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Random/Stochastic Processes
• Consider a random experiment specified by the 

outcomes ζ from some sample space S, by the 
events defined on S, and by the probabilities onevents defined on S, and by the probabilities on 
these events. Suppose that every outcome ζ  S, 
we assign a function of time according to some 
rule:

X(t, ζ) t  I

The graph of X(t ζ) versus t for ζ fixed is called a
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The graph of X(t, ζ) versus t, for ζ fixed, is called a 
REALIZATION or sample path of the random 
process

A stochastic process is said to be discrete-time if the 
index set I is a countable set
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Random/Stochastic Processes –
cont’d
• For each fixed tk from 

the index set I, X(tk, ζ) 
X(t, ζ1) 

is a random variable
• {X(t, ζ) , t  I} forms 

an indexed family of 
random variables  a 
random or stochastic 
process

t

X(t, ζ2) 

t1

t1

t

t2

t3

t

tk

tk
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• Figure shows two 
realizations of a 
random process       

tt2 t3

Random/Stochastic Processes –
cont’d
• A stochastic process is said to be 

discrete-time if the index set I is a 
countable set

• Continuous-time stochastic process is 
one in which I is continuous
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Example 1: Discrete Random 
Process
• Let ζ be a number selected at random 

from the interval S =[0,1], and let b1, b2, [ , ], , ,
… be the binary expansion of ζ:

Define the discrete time random process
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Define the discrete-time random process 
X(n, ζ) by

X(n, ζ) = bn for n =1, 2, …

Example 1: cont’d
• Realizations of the random process 

X(n ζ) = b for n =1 2X(n, ζ) = bn for n =1, 2, …

For ζ = 2-2+2-3+2-7

= 0.3828125

X(n, ζ)
1
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n
0

1 2 3 4 5 6 7 8

For any ζ, you can produce
a realization of X(n, ζ)
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Example 2: Discrete Random 
Process
• Problem: For the random process defined 

in the previous example, compute 
P(X(1,ζ) =0) and 
P(X(1,ζ) =0 and X(2,ζ) =1)

• Solution:
P(X(1,ζ) =0) = P(0≤ζ≤1/2) = 1/2
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( ( ,ζ) ) ( ζ / ) /

P(X(1,ζ) =0 AND X(2,ζ) =1) =  
P(1/4≤ζ≤1/2) = ¼

Example 3: Continuous Random 
Process
• Let ζ be a number selected at random from the 

interval S =[- π, π]. Define the continuous-time 
random process X(t, ζ) by

X(t, ζ) = cos(2πt+ ζ)    -  < t < 

The realizations of X(t, , ζ) are time-shifted 
versions of cos(2πt)

ζ 0
X(t, ζ)
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ζ= 0

ζ= π

t
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Example 4: Continuous Random 
Process
• Problem: find the pdf of X0 = X(t0, ζ) in the previous 

example.

• Solution: For all values of t0, 
X0 = cos(θ) 

where θ is a uniform r.v.  [- π+πt0, π+πt0]

Therefore, using the techniques we learned (functions of 
random variables), it can be shown that the pdf of X0 is 
given 
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g

In general fX(t0)(x) is a function of t0
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1

1
20




 x
x

xf tX


Specifying A Random Process –
Joint Distribution of Time Samples
• Let X1, X2, …, Xk be the k random variables 

obtained by sampling the random process X(t, ζ) 
at the times t1, t2, …, tk:at the times t1, t2, …, tk:

X1=X(t1, ζ), X2=X(t2, ζ), …, Xk=X(tk, ζ)
 (X1, X2, …, Xk) vector of random variables

• A stochastic process is specified by the collection 
of kth order joint cumulative distribution function:

( ) ( )
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FX1,…,Xk(x1, x2, …, xk) = P(X1≤x1,X2≤x2, …, Xk≤xk) 

for any k and 
any choice of sampling instants t1, t2, …, tk.
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Specifying A Random Process – Joint 
Distribution of Time Samples - cont’d

