King Fahd University of Petroleum \& Minerals Computer Engineering Dept

CSE 642 - Computer Systems Performance
Term 041
Dr. Ashraf S. Hasan Mahmoud Rm 22-148-3
Ext. 1724
Email: ashraf@ccse.kfupm.edu.sa

Primer on Probability Theory

What is a Random Variable?

- Random Experiment
- Sample Space
- Def: A random variable X is a function that assigns a number of $X(\zeta)$ to each outcome ζ in the sample space of S of the random experiment

Set Functions

- Define $\boldsymbol{\Omega}$ as the set of all possible outcomes
- Define \mathbf{A} as set of events
- Define A as an event - subset of the set of all experiments outcomes
- Set operations:
- Complementation A^{c} : is the event that event A does not occur
- Intersection A ins B : is the event that event A and B occur
- Union A un B : is the event that event A or B occur
- Inclusion A in B : An event A occurring implying events B occurs

Set Functions

- Note:
- Set of events \mathbf{A} is closed under set operations
- Φ - empty set
- $\mathrm{A} \cap \mathrm{B}=\Phi \rightarrow$ are mutually exclusive or disjoint

Axioms of Probability

- Let $P(A)$ denote probability of event A :

1. For any event A belongs $A, P(A) \geq 0$;
2. For set of all possible outcomes $\boldsymbol{\Omega}, \mathrm{P}(\boldsymbol{\Omega})=1$;
3. If A and B are disjoint events, $P(A$ un $B)=P(A)+$ $P(B)$
4. For countably infinite sets, A_{1}, A_{2}, \ldots such that A_{i} ins $A_{j}=\Phi$ for $i \neq j$

$$
P\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} P\left(A_{i}\right)
$$

Additional Properties

- For any event, $P(A) \leq 1$
- $P\left(A^{C}\right)=1-P(A)$
- $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
- $P(A) \leq P(B)$ for $A \subseteq B$

Conditional Probability

- Conditional probability is defined as

$$
P(A / B)=---------
$$

- $P(A / B)$ probability of event A conditioned on the occurrence of event B
- Note:
- A and B are independent if $P(A \cap B)=P(A) P(B) \rightarrow P(A / B)=$ P(A)
- Independent IS NOT EQUAL TO mutually exclusive

The Law of Total Probability

- A set of events $A_{i}, i=1,2, \ldots, n$ partitions the set of experimental outcomes if
and

$$
\bigcup_{i=1}^{n} A_{i}=\Omega
$$

$$
A_{i} \cap A_{j}=\Phi
$$

Then we can write any event B in terms of $A_{i}, i=1,2, \ldots$, n as

$$
B=\bigcup_{i=1}^{n} A_{i} \cap B
$$

Furthermore,

$$
P(B)=\sum_{i=1}^{n} P\left(A_{i} \cap B\right)
$$

Bayes' Rule

- Using the total law of probability and applying it to the definition of the conditional probability, yields

$$
\begin{aligned}
P\left(A_{i} / B\right) & =\frac{P\left(A_{i} \cap B\right)}{\sum_{i=1}^{n} P\left(A_{i} \cap B\right)} \\
& =\frac{P\left(A_{i}\right) P\left(B / A_{i}\right)}{\sum_{i=1}^{n} P\left(A_{i}\right) P\left(B / A_{i}\right)}
\end{aligned}
$$

Example: Binary Symmetric Channel

- Given the binary symmetric channel depicted in figure, find $P($ input $=j /$ output $=i) ; i, j=0,1$. Given that $P($ input $=0)=0.4, P($ input $=1)=0.6$.

