palacios = 

1975 paper
G li ti f th d t f bt i d f• Generalization of the product forms obtained for 
Jackson networks for FCFS

• The product form holds for
1. FCFS with exponential service times – studies in previous 

sections (and chapter 3)
2. Infinite server model: a message immediately assigned a 

server as soon as it enters the system – all messages are 
simultaneously in service
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simultaneously in service
3. Processor sharing: each message in the queue receives 

equal simultaneous service – all messages are 
simultaneously in service

4. Preemptive resume last-come first-served: newly arrived 
messages are served immediately – displaced messages 
are re-queued and resume server only when the server is 
available again
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BCMP Networks – FEATURES
1. More than one class of messages is allowed
2. For 2, 3, and 4: the product form holds also for 

arbitrary service times too!!arbitrary service times too!!
• An arbitrary service time distribution may be approximated 

by a rational Laplace tranform, then the model tranforms to 
Cox network (refer to chapter 3)

• Insensitivity property follows for state occupancy 
probabilities

3. For 2, 3, and 4: different classes of messages may 
have different service time distributions

4. For 2, 3, and 4: message are allowed to change class 
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g g
probabilistically

5. Networks may be mixed with respect to class: closed 
for one class, but open for another

6. Arrivals may be dependent on the state of the 
network, under certain conditions – e.g. limited 
storage problem

Probabilistic and Markov Routing 
• Messages are allowed to switch classes 

probabilistically as they are routed between 
nodesnodes

• Def: customer of class k leaving node i is 
switched to class j and routed to node j with 
probability

• Traffic equation for N nodes and C customer 
classes is given by

kl
ijq
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classes is given by 

1 1

N C
k k l lk
i i j ji

j l

q
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BCMP Networks – cont’d
• The following slides are going to show the results 

(product forms) for probability distribution of 
message in BCMP networks for SINGLE NODEmessage in BCMP networks for SINGLE NODE 
case (for each of the 4 disciplines)

• Then the results will be extended to the case of a 
network of N nodes, again for each of the 4 
disciplines
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• The slides shown only the end results – the 
derivations are found in the textbook

BCMP Networks – Single Node 
with Exponential Server
• Poisson arrivals, exponential Service time, FCFS 

discipline
F f 1 l f• For case of 1 class of users

• C classes of users
• The joint pmf can be shown to be
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• Note the product form holds for multiple classes 
in a single node network!!

• To verify above expression sum over all ni
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BCMP Networks – Single Node with 
Infinite Server
• This problem has been handled when 

service time is exponential (textbook eqp ( q
3.55)

• For one class
where ρ = λ/μ < 1

• Here, the result is extended to

  ,2,1,0;
!




m
m
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m
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Here, the result is extended to 
ARBITRARY service distribution

BCMP Networks – Single Node with 
Infinite Server – cont’d
• For an arbitrary service distribution – assuming 

ONE class of user
• Employ Cox network with K stages with the 

typical parameters:
• Initial and final routing probabilities
• External arrival rate 
• Average service rate for ith stage is i

• Then arrivals to the ith stage are given by

0 1, 0Kq q 

1 2 1i K
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1 1, ; 1,2, , 1i i iq i K      
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BCMP Networks – Single Node with 
Infinite Server – cont’d
• The textbook shows that the joint PMF for the 

customers in the K stages is given by

where                 and G-1 is some constant

• However, the interest is in the total number of 
customers it is shown that

  1
1 2

1

, , ,
!
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i i
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customers                 , it is shown that

where ρ = λ/μ.