• If the stochastic process is discrete-valued. 
The a collection of probability mass p y
functions is used to specify the stochastic 
process:

pX1,…,Xk(x1, x2, …, xk) = P(X1=x1,X2=x2, …, Xk=xk)
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Example 5:
• Let Xn be a sequence of iid Bernoulli 

random variables with p = ½. The joint p j
pmf for any k time samples is then

P(X1=x1,X2=x2, …, Xk=xk) = 2-k xi {0,1}  I

This process is equivalent to that described
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This process is equivalent to that described 
in Example 1.
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Moments of Random Process Time 
Samples
• Partially specify the random process
• Mean mX(t)• Mean, mX(t)

• Autocorrelation (joint moment of X(t1) 
and X(t2)):

       




 dxxxftXEtm tXX
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Moments of Random Process Time 
Samples – cont’d
• Autocovariance of   X(t1) and X(t2)

            ttXttXEttC

• Correlation coefficient of X(t):   

            221121, tmtXtmtXEttC XXX 

   
   2211
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it can be shown that:
       212121 ,, tmtmttRttC XXXX 

    ttCtXVar X ,
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Example 6:
• Let X(t) = cos(ωt+θ) – where θ is 

uniformly distributed in the interval (-y (
π,π). Find mX(t) and CX(t1,t2).
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Example 6: cont’d
• Solution:       tEtmX cos

  


 dxxtcos
2

1  
2

0

        2121 coscos, ttEttCX

   1 2

1
cos cos

2
t x t x dx





 
 

  

       


 dxxtttt 2coscos
11

2121

11/4/2009 Dr. Ashraf S. Hasan Mahmoud 16

note that CX(t1,t2) does NOT depend on t1 and t2
but on |t1 - t2|

      








dxxtttt 2coscos
22 2121

  21cos
2

1
tt  
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Examples of Discrete-Time Random 
Processes – iid Random Processes
• Let Xn be a discrete-time random process consisting of sequence of iid 

random variables with common CDF FX(x), mean m, and variance σ2. The 
joint CDF for any time instants n1, n2, …, nk is given by

FX1,…,Xk(x1, x2, …, xk) = P(X1≤x1,X2≤x2, …, Xk≤xk) 
= FX(x1) FX(x2) … FX(xk)

Note we used Xi to denote Xn_i for simplicity.

Furthermore, 
mX(n) = E[Xn] = m       n

You can show that
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CX(n1, n2) = σ2 δ(n1-n2)     

where         δ(v) = 1 if v = 0
= 0    v ≠ 0 

In the same fashion, RX(n1, n2) = σ2 δ(n1-n2)  + m2

Example 7: Bernoulli Random 
Process
• Let In be sequence of iid Bernoulli random 

variables. In is then an iid random process 
taking on values from the set {0,1}

mI(n) = p,    Var[In] = p(1-p)
• e.g:

P(1001 sequence) 
= P(I1=1, I2=0, I3=0, I4=1) 
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= P(I1=1)P(I2=0)P(I3=0)P(I4=1)
= p2(1-p)2

n

In

0

1
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Example 8:
• Let Dn be define as 2In – 1 where In is the 

Bernoulli random process. Clearlyp y

Dn =  1   if In = 1
-1   if In = 0

n

Dn

-1

1
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mD(n) = E[Dn] = E[2In-1] = 2E[In]-1 = 2p-1
Var[Dn] = Var[2In-1] = 22Var[In] = 4p(1-p)

one sample function

Sum Processes
• Let Sn = X1 + X2 + … + Xn,    n = 1, 2, …

= Sn-1 + Xn

where 
S0 = 0
X1, X2, …, Xn are iid random variables

• Sn is a sum process
• PDF or pmf for Sn is found using the convolution
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PDF or pmf for Sn is found using the convolution 
or characteristic equation methods

• Note: Sn depends in the past, S1, S2, …, Sn-1, 
ONLY through Sn-1. i.e. Sn is independent of the 
past when Sn-1 is known!!
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Sum Processes Generation
• The sum process can be generated as 

follows:

∑
Xn Sn = Sn-1+ Xn
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Unit Delay

Sn-1

Example 9: One-Dimensional 
Random Walk
• Let Dn be the iid process of ±1 random 

variables defined in previous example. Let p p
Sn be the corresponding sum process

n

Sn

1

1

• The pmf of Sn is 
given by
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-1

for k  {0,1, …, n}

    knk
n pp

k

n
nkSP 
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Characteristics of Sum Processes 
of iid Random Variables
• Independent Increments

