

















 <u>Problem</u>: Let Ns(t) be the number of customers being served at time t, and let τ denote the service time. If we designate the set of servers to be the "system" then Little's formula becomes:

 $\mathbf{E}[\mathbf{Ns}] = \mathbf{\lambda}\mathbf{E}[\tau]$ 

where E[Ns] is the average number of busy servers for a system in the steady state.

11/17/2009

Dr. Ashraf S. Hasan Mahmoud

9

<section-header><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><text><text><text><equation-block><text>

















## Kolmogorov Forward Differential Equations – cont'd



## <section-header><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block>





































## Example: M/M/1/L – cont'd

 Problem: A voice signal is digitized at a rate of 8000 bps. The average length of a voice message is 3 min. Messages are transmitted on a DS-1 line, which has the capacity of 1.344 Mbps. While waiting for transmission, the messages are stored in a buffer which has a capacity of 10<sup>7</sup> bit. Plot the blocking probability versus the voice message arrival rate.

11/17/2009

Dr. Ashraf S. Hasan Mahmoud

39





























 <u>Problem</u>: constant length frames of 1000 bit each arrive an a multiplexer which has 16 output lines, each operating at a 50 kb/s rate. Suppose that frames arrive at an average rate of 1,440,000 frame per hour. There is no storage; thus if a frame is not served immediately it lost.
Calculate the blocking probability at the

multiplexer.

11/17/2009

Dr. Ashraf S. Hasan Mahmoud

53













## $\begin{aligned} & \textbf{Characterization of Cox Network - construction of the service time for the service ti$

