1 ii
m k
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BCMP Networks – Single Node with 
Infinite Server – cont’d
• The previous result may be extended to C 

classes of messagesg
• The joint PMF for messages of each class 

is given by

The PMF for the total number of
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• The PMF for the total number of 
messages is given by

0;
!1
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BCMP Networks – Single Node with 
Processor Sharing
• C classes of message: i = 1, 2, …, C.
• Each has its mean service time Mii

• ith service time is modeled by Cox network with Ki

stages

• With qij transition probability and  average transition 
rate ij of message from ith class and jth stage

• Each has it own arrival rate λi

P h i d f
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• Processor sharing – departure rate from a stage 
is             where 

1 1

C K

iji j
m k

 
 /ij ijk m

BCMP Networks – Single Node with 
Processor Sharing – cont’d
• The joint PMF is given by 

inC 

where ρ = Σ ρi, ρi= λi Mi and Σni = m

• The PMF for total number of messages, m, is 
i b
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given by 

0;
!1
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BCMP Networks – Single Node with Pre-
emptive Resume Last-Come First-Served 
Discipline

• The textbook derives the PMF for m for one 
class of messages

• Then, the results is extended to C classes of 
messages

• The joint PMF is given by
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• The PMF for number of messages m is given by

where ρ = Σλi/μ = Σ ρi – and Σni = m

0;
!1








 



 m

m

e
mnP

mC

i
i



BCMP Networks – Single Node -
Summary
• We can summarize the results for the 

single node and C classes of customers asg
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(1) FCFS – exponential service

(2) PS – arbitrary service

(3) Infinite servers – arbitrary service
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C

i
i

n
i nm i

1

!!1  (4) Preemptive LCFS – arbitrary service

ρ = ΣλiMi= Σ ρi – and Σni = m

The above schemes are referred to by the 
numbers (1), (2), (3) and (4) in the 
following slides.
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Network of BCMP Queues
• Nodes belong to one of the previous four 

types
• Assumption

• Routing is probabilistic
• Infinite storage at each queue
• For open networks – Poisson arrivals

• The arrival rate of messages ith node is 
Λi as computed by the traffic equations

12/26/2009 Dr. Ashraf S. Hasan Mahmoud 133

Λi as computed by the traffic equations

• Joint PMF for number of messages at 
each node is the PRODUCT of expressions 
given in previous slide.

Network of BCMP Queues -
Example
• Example:

• Assume N node network
• Nodes 1 to i belong to disciplines (1) (2) or (4)• Nodes 1 to i belong to disciplines (1), (2), or (4) 

Nodes i+1 to N belong to discipline (3)
• The joint pmf is given by

where
• The average number of messages in each
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• The average number of messages in each 
node is given by

• Rj; j = i+1, i+2, …, N (i.e. for the infinite servers 
nodes)

• Rj/(1-Rj); j = 1, 2, …, N
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Network of BCMP Queues –
Example – cont’d
• If the network is closed – G(K, N) must be computed
• If all nodes have (1), (2), or (4) with single servers, the 

joint PMF is given byjoint PMF is given by

where G(K,N) can be found as before. 
• If all nodes have K servers or more – network will behave 

as if it has infinite servers. In this case the joint PMF is 
given by

    1

1 2
1

, , , , i

N
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N i
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where G(K,N) can be found using the convolution 
algorithm for infinite servers case (utilizing the 
multinomial expansion)
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Store-and-Forward Message-
Switched Nodes
• Assumptions:

• Poisson arrivals 
(multiple input lines)( u p e pu es)

• Infinite storage space 
in the node

• Role of central 
processor
• ACK/NACK is sent for 

correct/erroneous 
packets

• ACK and NACK are
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ACK and NACK are 
piggybacked on 
information packets

• O output lines –
based on 
destination - qi
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Store-and-Forward Message-
Switched Nodes – Modeling -cont’d
• Central processor: processor sharing with constant service 

time
• Output buffers – service time is message transmit time (~ 

i l)exponential)
• ARQ: timeout and ACK boxes

• Prob rj; j=1, 2, …, O the attempted transmission over channel j fails 
(due to channel error or not enough storage)

• Event enters the timeout box – stays for random time and then 
return to output buffer for retransmission

• For successful transmission (prob 1-rj), the even enters the 
ACK box for a random time and then it leaves the system

R id ti i th ti t ACK b
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• Residency times in the timeout or ACK boxes 
represent the interval  after transmission until 
NACK or ACK is received
• Round trip propagation + processing time