Sn1- Sn2 and Sn2-Sn3 are independent 
random variables

• Stationary increments
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P(Sn1 – Sn2 = y) = P(Sn1-n2 = y)

Examples Of Continuous-Time Random 
Processes – Poisson Process

• Assume events (e.g. arrivals) occur at rate of λ
events per second. Let N(t) be the number of 
occurrences in the interval [0,t]

 N(t) is non-decreasing integer-valued 
continuous-time random process

N(t)

4

• pmf for N(t) is given 
by
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tS1 S2 S3 S4 S5

1
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3

     t
k

e
k

t
ktNP  

!
for k=0,1, …
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Examples Of Continuous-Time Random 
Processes – Poisson Process – cont’d

• Independent increments

• Stationary increments – the distribution 
for the number of event occurrences in 
ANY interval of length t is given by the 
previous pmf.
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Example 10: Poisson Process
• Problem: Find P(N(t1)=i, N(t2)=j] where N(t) is a 

Poisson process.

• Solution: 
P(N(t1)=i, N(t2)=j] 

= P(N(t1)=i)P(N(t2)-N(t1)=j-i] 
= P(N(t1)=i)P(N(t2-t1)=j-i] 

11/4/2009 Dr. Ashraf S. Hasan Mahmoud 26

(λt1)i e-λt
1 (λ(t2-t1))j-i e-λt

2
-t

1

= ---------- ---------------------
i!                      (j-i)!
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Example 11: Poisson Process
• Problem: N(t) is a Poisson process – Show that T, 

the time between event occurrences is 
exponentially distributedexponentially distributed

• Solution: 
pmf of N(t) is given by

    
,...1,0

!
  ke

k

t
ktNP t

k
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P(T > t) = P(no events in t seconds)
= e-λt

Therefore, P(T ≤ t) = FT(t) = 1-e-λt – i.e. T is 
exponentially distributed with mean 1/λ

Stationary Random Processes
• Nature of randomness observed in the process 

does not change with time

• A discrete-time or continuous-time random 
process X(t) is stationary if the joint distribution 
of any set of sample does not depend on the 
placement of the time origin:

• Joints CDF of X(t ) X(t ) X(t ) is the same as
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• Joints CDF of X(t1), X(t2), …, X(tk) is the same as 
joint CDF of X(t1+), X(t2+), …, X(tk+), i.e.

for all  and all k 

             ktXtXtXktXtXtX xxxFxxxF
kk

,...,,,...,, 11,...,,11,...,, 2121  
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Stationary Random Processes –
cont’d
• First order CDF of a stationary random 

process must be independent of time p p
since

 mean and variance are independent of 
time, i.e.

         ,
11

txFxFxF XtXtX  

    XE 
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     tmtXEtmX 

       tmtXEtXVar  22 

Stationary Random Processes –
cont’d
• Second order CDF of a stationary random 

process depends only on the time p p y
difference between the samples

 RX(t1,t2) and CX(t1,t2) are depend only on 
t -t i e

          txxFxxF ttXXtXtX   21,021, ,,
1221
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t2-t1, i.e.
    211221 ,, ttttRttR XX 

    211221 ,, ttttCttC XX 
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Example: Stationary Random 
Processes
Problem: Is the sum process a discrete-time stationary 

process?

Solution: The sum process is defined by 

Sn = X1 + X2 + … + Xn,    n = 1, 2, …

The process mean and variance are given by

mS(n) = nm      and     Var[Sn] = n σ2
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where m and σ2 are the mean and variance of Xn.

It can be noticed that the mean and variance of the 
process are not constant, but rather increase linearly with 
the time index n. 
 The sum process is NOT stationary

Wide-Sense Stationary Random 
Processes
• In many situations we can not determine 

whether a random process is stationary, but we 
can determine whether the mean is a constant:can determine whether the mean is a constant:

mX(t) = m     for all t

And whether the autocovariance (or 
autocorrelation)  is a function of t1-t2 only:

C ( ) C ( )
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CX(t1,t2) = CX(t1-t2)

 X(t) is a wide-sense stationary (WSS) process
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Example: Wide-Sense Stationary 
Random Processes
• Problem: Let Xn consist of two 

interleaved sequences of independent q p
random variables. For n even, Xn assumes 
the values of ±1 with probability ½; for n 
odd, Xn assumes the values 1/3 and -3 
with probabilities 9/10 and 1/10, 
respectively.
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Is Xn stationary?

