King Fahd University of
 Petroleum \& Minerals Computer Engineering Dept

CSE 642 - Computer Systems

Performance

Term 091
Dr. Ashraf S. Hasan Mahmoud
Rm 22-148-3
Ext. 1724
Email: ashraf@kfupm.edu.sa

Queuing Model

- Consider the following system:
$\mathrm{A}(\mathrm{t}) \quad \mathrm{N}(\mathrm{t})=\mathrm{A}(\mathrm{t})-\mathrm{D}(\mathrm{t}) \quad \mathrm{D}(\mathrm{t})$

$$
\begin{array}{lr}
\qquad T_{i}=D_{i}-A_{i} & \begin{array}{r}
W_{i}
\end{array}=T_{i}-S_{i} \\
A(t)-\text { number of arrivals in }(0, t] & =D_{i}-A_{i}-S_{i} \\
D(t)-\text { number of departures in }(0, t] & \\
N(t)-\text { number of customers in system in }(0, t] & \\
T_{i}-\text { duration of time spent in system for ith customer } & \\
W_{i}-\text { duration of time spent waiting for service for ith customer }
\end{array}
$$

Example: Queueing System

- a_{i} and I_{i} arrival and departure instances
- $T_{i}=l_{i}-a_{i}$ is time spent in the system
- If $\mathrm{A}(\mathrm{t})=\mathrm{D}(\mathrm{t}) \rightarrow$ system is empty
- The graph is shown for FCFS service

Little's Formula

- Consider the time average of the number of customers in the system $\mathbf{N}(\mathrm{t})$ during (0,t],

$$
\langle N\rangle_{t}=\frac{1}{t} \int_{0}^{t} N(\tau) d \tau
$$

i.e. average area under the curve for $N(t)$ $\langle N\rangle_{t}$ is also given by

$$
\langle N\rangle_{t}=\frac{1}{t} \sum_{i=1}^{A(t)} T_{i}
$$

Little's Formula - cont'd

- The average arrival rate $\langle\lambda\rangle_{\mathrm{t}}$ is given by

$$
\langle\lambda\rangle_{t}=\frac{A(t)}{t}
$$

- Combining the previous equations we get:

$$
\langle N\rangle_{t}=\langle\lambda\rangle_{t} \frac{1}{A(t)} \sum_{i=1}^{A(t)} T_{i}
$$

- Let the quantity $\langle T\rangle_{t}$ be the average time a customer spends in the system, then

$$
\langle T\rangle_{t}=\frac{1}{A(t)} \sum_{i=1}^{A(t)} T_{i}
$$

Little's Formula - cont'd

- Combining the last two equations:

$$
\langle N\rangle_{t}=\langle\lambda\rangle_{t}\langle T\rangle_{t}
$$

- Which relates the time averages of the arrival rate, the number of customers in the system and the average time spent in the system
- Let $\mathbf{t} \rightarrow \infty$, then one can write:

$$
E[N]=\lambda E[T]
$$

Little's Formula - cont'd

- Little's formula:

$$
\mathrm{E}[\mathrm{~N}]=\lambda \mathrm{E}[\mathrm{~T}]
$$

Holds for many service disciplines and for systems with arbitrary number of servers. It holds for many interpretations of the system as well

Note: $\sum_{i=1}^{A(t)} T_{i}=\sum_{i=1}^{A(t)} d_{i}-l_{i}=\sum_{i=1}^{A(t)} d_{i}-\sum_{i=1}^{A(t)} l_{i}$ does not depend on the service order

Intuitiveness of Little's Formula

- Little's formula:

$$
E[N]=\lambda E[T]
$$

- Formula applies to many interpretations of "system"!

Example 1:

- Problem: Let $\mathbf{N s}(\mathbf{t})$ be the number of customers being served at time t, and let τ denote the service time. If we designate the set of servers to be the "system" then Little's formula becomes:

$$
\mathbf{E}[\mathbf{N s}]=\mathbf{\lambda} \mathbf{E}[\tau]
$$

where $\mathrm{E}[\mathrm{Ns}]$ is the average number of busy servers for a system in the steady state.

Example 1: cont'd

Note: for a single server $\mathrm{Ns}(\mathrm{t})$ can be either $\mathbf{0}$ or $\mathbf{1} \rightarrow \mathrm{E}[\mathrm{Ns}]$ represents the portion of time the server is busy. If $p_{0}=$ $\operatorname{Prob}[\operatorname{Ns}(t)=0]$, then we have

$$
\begin{aligned}
\mathbf{1}-\mathbf{p}_{\mathbf{0}} & =\mathrm{E}[\mathrm{Ns}]=\lambda E[\tau], \mathbf{O r} \\
\mathbf{p}_{0} & =\mathbf{1}-\boldsymbol{\lambda} \mathrm{E}[\tau]
\end{aligned}
$$