• Timeout and ACK boxes are modeled as infinite 
servers nodes – we need to keep messages as 
much as needed

Store-and-Forward Message-
Switched Nodes – Traffic Equation
• I input lines
• Let γi be arrival rate on the ith input line; i = 1,Let γi be arrival rate on the ith input line; i  1, 

2, …, I 
• The total input (arrivals) 
• Total flow into output buffer i 

where      is the total flow into timeout box i.
• The flows into the timeout box and the ACK box

1

I

ii



 

O T
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The flows into the timeout box and the ACK box 
are               and                     for i=1,2, …, O

• This mean, the total flow into ith output buffer 
is given by

T O
i i ir    1A O

i i ir   

 1O
i i iq r   
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Store-and-Forward Message-Switched 
Nodes – Store-and-Forward Node Model
• Considering channel output 

buffer 
• Simplified – ACK box not 

considered
• There is one Cox network (of 

M stages) for each of the 
infinite number of servers in 
the timeout box

• Arrival rate from central 
processor is j = qj

• Output channel buffer service 
rate is µj.

• After residing in output buffer, 
i t d t ti t
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message is routed to timeout 
box with prob rj

•
Traffic equations for the 
branch are:

 
1

1

1
M

O
i i i M j

i

P  




    
1 1, ; 1,2, , 1O

j j i i ir P i M      

j

Store-and-Forward Message-Switched 
Nodes – Store-and-Forward Node Model –
cont’d
• State of network: (M+1)-dimensional vector (n, k1, k2, …, 

kM)
• n – # of messages in output channel buffer
• ki - # of messages in the ith stage of timeout box

• The textbook shows that the joint PMF ois given by

where G-1 is a constant; i = ωi/i.
• The interest is in the total number of messages in the 

timeout box, k = Σki. Therefore, the joint PMF for n and k is 
i b
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given by

• Note that                           where       is the mean processing 
time of message in timeout box.

1
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Store-and-Forward Message-Switched 
Nodes – Store-and-Forward Node Model –
cont’d
• Considering the rest of the node and expressing the 

arrival rates in terms of input rate
 1O

i j ir  

• Again, first considering a single branch with its 
Timeout and ACK boxes

• Let lj be the number of messages in the timeout and 
ACK boxes of the jth branch, then the joint PMF for n 
and lj is given by

 
 

 
1 1

1

j
O

j j j j i
A O
i i i j

r r r

r

 


   
    

O 

12/26/2009 Dr. Ashraf S. Hasan Mahmoud 141

where       is the average time spent in the ACK box. 
Note that j is the rate of messages into the ACK box.

   1, !
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Store-and-Forward Message-Switched 
Nodes – Store-and-Forward Node Model –
cont’d
• Writing formulas in terms of link speeds (output buffer 

transmission speed)
• Let Cj be transmission speed for jth output buffer; j = 1, 2, j p j p ; j , ,

…, O.
• Assume average message size in bit is

• Summing previous joint PMF over all nj and all lj and 
equating to one yields

B

   , 1 !; 1,2,...,j ji

j j

R ln
j j O O jP n l e R l j O    

lj messages in timeout
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where                            and  O
j j j T j AR r M M   j

O
O j jB C  

lj messages in timeout
and ACK boxes

nj messages in channel
output buffer
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Store-and-Forward Message-Switched 
Nodes – Store-and-Forward Node Model –
cont’d
• Now consider all the O channel output buffers each with its own 

timeout and ACK boxes together with the central processor (i.e. 
entire store-and-forward node))

• The joint PMF is given by

where n0 is the number of messages at the central processor, and
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Product of marginal 
distributions!!
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where n0 is the number of messages at the central processor, and

• Remember that  is the total arrivals of messages per second to 
the central processor.      is the average processing time for a 
message.