Example: Wide-Sense Stationary 
Random Processes
• Solution:

Xn is not stationary since pmf depends on the time index n
E[X ] = +1/2 1/2 = 0 for n evenE[Xn] = +1/2  – 1/2 = 0 for n even

= 1/3X9/10 – 3X1/10 = 0 for n odd
therefore 
E[Xn] = 0 for all n 
One can also show that 
E[Xn

2] = 1 for all n

Th f C (i j) E[X ]E[X ] 0 f i≠j
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Therefore, CX(i,j)= E[Xi]E[Xj] = 0        for i≠j
E[Xi

2] = 1               for i=j

clearly Xn is a wide-sense stationary process
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Time Averages Versus Ensample 
Average
• Ensample average:

X(t, ζ1) 

mX(t)

   
N

iX tX
N

tm ,
1

ˆ 

note the experiment is run 
N times (N realizations), 
and the expectations is 
approximated by the 
arithmetic average given 
above

i

t

t

X(t, ζ2) 

‹X(t)›T


iN 1

11/4/2009 Dr. Ashraf S. Hasan Mahmoud 35

• Time average:

Using one realization t

X(t, ζN) 

   



T

T
T

dtstX
T

tX ,
2

1

Ergodic Processes
• For Ergodic Processes time average 

converges to the expected mean ofconverges to the expected mean of 
the random process
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Markov Process
• A random process X(t) is a Markov Process if the 

future of the process given the present is 
independent of the past.independent of the past.

• For arbitrary times: t1<t2<…<tk<tk+1

Prob[X(tk+1) = xk+1/X(tk)=xk, …, X(t1)=x1]  
=   Prob[X(tk+1) = xk+1/X(tk)=xk]

Or (for discrete-valued)
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Prob[a<X(tk+1)≤b/X(tk)=xk, …, X(t1)=x1] 
=   Prob[a<X(tk+1)≤b/X(tk)=xk]

Markov Property
Markov ≡ Memoryless

Markov Chain
• An integer-valued Markov random process is 

called a Markov Chain

• The joint pmf for k+1 arbitrary time instances is 
given by:

Prob[X(tk+1) = xk+1, X(tk)=xk, …, X(t1)=x1]

= Prob[X(tk ) = xk /X(tk)=xk] X
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= Prob[X(tk+1) = xk+1/X(tk)=xk] X
Prob[X(tk) = xk/X(tk-1)=xk-1] X
…
Prob[X(t2) = x2/X(t1)=x1] X
Prob[X(t1)=x1]  pmf of the initial time

transition probabilities
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Discrete-Time Markov Chains
• Let Xn be a discrete-time integer values 

Markov Chain that starts at n = 0 with 
pmf

pj(0) = Prob[X0 = j]     j=0,1,2, …

Prob[Xn=in, Xn-1=in-1,…,X0=i0] 
= Prob[X =i / X =i ] X
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= Prob[Xn=in/ Xn-1=in-1] X
Prob[Xn-1=in-1/ Xn-2=in-2] X
….
Prob[X1=i1/ X0=i0] X
Prob[X0=i0]

Same as the previous slide 
but for discrete-time 

Discrete-Time Markov Chains –
cont’d (2)
• Assume the one-step state transition 

probabilities are fixed and do not change with 
time:time:

Prob[Xn+1=j/Xn=i] = pij for all n

 Xn is said to be homogeneous in time
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• The joint pmf for Xn, Xn-1, …, X1,X0 is then given 
by

)0(...

],...,,[

010121 ,,,

0011

iiiiiii

nnnn

pppp

iXiXiXP

nnnn
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Discrete-Time Markov Chains –
cont’d (3)
• Thus Xn is completely specified by the initial pmf 

pi(0) and the matrix of one-step transition 
probabilities P:














...

....
...

...