The quantity $\lambda E[\tau]$ is defined as the utilization for a single server. Usually, it is given the symbol ρ

$$
\rho=\boldsymbol{\lambda}[[\tau]
$$

For a c-servers system, we define the utilization (the fraction of busy servers) to be

$$
\rho=\lambda E[\tau] / \mathbf{c}
$$

Poisson Process

- Refer to the Summation process example in the Random Processes package
- Def: Poisson process to be the point process for which the number of events (successes), $X(t)$, in a t-second interval is given by the Poisson distribution

$$
P_{k}(t)=P(X(t)=k)=\frac{(\lambda t)^{k}}{k!} e^{-\lambda t} \quad k=0,1, \ldots
$$

where $\boldsymbol{\lambda}$ is the average rate of success per time unit

Poisson Process - Properties

- The random process $X(t)$ is a Markov Process. For arbitrary times:
$t_{1}<t_{2}<\ldots<t_{k}<t_{k+1}$
$\operatorname{Prob}\left[X\left(t_{k+1}\right)=x_{k+1} / X\left(t_{k}\right)=x_{k}, \ldots, X\left(t_{1}\right)=x_{1}\right]$
$=\operatorname{Prob}\left[X\left(\mathrm{t}_{\mathrm{k}+1}\right)=\mathrm{X}_{\mathrm{k}+\mathbf{1}} / \mathrm{X}\left(\mathrm{t}_{\mathrm{k}}\right)=\mathrm{x}_{\mathrm{k}}\right]$
- Independent increments
- Stationary increments

Poisson Process - Interarrival Time

- Let T be the random time between two consecutive events
- The distribution function is given by

$$
\begin{aligned}
F_{T}(t) & =P(T \leq t) \\
& =P(\text { at least one arrival in } t \text { seconds }) \\
& =1-P(0 \text { arrivals in } t \text { seconds }) \\
& =1-P_{0}(t) \\
& =1-e^{-\lambda t}
\end{aligned}
$$

Therefore $f_{T}(t)$ is equal to $\lambda e^{-\lambda t}$ for $t \geq 0$

- Poisson Process \equiv interarrival times are independent and exponentially distributed

Uniformity Property

- Def - give a number of arrivals in an interval, the arrivals are uniformly distributed throughout the interval!

time access

Uniformity Property - cont'd

- Proof:

Suppose that we are given than one arrival occurs in the interval [0,t],
Let Y be the arrival time of the single customer $\rightarrow 0<y<t$
Let $X(y)$ be the number of events up to time $y \rightarrow X(t)-X(y)$ is the increment in the interval (y, t]
$P(Y \leq y)=P(X(y)=1 / X(t)=1]$

$$
\begin{aligned}
& =\frac{P(X(y)=1 \text { and } X(t)-X(y)=0]}{P(X(t)=1)} \\
& =\frac{P(X(y)=1) P(X(t)-X(y)=0)}{P(X(t)=1)} \\
& =\frac{\lambda y e^{-\lambda y} e^{-\lambda(t-y)}}{\lambda t e^{-\lambda t}} \\
& =y / t
\end{aligned}
$$

Kolmogorov Forward Differential Equations

- Consider the incremental time interval δ, so small that $\boldsymbol{\lambda} \boldsymbol{\delta} \ll \mathbf{1}$ for all $\boldsymbol{\lambda}$
- Using the Poisson density function and knowing that $\mathrm{e}^{-\lambda \delta} \approx 1-\lambda \delta+0(\delta)$ - where $0(\delta)$ are higher order terms of δ (i.e. lim $0(\delta) / \delta=0$ as $\delta \rightarrow 0$)
- One can write:
$\mathbf{P}_{\mathbf{0}}(\delta)=1-\lambda \delta+\mathbf{O}(\delta)$
This means, we choose δ small such that the likelihood of more than one arrival during δ is close to zero
$P_{1}(\delta)=\lambda \delta+0(\delta)$
$P_{i}(\delta)=\mathbf{O}(\delta)$ for $i \geq 2$

Sequence of iid Bernoulli experiments

Kolmogorov Forward Differential Equations - cont'd

- This means, we choose $\boldsymbol{\delta}$ small such that the likelihood of more than one arrival during $\boldsymbol{\delta}$ is close to zero

Sequence of iid Bernoulli experiments

- The corresponding state diagram (for the discretized-time version) is given by

Kolmogorov Forward Differential Equations - cont'd

- Let us study the evolution of $P_{n}(t)$ with respect to time, t
- Remember $P_{n}(t)$ is the probability of n arrivals in an interval t
- Consider the change in $P_{n}(t)$ in the incremental interval ($\mathbf{t}, \mathbf{t}+\mathbf{\delta}$)

Kolmogorov Forward Differential Equations - cont'd

- Casen = 0
$\mathbf{P}_{\mathbf{0}}(\mathbf{t}+\boldsymbol{\delta})=\mathbf{P}($ no arrivals in $(0, t+\boldsymbol{\delta}))$

$$
=P(\text { no arrivals in }(0, t)) P(\text { no arrivals in }(t, t+\delta))
$$

- Case $\mathrm{n}>0$

$$
=P_{0}(t)(1-\lambda \delta)
$$

$P_{\mathbf{n}}(\mathbf{t}+\boldsymbol{\delta})=P(\mathrm{n}$ arrivals in ($0, \mathrm{t}+\boldsymbol{\delta})$)
$=P(n$ arrivals in ($0, t)$) $\mathbf{P (n o}$ arrivals in ($\mathbf{t}, \mathrm{t}+\boldsymbol{\delta})$)
$+P(n-1$ arrivals in ($0, t)) P(1$ arrival in ($t, t+\delta)$)
$=P_{n}(t)(1-\lambda \delta)+P_{n-1}(t)(\lambda \delta)$

- The above equations can be written as

$$
\begin{aligned}
& {\left[P_{0}(t+\delta)-P_{0}(t)\right] / \delta=-\lambda P_{0}(t), \text { and }} \\
& {\left[P_{n}(t+\delta)-P_{n}(t)\right] / \delta=-\lambda P_{n}(t)+\lambda P_{n-1}(t), n>0}
\end{aligned}
$$