P P  

P

Store-and-Forward Message-Switched 
Nodes – Total No of Messages

• The model assume infinite storage
• In practice this is not possible  Prob of overflowp p
• If Prob of overflow is small is can be 

approximated from the PMF for number of 
messages in node with infinite storage
• Good approximation for small probability of flow.

• Towards this we need to
• Compute the mean and variance for the total number of
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Compute the mean and variance for the total number of 
messages in the node (central processor, output buffers, 
and timeout/ACK boxes)

• Assume a Gaussian distribution for the sum 
• Use the Gaussian PDF to estimate the overflow 

probability



73

Store-and-Forward Message-Switched 
Nodes – Total No of Messages – cont’d

• The timeout/ACK boxes were modeled as 
infinite servers node number ofinfinite servers node  number of 
customers in each is Poisson

• The sum is also Poisson
• Let l be the total number of messages in all 

the timeout and ACK boxes
 O O
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• Mean of l is given by

• Therefore, the joint PMF can be rewritten 
as

   1 1
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Store-and-Forward Message-Switched 
Nodes – Total No of Messages – cont’d
• Let NP – be number of messages in central processor

- be the number of message in the ith output 
buffer timeout and ACK boxes

,  and O T A
i i iN N N

buffer, timeout, and ACK boxes
• The means and variances are given by
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for i = 1, 2, …, O.
• Define N as the sum of NP,                     , the mean and 

variance of the Gaussian distribution are given by

i i i i i T i AE N N R r M M     Var i i i iN N E N N       

,  and O T A
i i iN N N

  P O T A
i i iE N E N E N E N N             

 Var Var Var VarP O T A
i i iN N N N N             
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Store-and-Forward Message-Switched 
Nodes – Total No of Messages – cont’d
• It would be interesting to compare the approximate 

(Gaussian) PDF to the actual PMF obtained 
n me icall th o gh s ccessi e con ol tions of thenumerically through successive convolutions of the 
previous JOINT PMF on slide 145.

• Bonus – 3 points in the final exam.
• For the assignment problem (Assign #3 – Q 4), evaluate the 

approximate PDF and the actual PMF numerically (as on
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approximate PDF and the actual PMF numerically (as on 
slide 52).

• Submit a softcopy and a hardcopy of the bonus question 
containing the two curves (PDF and CDF as in slide 52) and 
the Matlab code used to obtain the result. 

Store-and-Forward Message-Switched 
Nodes – Average Message Delay – cont’d
• Delay for a message going through a network is given by

f b k   1 • Refer to textbook eq 4.36

• Delay in central processor:

• Delay in the output buffer:

• Delay through the timeout and ACK boxes:

  1
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• Delay through the timeout and ACK boxes:

• Therefore, overall delay

,  and A TM M
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Window Flow Control – A Closed 
Network Model
• Assumptions:

• N nodes
• Independent and exponential service time ~ 1/µi

• Forward path and 
return path 
modeled as chain
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Window Flow Control – A Closed 
Network Model – cont’d
• Packets are typically longer than ACKs – different service times
• Difficult to model the process of holding the message until there is room in the chain
• Assume messages arrive at the source node (node 1) at an average rate of 0

Messages arriving to a full chain are lost• Messages arriving to a full chain are lost
• N original nodes + 1 phantom node (node 0)

• Phantom node service rate = 0

• Messages from source-destination pair that we 
are interested in, circulate in closed chain.

• If W internal messages are outstanding, the 
phantom node is empty – no new arrivals to 
node 1

• When there are less than W messages in nodes 
1 N h i l i h
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1 to N, there is at least one message in the 
phantom node – arrival rate of messages from 
node 0 to node 1 is 0.

• Other (external) traffic passing through the 
nodes 1 to N is modeled through arrivals of rate 
i and exist rate i.

• Refer to model details in textbook
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Window Flow Control – A Closed 
Network Model – Results
• Define state as (k0, k1, …, kN, l1, l2, …, lN) where ki is number 

of internal messages; li is number of external messages in 
node inode i.