210

121110

020100

iii ppp

ppp

ppp

Pi.e. rows of P 
add to UNITY
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210 iii ppp

  
j

ij
j

nn piXjXP ]/[1 1

Example 6: two-state Markov Chain
• On day 0 a house has two new light bulbs in 

reserve. The probability that the house will need 
a single new light bulb during day n is p and the 
probability that it will not need any is q = 1-p. 
Let Yn be the number of new light bulbs left in 
house at the end of day n.

• Yn is a Markov chain with state transition 
probability as shown

11/4/2009 Dr. Ashraf S. Hasan Mahmoud 42

0 1 2
pp

1-p1-p1
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Example 6: two-state Markov Chain 
– cont’d
• The state transition matrix P is given by


















qp

qpP

0

0

001

Yn = 0      1       2
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 qp0

The n-step Transition Probabilities
• Let P(n) = {pij(n)} be the matrix of n-step 

transition probabilities, where

pij(n) = Prob[Xn+k = j / Xk = i]    n ≥ 0; i,j ≥ 0

Note:
Prob[Xn+k = j / Xk = i] = Prob[Xn = j / X0 = i] for all n – why?
Transition probabilities do not depend on time 

(homogeneous)
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( g )

It can be shown that:
P(n) = {pij(n)}  = Pn – where P is the 1-step 

transition probability matrix
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The State Probabilities
• It can be shown that the state pmf at 

time n is obtained by multiplying the y p y g
initial state pmf, p(0), by the n-step 
transition matrix, P(n), in other words

p(n) = p(0) P(n)
= p(0) Pn
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= p(0) P

Make a distinction between small p and 
capital P! 

Example 7:
• Consider the problem given in Example 6 

– find the n-step transition matrix and p
compute the state pmf p(n)
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Example 7: cont’d
Answer: The n-step transition matrix can be found 

by multiplying P (the 1-step transition matrix) 
by itself n times or alternatively we can use:

p22(n) = Prob[no new light bulbs needed in n days] = qn

p21(n) = Prob[1 light bulb needed in n days] = n p qn-1

p20(n) = Prob[2 light bulbs needed in n days] 
= 1 – p22(n) – p21(n)

p10(n) = Prob[the one light bulb is not needed in n days] = 1 - qn

p11(n) = Prob[ the one light bulb is not needed in n days] = qn
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11

p12(n) = 0

p00(n) = 1
p01(n) = 0
p02(n) = 0

Example 7: cont’d
• Therefore, the n-step transition matrix is 

given by g y




















nnnn

nnn

qnpqnpqq

qqP

1

01

001
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Example 7: cont’d
• Notes:

• For all transition matrices, sum of any rowFor all transition matrices, sum of any row 
SHOULD equal to ONE

• For q = 1-p < 1  as n, then Pn limit is









 001

001

lim nP

11/4/2009 Dr. Ashraf S. Hasan Mahmoud 49











001

001lim
n

P

Example 7: cont’d
• Therefore, if we start with 2 light bulbs, 

then the state pmf p(n) approaches p p( ) pp

p(n) = p(0) Pn

   001

001

001

001

100)( 















np
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001 

Meaning – if n approaches , then it is almost certain we will 
end up in the 0 (no light bulbs) state
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Example 7: Absorbing State
Problem: Consider the Markov chain depicted by the 

shown state diagram. Write the transition matrix. 
If the system is initially in state 1, find the state 
probability at the Nth step.

1 2

1/2

1/41/6

Solution:
The single step 
transition matrix P is 
given by
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34

1/3
1/4

1/4 1/2

3/4

1

given by





















043410

0100

4121041

3102161

P

Example 7: Absorbing State – cont’d
Solution: 

The state probabilities at the Nth step, p(n), are given by  
p(n-1)Pp(n 1)P

Matlab code:
clear all
P = [1/6 1/2  0  1/3; ...