Kolmogorov Forward Differential Equations - cont'd

- Take the limit as $\boldsymbol{\delta} \boldsymbol{\rightarrow} \mathbf{0}$, the previous equations can be written as:
$d P_{0}(t) / d t=-\lambda P_{0}(t)$, and
$d P_{n}(t) / d t=-\lambda P_{n}(t)+\lambda P_{n-1}(t), \quad n>0$
- Verify that $\mathbf{P}_{\mathbf{k}}(\mathbf{t})$ given by

$$
P_{k}(t)=\frac{(\lambda t)^{k}}{k!} e^{-\lambda t} \quad k=0,1, \ldots
$$

is a solution for the Kolmogorov Forward differential equations

Kolmogorov Forward Differential Equations - cont'd

- Another form for the Kolmogorov D.E. is as follows:

$$
\frac{d \widetilde{P}(t)}{d t}=\Lambda \widetilde{P}(t)
$$

where

$$
\widetilde{P}(t)=\left[\begin{array}{llll}
P_{0}(t) & P_{1}(t) & P_{2}(t) & \ldots . .
\end{array}\right]^{T}
$$

$$
\Lambda=\left[\begin{array}{ccccc}
-\lambda & 0 & 0 & 0 & \ldots \\
\lambda & -\lambda & 0 & 0 & \ldots \\
0 & \lambda & -\lambda & 0 & \ldots \\
0 & 0 & \lambda & -\lambda & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

Adding Poisson Processes

- Sum of two INDEPENDENT Poisson processes
- Consider an incremental interval $\boldsymbol{\delta}$
- The probability of an arrival from either source is $\lambda_{1} \delta$ (1- $\left.\lambda_{2} \delta\right)+\left(1-\lambda_{1} \delta\right) \lambda_{2} \bar{\delta} \approx\left(\lambda_{1}+\lambda_{2}\right) \bar{\delta}$
- The probability of arrivals from both source is $\lambda_{1} \delta \lambda_{2} \delta$ $=\lambda_{1} \lambda_{2} \delta^{2} \approx 0$
- Therefore, the sum is a Poisson process with rate ($\boldsymbol{\lambda}_{1}+\boldsymbol{\lambda}_{2}$)

Splitting Poisson Processes

- Splitting of a Poisson processes
- Consider an incremental interval $\boldsymbol{\delta}$
- The probability of an arrival to bin 1: $\boldsymbol{\lambda} \mathbf{p}$
- The probability of an arrival to bin 1: $\boldsymbol{\lambda} \mathbf{\delta}(1-\mathrm{p})$
- Since subsequence arrivals to either bins are independent and identically distributed
- Therefore, the arrivals processes to bin 1 and 2 Poisson with rate p λ and (1-p) λ, respectively

Pure Birth Processes

- Poisson process is a member of a wider class of "pure birth processes"
- In general the probability of an arrival in an interval δ can be function of the number in the system, $\boldsymbol{\lambda}_{\mathrm{n}} \delta$
- The corresponding state diagram will be

Pure Birth Processes - cont'd

- In the same manner, you can show that the corresponding Kolmogorov D.E are given by
$d P_{0}(t) / d t=-\lambda_{0} P_{0}(t)$, and
$d P_{n}(t) / d t=-\lambda_{n} P_{n}(t)+\lambda_{n-1} P_{n-1}(t), \quad n>0$
Subject to the condition $\quad \sum_{n=0}^{\infty} P_{n}(t)=1$

Pure Birth Processes - cont'd

- Putting the Kolmogorov D.E.s in a matrix form:

$$
\frac{d \widetilde{P}(t)}{d t}=\Lambda \widetilde{P}(t)
$$

$$
\widetilde{P}(t)=\left[\begin{array}{llll}
P_{0}(t) & P_{1}(t) & P_{2}(t) & \ldots . .
\end{array}\right]^{T}
$$

$$
\Lambda=\left[\begin{array}{ccccc}
-\lambda_{0} & 0 & 0 & 0 & \ldots \\
\lambda_{0} & -\lambda_{1} & 0 & 0 & \ldots \\
0 & \lambda_{1} & -\lambda_{2} & 0 & \ldots \\
0 & 0 & \lambda_{2} & -\lambda_{3} & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

Example: Yule-Furry Process

- For Yule-Furry process, $\boldsymbol{\lambda}_{\mathrm{n}}=\mathbf{n} \boldsymbol{\lambda}$ - linear rate with system population
- The evolution equations are then given by

$$
d P_{n}(t) / d t=-n \lambda P_{n}(t)+(n-1) \lambda P_{n-1}(t) ; n \geq k
$$

- For the initial condition $\mathbf{P}_{\mathbf{k}}(\mathbf{0})=\mathbf{1}$ for some $\mathbf{k}>\mathbf{0}$, show that

$$
P_{n}(t)=\binom{n-1}{k-1} e^{-n \lambda t}\left(1-e^{-\lambda t}\right)^{n-k} \quad n \geq k, t \geq 0
$$

is a solution

Poisson Arrivals See Time Averages (PASTA)

Birth And Death Processes

- The corresponding state diagram is as shown:

- The Kolmogorov D.E are given by

$$
\begin{aligned}
& d P_{0}(t) / d t=-\lambda_{0} P_{0}(t)+\mu_{1} P_{1}(t), \text { and } \\
& d P_{n}(t) / d t=-\left(\lambda_{n}+\mu_{1}\right) P_{n}(t)+\lambda_{n-1} P_{n-1}(t)+\mu_{n+1} P_{n+1}(t), n>0
\end{aligned}
$$

Subject to the condition $\sum_{n=0}^{\infty} P_{n}(t)=1$

Birth And Death Processes - cont'd

- Putting the Kolmogorov D.E.s in a matrix form:

$$
\frac{d \widetilde{P}(t)}{d t}=M \widetilde{P}(t)
$$

$$
\begin{aligned}
& \widetilde{P}(t)=\left[\begin{array}{llll}
P_{0}(t) & P_{1}(t) & P_{2}(t) & \ldots . .
\end{array}\right]^{T} \\
& M=\left[\begin{array}{ccccc}
-\lambda_{0} & \mu_{1} & 0 & 0 & \cdots \\
\lambda_{0} & -\lambda_{1}-\mu_{1} & \mu_{2} & 0 & \cdots \\
0 & \lambda_{1} & -\lambda_{2}-\mu_{2} & \mu_{3} & \cdots \\
0 & 0 & \lambda_{2} & -\lambda_{3}-\mu_{3} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
\end{aligned}
$$

Global Balance Equations

- Steady state solution $\rightarrow \mathrm{dP}(\mathrm{t}) / \mathrm{dt}=\mathbf{0}$
- The resulting set of equations:

$$
\lambda_{0} P_{0}=\mu_{1} P_{1}, \text { and }
$$

$$
\left(\lambda_{n}+\mu_{n}\right) P_{n}=\lambda_{n-1} P_{n-1}+\mu_{n+1} P_{n+1}, \quad n>0
$$

In addition to the normalizing condition $\sum_{n=0}^{\infty} P_{n}=1$

Global Balance Equations - cont'd

- The state transition flow diagram:

- We can show the solution for the global balance equation is given by and

$$
P_{n}=P_{0} \prod_{i=1}^{n} \frac{\lambda_{i-1}}{\mu_{i}}
$$

$$
P_{0}=\left[1+\sum_{n=1}^{\infty} \prod_{i=1}^{n} \frac{\lambda_{i-1}}{\mu_{i}}\right]^{-1}
$$

The basis for all queueing formula to come!!

Queueing Models: M/M/1

- Making the substitutions: $\lambda_{\mathrm{n}}=\boldsymbol{\lambda}$ and $\mu_{\mathrm{n}}=\mu$, and defining $\rho=\lambda / \mu$, one can write

$$
P_{n}=(1-\rho) \rho^{n} \quad n=0,1,2, \ldots
$$

or

$$
P(z)=\frac{1-\rho}{1-z \rho}
$$

- The mean and variance of number of customers in system, $\mathrm{E}[\mathrm{N}]$ and $\operatorname{Var}[\mathrm{N}]$ are given by

$$
E[N]=\frac{\rho}{1-\rho} \quad \operatorname{Var}[N]=\frac{\rho}{(1-\rho)^{2}}
$$

- The mean delay in the M/M/1 queue can be obtained through the application of Little's formula:

$$
E[D]=E[N] / \lambda=\frac{1}{\mu-\lambda}
$$

M/M/1- Delay Distribution

- The probability of \mathbf{n} customers as a departing customer departs after spending \mathbf{t} seconds in system is given by
$P[n$ customers in system/delay of departing customer $=t]=\frac{(\lambda t)^{n} \exp (-\lambda t)}{n!}$
or

$$
\begin{aligned}
& P_{n}=\int_{0^{\infty}}^{\infty} \frac{(\lambda t)^{n} e^{-\lambda t}}{n!} d(t) d t \quad n=0,1, \ldots \\
& P(z)=\sum_{n=0}^{\infty} p_{n} z^{n}=\sum_{n=0}^{\infty} z^{n} \int_{0}^{\infty} \frac{(\lambda t)^{n}}{n!} e^{-\lambda t} d(t) d t \\
& P(z)=\int_{0}^{\infty} e^{-\lambda \lambda(1-z)} d(t) d t=D(\lambda(1-z))
\end{aligned}
$$

Note this probability is the same as the probability of \mathbf{n} customers in system -

$$
P(z)=\frac{(1-\rho)}{1-\rho z}
$$

M/M/1- Delay Distribution

- Also equal to the probability of finding \mathbf{n} customers in system by an arriving customer (refer to PASTA property)

$$
\frac{(1-\rho)}{1-\rho z}=D(\lambda(1-z))
$$

Since $d(t)$ is the PDF for the total delay time Therefore, $D(s)$ is given by

$$
D(s)=\frac{\mu-\lambda}{s+\mu-\lambda}
$$

i.e. the delay for $M / M / 1$ queue is exponentially distributed with mean $1 /(\mu-\lambda)$,

$$
d(t)=(\mu-\lambda) e^{-(\mu-\lambda) t} \quad t \geq 0
$$

Queueing Models: M/M/1/L

- Finite Capacity Case: $\boldsymbol{\lambda}_{\mathbf{j}}=\boldsymbol{\lambda}$ for $\mathbf{j}<\mathbf{L}$