Solution:

The Cumulative Distribution Function

- The cumulative distribution function (cdf) of a random variable X is defined as the probability of the event $\{X \leq x\}$:

$$
F_{X}(x)=\operatorname{Prob}\{X \leq x\} \quad \text { for }-\infty<x<\infty
$$

i.e. it is equal to the probability the variable X takes on a value in the set $(-\infty, x]$

- A convenient way to specify the probability of all semi-infinite intervals

Properties of the CDF

- $0 \leq F_{\mathrm{x}}(\mathrm{x}) \leq 1$
$\operatorname{Lim}_{x \rightarrow \infty} F_{X}(x)=1$
- $\operatorname{Lim}_{x \rightarrow-\infty} F_{x}(x)=0$
- $F_{x}(x)$ is a nondecreasing function \rightarrow if $a<b \rightarrow F_{x}(a) \leq F_{x}(b)$
- $F_{X}(x)$ is continuous from the right \rightarrow for $h>0$,

$$
F_{x}(b)=\lim _{h \rightarrow 0} F_{x}(b+h)=F_{x}\left(b^{+}\right)
$$

- $P[a<X \leq b]=F_{X}(b)-F_{X}(a)$
- $P[X=b]=F_{x}(b)-F_{x}\left(b^{-}\right)$

Example 1: Exponential Random Variable

- Problem: The transmission time \mathbf{X} of \mathbf{a} message in a communication system obey the exponential probability law with parameter λ, that is

$$
\operatorname{Prob}[X>x]=e^{-\lambda x} \quad x>0
$$

Find the CDF of X. Find Prob [T $<\mathbf{X} \leq 2 T$]

$$
\text { where } \mathbf{T}=\mathbf{1} / \boldsymbol{\lambda}
$$

Example 1: Exponential Random Variable - cont'd

- Answer:

The CDF of X is

$$
\begin{aligned}
F_{\mathrm{x}}(\mathrm{x}) & =\operatorname{Prob}\{X \leq x\}=1-\operatorname{Prob}\{X>x\} \\
& =1-\mathrm{e}^{-\lambda \mathrm{x}} \quad \mathrm{x} \geq 0 \\
& =0
\end{aligned} \quad \mathrm{x}<0
$$

$$
\text { Prob }\{T<X \leq 2 T\}=F_{X}(2 T)-F_{X}(T)
$$

$$
=1-e^{-2}-\left(1-e^{-1}\right)
$$

$$
=0.233
$$

Example 2: Use of Bayes Rule

- Problem: The waiting time W of a customer in a queueing system is zero if he finds the system idle, and an exponentially distributed random length of time if he finds the system busy. The probabilities that he finds the system idle or busy are p and 1-p, respectively. Find the CDF of W

Example 2: cont'd

- Answer:

The CDF of W is found as follows:

```
\(F_{x}(x)=\operatorname{Prob}\{W \leq x\}\)
    \(=\operatorname{Prob}\{W \leq x /\) idle \(\} p+\operatorname{Prob}\{W \leq x /\) busy \(\}(1-p)\)
```

Note Prob $\{\mathbf{W} \leq x / i d l e\}=1$ for any $x>0$
\rightarrow

$$
\begin{aligned}
F_{x}(x) & =0 & & x<0 \\
& =p+(1-p)\left(1-e^{-\lambda x}\right) & & x \geq 0
\end{aligned}
$$

Types of Random Variables

- (1) Discrete Random Variables
- CDF is right continuous, staircase function of \mathbf{x}, with jumps at countable set $\mathbf{x 0}, \mathbf{x 1}, \mathbf{x 2}, \ldots$

Types of Random Variables

- (2) Continuous Random Variables
- CDF is continuous for all values of $x \rightarrow$ Prob $\{x$ $=x\}=0$ (recall the CDF properties)
- Can be written as the integral of some non negative function

$$
F_{X}(x)=\int_{-\infty}^{\infty} f(t) d t
$$

Or

$$
f(t)=\frac{d F_{X}(x)}{d x}
$$

${ }_{10} \mathrm{f}(\mathrm{t})$ is referred to as the probability density function or PDF