1/4  0  1/2 1/4; ...
0   0   1   0; ...
0  1/4 3/4  0];

P0 = [1 0 0 0];
N = 9;
State_Prob = zeros(N, 4);
State Prob(1,:) = P0;

Nth state probabilities:
Step   State 1   State 2   State 3   State 4
1     0.166667  0.500000  0.000000  0.333333  
2     0.152778  0.166667  0.500000  0.180556  
3     0.067130  0.121528  0.718750  0.092593  
4     0.041570  0.056713  0.848958  0.052758  
5     0.021107  0.033975  0.916884  0.028035  
6     0.012011  0.017562  0.954897  0.015529  
7     0.006392  0.009888  0.975325  0.008394  
8     0.003537  0.005295  0.986565  0.004603 
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State_Prob(1,:)  P0;
for i=2:N 

State_Prob(i,:) = State_Prob(i-1,:) * P;
end
State_Prob

• It can be shown that P(∞) = [0  0  1  0] 
• State 3 is known as an absorbing state
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Concepts - Terms
• Absorbing state
• Closed set• Closed set
• Irreducible Markov Chain
• Recurrent state
• Aperiodic state
• Persistent state
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• Transient state

See the textbook for formal definitions

Steady State Probabilities
• Some Markov chains settle into stationary behavior. As n  , the n-step 

transition matrix approaches a matrix in which all rows are equal to the 
same pmf, that is

pij(n)  j

Therefore,

pj(n)  ∑  j pi(0) = j
i

 j = ∑ pij j
i

O i i f
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Or in matrix form

 =  P - where  = {j}

In general the above formation has n-1 linearly independent equations – the 
additional equation required is provided by

∑ i = 1  or 
i
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Steady State Probabilities – cont’d 
2
• In other words: At steady state (n is very 

large) – the nth state pmf is the same as 
the n+1st state pmf 

• Meaning the nth (n very large) state pmf 
is time invariant (steady state)
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 =  P

 is the steady state pmf
P  is the 1-step transition matrix

Steady State Probabilities – cont’d 
3
• Checking the dimensions:
 is the steady state pmf of dimensions = y p

1Xk  - assuming k states
= [1 2 3 … k] where i 1≤i≤k is the 
steady state probability for being in state 
i

P  is the 1-step transition matrix of 
dimensions k X k
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dimensions k X k 
= {pij} is the Probability of transitioning 
from state i to j
Recall that all rows of P sum to 1
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Example: 8
Problem: A Markov model for packet speech 

assumes that if the nth packet contains p
silence then the probability of silence in 
the next packet is 1- and the probability 
of speech activity is . Similarly if the nth 
packet contains speech activity, then the 
probability of speech activity in next 

k i d h b bili f
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packet is 1- and the probability of 
silence is . Find the stationary state pmf.

Example: 8 – cont’d
Answer: The state diagram is as shown:

The 1-step transition probability, P, is given 
by:

0 1



  1
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State 0: silence
State 1: speech















1

1
P
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Example: 8 – cont’d 2
Answer: The steady state pmf  =[0 1] can be 

solved for using

 =  P
Or 

Or
    

















1

1
1010
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0 = (1-) 0 +  1

1 =  0 + (1-) 1

In addition to the constraint that  0 + 1 = 1

Example: 8 – cont’d 3
Answer: Therefore steady state pmf

 =[0 1] is given by: =[0 1] is given by:

0 = ()
1 = ()
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Note that sum of all i’s should equal to 1!!
For  = 1/10,  = 1/5   =[2/3  1/3]
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Example: 8 – cont’d 4
Answer: Alternatively, one can find a general 

form for Pn and take the limit as n .

Pn can be shown to be: 





































n
nP

)1(1

11/4/2009 Dr. Ashraf S. Hasan Mahmoud 61

Which clearly approaches:

 












 




1
lim n

n
P

Example: 8 – cont’d 5
Answer: If the initial state pmf is p0(0) and 

p1(0) = 1-p0(0)

Then the nth state pmf (n  ) is given by:

p(n) as n  = [p0(0)  1- p0(0)] Pn
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= [/ () / ()]

Same as the solution obtained using the 1-
step transition matrix!!
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Example 9:
Problem: Assume the state diagram of Example 7 was modified as 

shown to eliminate the absorbing state. Find the steady state 
distribution of the chain.

Solution:
Using Matlab, p(n) = p(n-1), P remains ~ constant for n > 40. 