0 for $\mathrm{j} \geq \mathrm{L}$
also

$$
\mu_{j}=\mu
$$

- The state-transition flow diagram of M/M/1/L queue is as shown below

Queueing Models: M/M/1/L - cont'd

Steady-state pmf is given by

$$
P_{n}= \begin{cases}\frac{(1-\rho) \rho^{n}}{1-\rho^{L+1}} & n \leq L \\ 0 & n>L\end{cases}
$$

- What is $P(z)$ equal to?
- In particular, the blocking probability, $\boldsymbol{P}_{\boldsymbol{L}}$ is given by the relation above for $\mathrm{n}=\mathrm{L}$

Queueing Models: M/M/1/L - cont'd

- In particular, the blocking probability, $\boldsymbol{P}_{\boldsymbol{L}}$ is given by the relation above for $\mathbf{n}=\mathbf{L}$

$$
P_{L}=\frac{(1-\rho) \rho^{L}}{1-\rho^{L+1}}
$$

Example: M/M/1/L - cont'd

- Problem: A voice signal is digitized at a rate of 8000 bps. The average length of a voice message is 3 min . Messages are transmitted on a DS-1 line, which has the capacity of 1.344 Mbps. While waiting for transmission, the messages are stored in a buffer which has a capacity of $10^{\mathbf{7}}$ bit. Plot the blocking probability versus the voice message arrival rate.

Example: M/M/1/L - cont'd

Solution:

```
voice multiplexing - page 91
0003 clear all
0004 LineWidth = 3;
0005
0 0 0 6 ~ D S 1 \_ C a p a c i t y ~ = ~ 1 . 3 4 4 e 6 ; ~ \% ~ b i t s / s e c ~
0 0 0 7 ~ B u f f S i z e B i t s ~ = ~ 1 e 7 ; ~ \% ~ d i f f e r e n t ~ t h a n ~ t e x t b o o k
0 0 0 8 ~ B P S P e r V o i c e M s g ~ = ~ 8 0 0 0 ; \% ~ b p s ~ p e r ~ v o i c e ~ m s g ~
0 0 0 9 ~ V o i c e M s g D u r a t i o n ~ = ~ 3 * 6 0 ; ~ \% ~ s e c o n d ;
0010 VoiceMsgSizeBits = VoiceMsgDuration * BitsPerVoiceMsg;
0 0 1 1 ~ S e r v i c e T i m e ~ = ~ V o i c e M s g S i z e B i t s ~ / ~ D S 1 \_ C a p a c i t y ; ~
0012 % # of msgs buffer can fit
0 0 1 3 ~ B u f f e r S i z e M s g s ~ = ~ f l o o r ( B u f f S i z e B i t s / V o i c e M s g S i z e B i t ~
0014
016 Lamda = [0:Step:(1-Step)/serviceTime]
017 Rho = Lamda * ServiceTime
019
020% Plot results
021 figure(1)
023 set(h, 'LineWidth', Linewidth);
l
0026 axis([lllllll
0008 BPSPerVoiceMsg \(=8000 ; \%\) bps per voice msg
0010 VoiceMsgSizeBits = VoiceMsgDuration * BitsPerVoiceMsg
0011 ServiceTime = VoiceMsgSizeBits / DS1 Capacity;
0012 \% \# of msgs buffer can fit
0013 BufferSizeMsgs = floor(BuffSizeBits/VoiceMsgSizeBit
0015 Step \(=0.01\)
016 Lamda \(=\) [0:Step:(1-Step)/ServiceTime]
\(\begin{aligned} & 017 \mathrm{Rho}=\text { Lamda } * \text { Servicetime } \\ &=(1-\text { Rho }) . * R h o \wedge B u f f e r ~\end{aligned}\)
0029 \% Plot results
\(023 \mathrm{het}(\mathrm{h}\), 'Liot (Lamda, PBidth', Linewidth)
024 ylabel ('overflensage arrival ;
```


Note since voice message size is 1440000 bits, then buffer size can not be 10^{6} bits as stated in the textbook. Here we use buffer size of 10^{7} bits which means, buffer can accommodate 6 voice messages before it overflows. Refer to example 3.7 page 91 in textbook

Queueing Models: M/M/S Multiserver Systems

- Assume S servers system, therefore:

$$
\begin{array}{r}
\mu_{\mathrm{j}}=\mathrm{j} \mu \text { for } \mathrm{j} \leq \mathrm{S} \\
\mathrm{~S} \mu \text { for } \mathrm{j}>\mathrm{S} \\
\lambda_{\mathrm{j}}=\boldsymbol{\lambda} \text { for all } \mathrm{j}
\end{array}
$$

and

- The state-transition flow diagram of M/M/S queue is as shown below

Queueing Models: M/M/S Multiserver Systems - cont'd

- Solving the balance equations, results in

$$
P_{j}= \begin{cases}\frac{P_{0} \rho^{j}}{j!} & j \leq S \\ \frac{P_{0} \rho^{j}}{S!S^{j-S}} & j>S\end{cases}
$$

P_{0} is calculated as

$$
P_{0}=\left[\sum_{j=0}^{s-1} \frac{\rho^{j}}{j!}+\frac{S \rho^{s}}{S!(S-\rho)}\right]^{-1}
$$

- The traffic utilization, $\rho=\lambda / \mu$
- Note the condition for solution validity is $\mathbf{\rho} / \mathbf{S}<\mathbf{1}$ i.e. in the S-server case, the traffic load ranges 0 to S .