Types of Random Variables

- (3) Random Variables of Mixed Types

$$
F_{x}(x)=p F_{1}(x)+(1-p) F_{2}(x)
$$

Probability Density Function

- The PDF of X, if it exists, is define as the derivative of CDF $\mathrm{F}_{\mathrm{X}}(\mathrm{x})$:

$$
f_{x}(x)=\frac{d F_{X}(x)}{d x}
$$

Properties of the PDF

- $f_{x}(x) \geq 0$
- $P\{a \leq x \leq b\}=\int_{a}^{b} f_{x}(x) d x$
- $F_{X}(x)=\int_{-\infty}^{x} f_{x}(t) d t$
- $1=\int_{-\infty}^{\infty} f_{x}(t) d t$

A valid pdf can be formed from any nonnegative, piecewise continuous function $g(x)$ that has a finite integral:
$\int g(x) d x=c<\infty$
By letting $f_{X}(x)=g(x) / c$, we obtain a function that satisfies the normalization condition.
This is the scheme we use to generate pdfs from simulation results!

Conditional PDFs and CDFs

- If some event A concerning X is given, then conditional CDF of X given A is defined by $\mathbf{P}([\mathbf{X} \leq \mathbf{x}] \cap \mathbf{A})$
$F_{x}(x / A)=\cdots \quad$ if $P(A)>0$
$P(A)$
The conditional pdf of X given A is then defined by

$$
f_{x}(x / A)=\stackrel{d}{d x}
$$

Expectation of a Random Variable

- Expectation of the random variable X can be computed by

$$
E[X]=\sum_{\forall i} x_{i} P\left[X=x_{i}\right]
$$

for discrete variables, or

$$
E[X]=\int^{\infty} t f_{x}(t) d t
$$

for continuous variables.

$n^{\text {th }}$ Expectation of a Random Variable

- The $\mathrm{n}^{\text {th }}$ expectation of the random variable X can be computed by

$$
E\left[X^{n}\right]=\sum_{\forall i} x_{i}^{n} P\left[X=x_{i}\right]
$$

for discrete variables, or

$$
E\left[X^{n}\right]=\int_{-\infty}^{\infty} t^{n} f_{x}(t) d t
$$

for continuous variables.

Central Moments a Random Variable

- The $\mathrm{n}^{\text {th }}$ central moment of a random variable is given by

$$
E\left\lfloor(X-E[X])^{n}\right\rfloor
$$

Therefore, the variance of a r.v is given by

$$
\begin{aligned}
\sigma_{X}^{2} \equiv \operatorname{Var}[X] & =E\left((X-E[X])^{2}\right] \\
& =E\left[X^{2}\right]-(E[X])^{2}
\end{aligned}
$$

The standard deviation is computed as

$$
S D(X)=\sqrt{\operatorname{Var}(X)}=\sigma_{X}
$$

Expectation of a Function of the Random Variable

- Let $g(x)$ be a function of the random variable x, the expectation of $\mathbf{g}(\mathbf{x})$ is given by

$$
E[g(x)]=\sum_{\forall i} g\left(x_{i}\right) P\left[X=x_{i}\right]
$$

for discrete variables, or

$$
E[g(x)]=\int_{-\infty}^{\infty} g(t) f_{x}(t) d t
$$

for continuous variables.

Example 3:

- Problem: For \mathbf{X} nonnegative r.v. show that for continuous X: $\quad E[X]=\int_{0}^{\infty}\left(1-F_{x}(t)\right) d t$, and for discrete X :

$$
E[X]=\sum_{k=0}^{\infty} P(X>k)
$$

The Characteristic Function

- The characteristic function of a random variable X is defined by

$$
\begin{aligned}
\Phi_{x}(\omega) & =E\left[e^{j \omega X}\right] \\
& =\int_{-\infty}^{\infty} f_{X}(x) e^{j \omega X} d x
\end{aligned}
$$