Therefore,  

p(∞) = [0.359  0.223  0.243  0.175] 

Nth state probability:
Step   State 1   State 2   State 3   State 4
33     0.358561  0.223111  0.243027  0.175301  

1 2

1/2

1/41/6
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34     0.358565  0.223106  0.243031  0.175298  
35     0.358568  0.223107  0.243027  0.175298  
36     0.358565  0.223109  0.243027  0.175300  
37     0.358565  0.223107  0.243029  0.175299  
38     0.358567  0.223107  0.243028  0.175298  
39     0.358566  0.223108  0.243027  0.175299  
40     0.358565  0.223108  0.243028  0.175299  
41     0.358566  0.223107  0.243028  0.175299  
42     0.358566  0.223108  0.243028  0.175299 34

1/3
1/4

1/4 1/2

3/4
1

Example 9: cont’d
Solution – cont’d:
Alternatively, one can solve the linear system

 =  P

To find that 
p(∞) = π

= [0.359  0.223  0.243  0.175] 

A third alternative would be to compute P∞, which happens to be as 
shown. Then,

 1750243022303590
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p(∞) = p(0)P∞

which leads to 

p(∞) = π
= [0.359  0.223  0.243  0.175]





















175.0243.0223.0359.0

175.0243.0223.0359.0

175.0243.0223.0359.0

175.0243.0223.0359.0

P



33

Example 10: Multiplexer
Problem: Data in the form of fixed-length packets arrive in 

slots on both of the input lines of a multiplexer. A slot 
contains a packet with probability p, independent of the p p y p, p
arrivals during  other slots or on the other line. The 
multiplexer transmits one packet per time slot and has the 
capacity to store two messages only. If no room for a packet 
is found, the packet is dropped.

a) Draw the state diagram and define the matrix P
b) Compute the throughput of the multiplexer for p = 0.3
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MUX
slotted input

lines

output
line

Example 10: Multiplexer – cont’d
Solution: In any slot time, the arrivals pmf is 

given by
P(j cells arrive) = (1-p)2 j=0

2p(1-p)  j=1
p2 j=2

Let the state be the number of packets in the 
buffer, then the state diagram is shown in 
figure. 

The corresponding transition matrix is also 
given below

1
(1-p)2 2p(1-p)
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1-(1-p)2

0

2(1-p)2

p2

(1-p)2

p2

2p(1-p)

   
   

    




















22

22

22

1110

121

121

pp

pppp

pppp

P
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Example 10: Multiplexer – cont’d
Solution-cont’d: 
Load: average arrivals = 2p packets/slot
Throughput: π1 + π2 (the MUX outputs one packet per slot as long as it exists in states 1 

and 2)
Buffer overflow = Prob(two packet arrivals while in state 2)

= Prob(two arrivals) X π2
= p2 π2

The graphs below show the relation of load versus –throughput and buffer overflow for 
the MUX

0.7

0.8

0.9

1
Mux throughput vs. load

lo
t

0.7

0.8

0.9

1
Mux buffer overflow vs. load
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Example 10: Multiplexer – cont’d
Solution-cont’d: 
The matlab code used for plotted previous results is shown 

below.below.
Make sure you understand the matrix formulation and the 

solution for the steady state probability vector π 

clear all
Step        = 0.02;
ArrivalProb = [Step:Step:1-Step];
A    = zeros(4,3);
E    = zeros(4,1);
E(4) = 1;
for i=1:length(ArrivalProb)

p = ArrivalProb(i);

% matlab code continued
figure(1),
h = plot(2*ArrivalProb, Throughput);
set(h, 'LineWidth', 3); 
title('Mux throughput vs. load');
ylabel(‘throughput: packet per slot');
xlabel(‘load: packet per slot');
grid
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p ( )
P = [(1-p)^2  2*p*(1-p)  p^2; ...

(1-p)^2  2*p*(1-p)  p^2; ...
0        (1-p)^2    1-(1-p)^2];

A(1:3,:) = (P - eye(3))';
A(4,:)   = ones(1,3);
E(4)     = 1;
SteadyStateP = A\E;
% Prob(packet is lost) = Prob(2 arrivals) X 
%                        Prob(being in state 2);
DropProb(i) = p^2*SteadyStateP(3);
Throughput(i) = sum(SteadyStateP(2:3));

end

grid
figure(2),
h = plot(2*ArrivalProb, DropProb);
set(h, 'LineWidth', 3); 
title('Mux buffer overflow vs. load');
ylabel(‘overflow rate');
xlabel(‘load: packet per slot');
grid
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