• The join PMF is given by

where i = i/µi
• Summing over all li from 0 to infinity (since there is no 

storage limit on external message) – we get
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where R0 = 1 (by definition), Ri = 0/(µi- i)

• Refer to the detailed derivation in textbook

   1
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Window Flow Control – A Closed 
Network Model – Results – cont’d
• New internal messages are blocked when the phantom node 

is empty – Blocking probability 
The join PMF is given by (eq 4 58)• The join PMF is given by (eq 4.58)

• Delay for external traffic increases due to internal traffic –
What is the amount of increase?

• Let Lm and Km denote the number of external and interal
message, respectively, at node m = 1, 2, …, N.

• You can show that:

     1 1
0 0 1 1, ,P k G W N G W N    
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• For E[Km], the mean is given by eq 4.58 derived 
earlier

    1
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Window Flow Control – A Closed 
Network Model – Results – cont’d
• The normalized different in average delay due to internal 

traffic at node m is

• Averaging over the message arrival rate for all nodes, we 
get
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where Rm = 0/(µm- m). Note that 0 is an arbitrary 
constant that is eliminated in the normalization process.

Window Flow Control – A Closed 
Network Model – Example 4.12
• Problem: Consider the case of a chain 

consisting of 5 nodes with a window of 10 g
messages. Assume 0 is equal to 0.6. Also µ = 
[3 4 2 6 3], and  = [2 0.5 0.8 4 1]

• Compute the joint PMF for number of internal 
messages in system

• Verify that sum of mean number of internal 
messages fo the 5 nodes is eq al to 10
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messages for the 5 nodes is equal to 10.
• Calculate the blocking probability
• What is the change of delay of external 

message due to internal traffic
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Window Flow Control – A Closed 
Network Model – Example 4.12

• Solution:

Make sure you can get final answers• Make sure you can get final answers 
obtained in textbook page 175
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Cellular Radio – Model
• Service provided by base station
• Frequencies are assigned to the cells to minimize 

interference

• Mobile users move 
between cells – users 
switch frequency 
bands

• 14 cells are considered
• Each is modeled as 
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having an infinite 
number of servers

• There are L channels in 
each cell
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Cellular Radio – Model/Results
• The PMF for number of users in each cell is given by

 1 2, , ,
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i ikN
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• The marginal distribution is given by

• Each of the users contends for L channels  finite-source model; A 
user is blocked if all channels are occupied.

• Probability of blocking, QL, is given by
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where  = σ/µ. σ is the probability that a single source goes from 
off t on in an incremental interval and µ is the probability of 
change in the opposite direction.
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Cellular Radio – Results – cont’d

• The overall blocking probability of 
number

bl ki b bilit
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of users blocking probability
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Cellular Radio – Example 4.13

• Problem: Assume 14-node system – the 
queue in a cell is modeled as an infinitequeue in a cell is modeled as an infinite 
number of serves. Let the residency time 
be exponentially distributed. 

• Assume users are equally likely to move 
through EACH of the six cell boundaries
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g
• E.g. for cell 1, half of its traffic leaves the 

subsystem while for cell 7, all of its traffic 
remains in the subsystem

Cellular Radio – Example 4.13 –
cont’d
• Solution:
• The routing matrix is as showng
• The arrival rate of users from 

adjacent cells is proportional to 
the number of sides of a cell, 
which interface the larger 
system 

 = [3 3 2 1 3 3 0 1 3 3 3 3 2 0]
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 = [3 3 2 1 3 3 0 1 3 3 3 3 2 0]
• The total flows into each cell is 

given by

Λ = [6 6 6 6 6 6 6 6 6 6 6 6 6 6]



81

Cellular Radio – Example 4.13 –
cont’d
• Solution:
• If the mean residency time = 3 min the• If the mean residency time = 3 min  the 

load per cell is 3 x 6 = 18.
• For L = 5 (available lines) in a cell and  = 0.2 

(source activity)  blocking probability  = 
0.1142
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• Student must perform the required 
calculations to arrive at the numerical 
answers.