Queueing Models: M/M/S -
 Multiserver Systems - cont'd

- The probability of queueing is equal to the probability of finding all S servers busy, therefore,

$$
P_{c}(S, \rho)=\sum_{j=S}^{\infty} P_{j}=P_{0} \frac{\rho^{S}}{S!} \frac{S}{(S-\rho)}
$$

- The mean number of customers in queue, $\mathrm{E}[\mathrm{Nq}]$, is given by

$$
\bar{Q}=E[N q]=\sum_{j=0}^{\infty} j P_{j+s}=P_{0} \frac{\rho^{S}}{S!} \frac{S \rho}{(S-\rho)^{2}}
$$

Queueing Models: M/M/S Multiserver Systems - cont'd

- Therefore, the relation between average number of customers in queue and probability of queueing is given by

$$
\bar{Q}=\frac{P_{c} \rho}{(S-\rho)}
$$

- Applying Little's formula to compute the average queue delay

$$
\bar{D}_{Q}=\frac{\bar{Q}}{\lambda}=\frac{P_{c} \rho}{\lambda(S-\rho)}
$$

Exercise: M/M/S/m

- Show that the waiting time distribution is given by

$$
F_{W}(x)=1-\frac{p_{c} S}{S-\rho} e^{-\mu(S-\rho) x} \quad x>0
$$

Example: M/M/S/ ∞

- Problem: a $160 \mathrm{~kb} / \mathrm{s}$ line is used for data transmission. Two options are provided
a) Implement a 16-channel TDM scheme where every channel provides 10 kb/s.
b) Use the overall trunk as one fat data transmission pipe.
Assume data frames arrive at a Poisson rate $\boldsymbol{\lambda}$ and are exponentially distributed in length with average of 2000 bits per frame.

Which scheme provides less delay?

Example: M/M/S/o - cont'd

- Solution:

a) $\mathbf{S}=16$ servers - Model M/M/S

$$
R_{c}=10 \mathrm{~kb} / \mathrm{s} \rightarrow \mathrm{E}[\tau]=1 / \mu=2000 / 10=200 \mathrm{msec}
$$

$$
\rho=\lambda / \mu=\lambda E[\tau]=200 \lambda
$$

$$
E[T]=E[W]+E[\tau]=E[N q] / \lambda+E[\tau]
$$

$$
=P_{c}(1 / \mu) /(S-\rho)+E[\tau]
$$

b) $S=1$ server - Model M/M/1
$R_{c}=160 \mathrm{~kb} / \mathrm{s} \rightarrow \mathrm{E}[\tau]=1 / \mu=2000 / 160=1.25 \mathrm{msec}$
$\rho=\lambda / \mu=\lambda E[\tau]=1.25 \lambda$
$E[T]=E[W]+E[\tau]=E[N q] / \lambda+E[\tau]$
$=1 /(\mu-\lambda)$

Example: M/M/S/ ∞ = cont'd

- Solution:

For option (a)

- minimum service time is equal to $\mathbf{2 0 0} \mathbf{~ m s e c}$

For option (b)

- minimum service time is equal to 1.25 msec

Option (b) provides better (less) system

Note: The x-axis in the textbook graph is not correct (Example 3.8 page 94). Verify?

Example: M/M/S/ ∞ - cont'd

Queueing Models: M/M/S/L

- S server model with finite waiting room
- Assuming L $\geq \mathbf{S}$, we have

$$
\begin{aligned}
\mu_{j} & =j \mu \text { for } j \leq S \\
& S \mu \text { for } j>S \\
\lambda_{j}= & \lambda \text { for } j<L \\
& 0 \text { for } j \geq L
\end{aligned}
$$

and

- The state transition flow diagram M/M/S/L queue

(S-1) $\mu \quad \mathrm{S} \mu$

$\mathrm{S} \mu \quad \mathrm{S} \mu$

Queueing Models: M/M/S/S

- Special case of M/M/S/L where L = S;
- The state transition flow diagram M/M/S/S queue

Queueing Models: M/M/S/S - cont'd

- Solving the balance equation yields:
and

$$
P_{n}=\frac{P_{0} \rho^{n}}{n!} \quad n=0,1,2, \ldots, S
$$

$$
P_{0}=\left[\sum_{n=0}^{s} \frac{\rho^{n}}{n!}\right]^{-}
$$

- When an arrival finds all S servers busy, it is blocked or dropped (no waiting room) - Probability of blocking is given by

$$
\begin{aligned}
& P_{B}(S, \rho)=\frac{\rho^{S} / S!}{\sum_{n=0}^{S} \frac{\rho^{n}}{n!}} \\
& P_{B}(S, \rho)=\frac{\rho P_{B}(S-1, \rho)}{S+\rho P_{B}(S-1, \rho)}
\end{aligned}
$$

where $\boldsymbol{P}_{\mathbf{B}}(\mathbf{0}, \mathrm{\rho})=\mathbf{1}$

- Insensitivity Property of Erlang-B formula: Blocking probability does NOT DEPEND on the distribution of the service time, but rather its mean!!

Example: M/M/S/S

- Problem: constant length frames of $\mathbf{1 0 0 0}$ bit each arrive an a multiplexer which has 16 output lines, each operating at a 50 kb / s rate. Suppose that frames arrive at an average rate of 1,440,000 frame per hour. There is no storage; thus if a frame is not served immediately it lost.
Calculate the blocking probability at the multiplexer.