- Note that $\Phi_{x}(\omega)$ is simply the Fourier Transform of the PDF $f_{x}(x)$ (with a reversal in the sign of the exponent)
- The above is valid for continuous random variables only

The Characteristic Function (2)

- Properties:

$$
\begin{aligned}
& E\left[X^{n}\right]=\left.\frac{1}{j^{n}} \frac{d^{n}}{d \omega^{n}} \Phi_{x}(\omega)\right|_{\omega=0} \\
& f_{X}(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \Phi_{x}(\omega) e^{-j \omega x} d \omega
\end{aligned}
$$

The Characteristic Function (3)

- For discrete random variables,

$$
\begin{aligned}
\Phi_{x}(\omega) & =E\left[e^{j \omega X}\right] \\
& =\sum_{\forall k} P\left(X=x_{k}\right) e^{j \omega x_{k}}
\end{aligned}
$$

- For integer valued random variables,

$$
\Phi_{\chi}(\omega)=\sum_{k=-\infty}^{\infty} P(X=k) e^{j \omega k}
$$

The Characteristic Function (4)

- Properties

$$
P(X=k)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \Phi_{x}(\omega) e^{-j \omega k} d \omega
$$

for $k=0, \pm 1, \pm 2, \ldots$

Probability Generating Function

- A matter of convenience - compact representation
- The same as the z-transform
- If \mathbf{N} is a non-negative integer-valued random variable, the probability generating function is defined as
$N(z)=E\left[z^{N}\right]$
$=\sum_{i=0}^{\infty} p(N=i) z^{i}$
$=P(N=0)+P(N=1) z+P(N=2) z^{2}+\ldots$

Probability Generating Function (2)

- Properties:
- 1

$$
\left.N(z)\right|_{z=1}=1
$$

- 2
$P(N=i)=\left.\frac{1}{i!} \frac{d^{i}}{d z^{i}} N(z)\right|_{z=0}$
- 3
$E[N]=\left.\frac{d N(z)}{d z}\right|_{z=1}$
- 4

$$
\operatorname{Var}[N]=N^{\prime \prime}(1)+N^{\prime}(1)-\left[N^{\prime}(1)\right]^{2}
$$

Probability Generating Function (3)

- For non-negative continuous random variables, let us define the Laplace transform of the PDF

$$
X^{*}(s)=\int_{0}^{\infty} f_{X}(x) e^{-s x} d x
$$

$$
\text { Properties: } \quad=E\left[e^{-s x}\right]
$$

$$
\left.X(s)\right|_{s=0}=1 \quad X(s)=\Phi_{X}(j s)
$$

$$
E\left[X^{n}\right]=(-1)^{n} \frac{d^{n}}{d s^{n}} X^{*}(s)
$$

Some Important Random Variables
 - Discrete Random Variables

- Bernoulli
- Binomial
- Geometric
- Poisson

Identities to remember:

$$
\begin{array}{lll}
\sum_{n=1}^{M} n=\frac{1}{2} M(M+1) & \sum_{n=1}^{M} n^{2}=M(M+1)(2 M+1) / 6 & \sum_{n=0}^{\infty} r^{n}=\frac{1}{1-r} ;|r|<1 \\
\sum_{n=0}^{\infty} n r^{n-1}=\frac{1}{(1-r)^{2}} ;|r|<1 & \sum_{n=0}^{M} r^{n}=\frac{1-r^{M+1}}{1-r} ;|r|<1, M=1,2, \ldots & \sum_{n=0}^{M}\binom{M}{n} r^{n}=(1+r)^{M} ; \\
\sum_{n=0}^{M} n r^{n-1}=\frac{1+(M r-M-1) r^{M}}{(1-r)^{2}} ;|r|<1 &
\end{array}
$$