Example: M/M/S/S - cont'd

- Solution:
frame arrival rate, $\lambda=1,440,000$ frame/hour

$$
\text { = } 400 \text { frame } / \mathrm{sec}
$$

frame service time, $1 / \mu=1000 / 50 \mathrm{~kb} / \mathrm{s}$

$$
=0.02 \mathrm{sec}
$$

Traffic intensity, $\rho=\lambda / \mu=8$ Number of servers, $S=16$ (verify $\rho / S<1$)

Using the iterative formula $\boldsymbol{\rightarrow}$

S	1	2	3	4	5	6	7	8
$\mathrm{P}_{\mathrm{B}}(\mathrm{S}, \rho)$	0.8889	0.7805	0.6755	0.5746	0.4790	0.3898	0.3082	0.2356
S	9	10	11	12	13	14	15	16
$\mathrm{P}_{\mathrm{B}}(\mathrm{S}, \mathrm{\rho})$	0.1731	0.1217	0.0813	0.0514	0.0307	0.0172	0.00	0.0045

M/M/S/S - Infinite Servers Case

- Special case of the M/M/S/S queue
- Let $S \rightarrow \infty$, i.e. an arriving customer always has a server available
- The probability of system in state zero is given by

$$
P_{0}=\left[\sum_{n=0}^{\infty} \frac{\rho^{n}}{n!}\right]^{-1}=e^{-\rho}
$$

- Therefore, the probability of system in state $\mathbf{n} \geq \mathbf{0}$ is computed as

$$
P_{n}=\frac{\rho^{n}}{n!} e^{-\rho}
$$

Which is the Poisson distribution!!

Finite Source Queueing - Engset Distribution

- Assume a finite population of \mathbf{N} - each generate a message with rate λ (or with probability $\lambda \bar{\delta}$ in the interval ($\mathrm{t}, \mathrm{t}+\mathrm{\delta}$)). The next message is not transmitted till the prior one is served. Assume no storage case, i.e. if a source generates a message when no server is available, the message is lost and the source returns to idle state immediately.
- The state transition flow diagram is as shown:

Finite Source Queueing - Engset Distribution - cont'd

- The departure and arrival rates are

$$
\begin{array}{ll}
\mu_{n}=n \mu & n \leq S \\
\lambda_{n}=(N-n) \lambda & n \leq S-1
\end{array}
$$

- You can show that the pmf is given by
and

$$
\begin{aligned}
P_{n} & =P_{0}\binom{N}{n}\left(\frac{\lambda}{\mu}\right)^{n} \quad n=0,1, \ldots, S \\
P_{0} & =\left[\sum_{n=0}^{S}\binom{N}{n}\left(\frac{\lambda}{\mu}\right)^{n}\right]^{-1}
\end{aligned}
$$

- Remember $\boldsymbol{P}_{\boldsymbol{s}}$ is the probability of blocking

Finite Source Queueing - Engset Distribution - cont'd (2)

- Consider the case for $\mathbf{N} \leq \mathbf{S}$
- Derive Pn and P0
- Is there a blocking probability?
- The textbook provides the final answers but you need to show the solutions!!

More Generalization - Cox Network

- Consider the network of stages shown - Cox Network
- Prob of going through exactly i stages: $\prod_{j=0}^{i-1} q_{j}\left(1-q_{i}\right)$
- Assume $\boldsymbol{q}_{\mathbf{0}}=\mathbf{1}, \boldsymbol{q}_{\boldsymbol{K}}=\mathbf{0}$, then $\quad \sum_{i=1}^{K} \prod_{j=0}^{i-1} q_{j}\left(1-q_{i}\right)=1$

Characterization of Cox Network con't

- The Laplace transform of the service time if i stages are used:

$$
M_{T / i}(s)=\prod_{j=1}^{i} \frac{\mu_{i}}{s+\mu_{i}}
$$

- The Laplace transform for the service time in K-stages network:
$M(s)=q_{0}\left(1-q_{1}\right) \frac{\mu_{1}}{s+\mu_{1}}+q_{0} q_{1}\left(1-q_{2}\right) \frac{\mu_{1}}{s+\mu_{1}} \frac{\mu_{2}}{s+\mu_{2}}$
$+q_{0} q_{1} q_{2}\left(1-q_{3}\right) \frac{\mu_{1}}{s+\mu_{1}} \frac{\mu_{2}}{s+\mu_{2}} \frac{\mu_{3}}{s+\mu_{3}}+\cdots+q_{0} q_{1} q_{2} \cdots q_{K-1}\left(1-q_{K}\right) \frac{\mu_{1}}{s+\mu_{1}} \frac{\mu_{2}}{s+\mu_{2}} \cdots \frac{\mu_{K}}{s+\mu_{K}}$
$M(s)=\sum_{\substack{i=1 \\ 11 \\ 11 \\ i \\ i \\ i \\ i \\ i \\ j}}^{i-1} q_{j}\left(1-q_{i}\right) \prod_{k=1}^{i} \frac{\mu_{k}}{s+\mu_{k}}$

Characterization of Cox Network con't

- M(s) given by

$$
M(s)=\sum_{i=1}^{K} \prod_{j=0}^{i-1} q_{j}\left(1-q_{i}\right) \prod_{k=1}^{i} \frac{\mu_{k}}{s+\mu_{k}}
$$

is known as the Coxian distribution

- For many service time distributions, that can be represented by a rational function of s, they can be put in the form of $\mathbf{M (s)}$
- Therefore, the method of stages provides a method to solve for generalized service time distribution
- However, solving for the coefficients of $\mu \mathbf{k} /(\mathbf{s}+\mu \mathbf{k})$ is not trivial.

Characterization of Cox Network con't

- You can show (refer to textbook), the mean is given by

$$
\begin{aligned}
E[T] & =\sum_{i=1}^{K} \prod_{j=0}^{i-1} q_{j}\left(1-q_{i}\right) \sum_{k=1}^{i} \frac{1}{\mu_{k}} \\
& =\sum_{i=1}^{K} \frac{\prod_{j=0}^{i-1} q_{j}}{\mu_{i}}
\end{aligned}
$$

Characterization of Cox Network con't

- Note that for $q_{i}=1$, and $\mu_{i}=\mu$ for all i, then the expression for $M(s)$ reduces to

$$
M(s)=\left(\frac{\mu}{s+\mu}\right)^{K}
$$

which the K-stage Erlang-distribution previously discussed on slide 56

- The expected delay in this case is given by

$$
E[T]=\frac{K}{\mu}
$$

Insensitivity Property of Erlang B

- Example 3.10 - Consider a single server system with K identical stages. Assume a pure blocking system in which there is no queueing. I.e. an arriving message that finds the server busy is lost, otherwise it enters the first stage. Assume Poisson arrivals with rate λ message per second.

Insensitivity Property of Erlang B cont'd

Solution:

- The state of the system is the stage where the message is being served
- The state transition flow diagram is as shown
- The equilibrium equations are given by

$$
\begin{aligned}
& \mathbf{P O} \lambda=v \mathbf{P K}, \\
& \mathbf{P} 1 v=\lambda \mathbf{P 0} \\
& \mathbf{P 2} v=v \mathbf{P 1} \ldots \\
& \mathbf{P K} v=v \mathbf{P K}-1
\end{aligned}
$$

$P 0=1 /[K(\lambda / v)+1)$, and

$$
\text { Pn }=(\lambda / v) /[K(\lambda / v)+1], \mathbf{n}=1,2, \ldots, K
$$

Insensitivity Property of Erlang B cont'd

Solution:

- The blocking probability is equal to P1 + P2 + ... + PK, i.e.

$$
P_{B}=\sum_{i=1}^{K} P_{i}=\frac{K \lambda / v}{1+K(\lambda / v)}
$$

- Note that K / v is the mean service time.

$$
P_{B}=\frac{(\text { arrival rate }) \times(\text { average service time })}{1+(\text { arrival rate }) \times(\text { average service time })}
$$

- Compare this result to the M/M/S/S case where $S=1 \rightarrow$ same form
- Here $1 / v$ is the mean service time

Insensitivity Property of Erlang B cont'd

Example 3.11:

- M/E ${ }^{(2)} / 2 / 2$ - system with two servers, each with two identical stages
- No storage place
- The equilibrium equations
- Therefore, the blocking probability, PB is given by p11+p02+p20. Hence

$$
P_{B}=\frac{2(\lambda / v)^{2}}{1+2(\lambda / v)+2(\lambda / v)^{2}}
$$

- Here mean service time $=$ 2/v

$2 v P_{02}=v P_{11}$
$(\lambda+\nu) P_{10}=\lambda P_{00}+\nu P_{11}$
$2 \nu P_{20}=\lambda P_{10}$
$2 \nu P_{11}=\lambda P_{01}+2 \nu P_{20}$

Example: M/G/N/N

- Consider a queueing system where
- Arrivals are Poisson with rate $\boldsymbol{\lambda}$
- N servers and no waiting room
- Each server is a Coxian server with K stages
- Objective: compute blocking probability? And show that it depends only on the mean service rate and the mean arrival
rate (i.e. no dependence on the probability distribution of the service time - the insensitivity property of the Erlang-B formula)

Example: M/G/N/N - cont'd

- System state: K-dimensional vector
- i.e. state $=\left(k_{1}, k_{2}, \ldots, k_{k}\right)-$ where $k_{i} ; i=1,2$, ..., K is the number of customers in stage I
- Obviously, sum of $\mathbf{k}_{\mathbf{i}} \mathbf{s}$ should be less or equal to \mathbf{N}. Note it is equal to \mathbf{N} if all servers are busy - remember too that only one customer can be in any server!!

Example: M/G/N/N - cont'd

- Consider a case where $\mathbf{N}=3$ and $K=2$.

Example: M/G/N/N - cont'd

- System States: examples

Example: M/G/N/N - cont'd

- Exercise: For the $K=2, N=3$ case explained before
- A) draw the state transition diagram
- B) show that the state equilibrium equations
(3.76 and 3.77) are satisfied
- C) derive the detailed balance equation 3.78
- Deliver a soft copy in power point of the detailed solution

Example: M/G/N/N - Blocking

Probability

- Blocking probability is equal to the probability of system being in states where the sum of $\mathbf{k}_{\mathbf{i}} \mathbf{s}$ is equal to N. i.e.

$$
P_{B}=\operatorname{Pr} o b\left(\sum_{i=1}^{K} k_{i}=N\right)
$$

- The textbook shows that the blocking probability is given by

$$
P_{B}=\frac{P(0)}{N!}\left[\lambda \sum_{i=1}^{K} \prod_{j=0}^{i-1} q_{j}\right]^{N}
$$

where $P(0)$ is a constant term found through the normalization equation

- Refer for textbook for derivation details.