Bernoulli Random Variable

- Let A be an event related to the outcomes of some random experiment. The indicator function for A is defined as

$$
\begin{aligned}
I_{A}(\zeta) & =0 \\
& \text { if } \zeta \text { not in } A \\
& =1 \quad \text { if } \zeta \text { is in } A
\end{aligned}
$$

- I_{A} is random variable since it assigns a number to each outcome in S
- It is discrete r.v. that takes on values from the set $\{0,1\}$
- PMF is given by
where $\mathbf{P}(\mathbf{A})=\mathbf{p}$
- Describes the outcome of a Bernoulli trial
- $E[X]=p, \quad \operatorname{VAR}[X]=p(1-p)$
- $X(z)=(1-p+p z)$

Binomial Random Variable

- Suppose a random experiment is repeated \mathbf{n} independent times; let X be the number of times a certain event A occurs in these n trials

$$
X=I 1+I 2+\ldots+I n
$$

i.e. X is the sum of Bernoulli trials (X's range $=\{0,1,2, \ldots, n\}$)

- X has the following pmf
for $k=0,1,2, \ldots, n$

$$
P[X=k]=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

- $\quad E[X]=n p, \quad \operatorname{Var}[X]=n p(1-p)$
- $\quad X(z)=(1-p+p z)^{n}$

Geometric Random Variable

- Suppose a random experiment is repeated - We count the number of M of independent Bernoulli trials until the first occurrence of a success
- $\quad \mathbf{M}$ is called geometric random variable
- Range of $\mathbf{M}=1,2,3, \ldots$
- $\quad X$ has the following pmf

$$
\operatorname{Pr}[X=k]=(1-p)^{k-1} p
$$

for $k=1,2,3, \ldots$

- $E[X]=1 / p, \quad \operatorname{Var}[X]=(1-p) / p^{2}$
- $X(z)=p z /(1-(1-p) z))$

Geometric Random Variable - 2

- Suppose a random experiment is repeated - We count the number of M of independent Bernoulli trials until the first occurrence of a success - not counting the successful trial
- $\quad M$ is called geometric random variable - Range of $\mathbf{M}=\mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3}, \ldots$
- $\quad X$ has the following pmf

$$
\operatorname{Pr}[X=k]=(1-p)^{k} p
$$

for $k=0,1,2,3, \ldots$

- $E[X]=(1-p) / p, \quad \operatorname{Var}[X]=(1-p) / p^{2}$
- $X(z)=p /(1-(1-p) z))$

Note the different range for these two Geometric r.v.s

Poisson Random Variable

- In many applications we are interested in counting the number of occurrences of an event in a certain time period
- The pmf is given by

$$
\operatorname{Pr}[X=k]=\frac{\alpha^{k}}{k!} e^{-\alpha}
$$

For $\mathbf{k}=\mathbf{0}, \mathbf{1}, \mathbf{2}, \ldots$;
α is the average number of event occurrences in the specified interval

- $\quad \mathrm{E}[\mathrm{X}]=\alpha, \quad \operatorname{Var}[\mathrm{X}]=\alpha$
- $\mathbf{X (z)}=\mathbf{e}^{\alpha(\mathbf{z - 1})}$
- Poisson is the limiting case for Binomial as $\mathbf{n} \rightarrow \infty, \mathbf{p} \rightarrow \mathbf{0}$, such that np $=\alpha-$ remember $\quad \lim _{n=0,0}(1-\lambda / n)^{4}=e^{-1}$

Example 4:

- Calculate the probability generating function for the Poisson r.v.?
- Solution: Applying the definition

$$
\begin{aligned}
N(Z) & =\sum_{k=0}^{\infty} z^{k} \frac{\alpha^{k}}{k!} e^{-\alpha} \\
& =e^{-\alpha} \sum_{k=0}^{\infty} \frac{(z \alpha)^{k}}{k!}
\end{aligned}
$$

$$
=e^{-\alpha} \times e^{\alpha z}
$$

$$
=e^{\alpha(z-1)}
$$

Poisson Random Variable - 2

- If the average rate of occurrence per time unit is λ, then the average number of occurrences in \boldsymbol{t} seconds is equal to $\boldsymbol{\lambda} \mathbf{t}$
- The probability of \mathbf{k} occurrences in \mathbf{t} seconds is given by

$$
P_{k}(t)=\frac{(\lambda t)^{k}}{k!} e^{-\lambda t} \quad k=0,1,2, \ldots
$$

Compared to previous slide - we have replaced α by λt

Some Important Random Variables - Continuous Random Variables

- Uniform
- Exponential
- Gaussian (Normal)
- Rayleigh
- Gamma
- Pareto

Uniform Random Variables

- Realizations of the r.v. can take values from the interval [a, b]
- PDF $f_{x}(x)=\mathbf{1} /(b-a) \quad a \leq x \leq b$
- $E[X]=(a+b) / 2, \quad \operatorname{Var}[X]=(b-a)^{2} / 12$
- $\boldsymbol{\Phi}_{\mathbf{x}}(\omega)=\left[\mathbf{e}^{\mathbf{j} \omega \mathbf{b}}-\mathbf{e}^{\mathbf{j} \omega \mathbf{a}}\right] /(\mathbf{j} \omega(\mathbf{b}-\mathbf{a}))$

Example 5: Analog-to-Digital Conversion

Problem: compute the SNR for a uniform

 quantizer using $\mathbf{2}^{\mathrm{N}}$ representation values?
Exponential Random Variables

- The exponential r.v. X with parameter $\boldsymbol{\lambda}$ has pdf
- And CDF given by $f_{X}(x)= \begin{cases}0 & x<0 \\ \lambda e^{-i x} & x \geq 0\end{cases}$

$$
F_{X}(x)= \begin{cases}0 & x<0 \\ 1-e^{-\lambda x} & x \geq 0\end{cases}
$$

- Range of X: $[0, \infty)$
- $E[X]=1 / \lambda, \quad \operatorname{Var}[X]=1 / \boldsymbol{\lambda}^{2}$
- $\Phi_{\mathbf{x}}(\omega)=\lambda /(\lambda-j \omega)$

Exponential Random Variables cont'd

- The exponential r.v. is the only r.v. with the memoryless property!!
- Memoryless Property:

$$
P[X>t+h / X>t]=P[X>h]
$$

Proof:

$$
\begin{aligned}
& \mathbf{P}[(X>t)] \\
& =\frac{P[(X>t+h)}{P[X>t]}=-e^{e^{-\lambda(t+h)}} \\
& =\mathrm{e}^{-\lambda h} \\
& =\mathbf{P}[\mathrm{X}>\mathrm{h}]
\end{aligned}
$$

Gaussian (Normal) Random Variable

- \quad Rises in situations where a random variable X is the sum of a large number of "small" random variables - central limit theorem
- PDF

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-(x-m)^{2} /\left(2 \sigma^{2}\right)}
$$

For $-\infty<x<\infty ; \mathbf{m}$ and $\sigma>0$ are real numbers

- The characteristic function is given by

$$
\Phi_{X}(\omega)=e^{j m \omega-\sigma^{2} \omega^{2} / 2}
$$

- $E[X]=m, \quad \operatorname{Var}[X]=\sigma^{2}$

Gaussian (Normal) Random Variable - 2

- CDF given by

$$
\begin{aligned}
F_{X}(x) & =\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi} \sigma} e^{-(t-m)^{2} /\left(2 \sigma^{2}\right)} d t \\
& =0.5+0.5 \operatorname{erf}\left(\frac{x-m}{\sigma \sqrt{2}}\right)
\end{aligned}
$$

where

$$
\operatorname{erf}(x)=\int_{0}^{x} e^{-t^{2} / 2} d t
$$

Rayleigh Random Variable

- Rises in modeling of mobile channels
- Range: [0, ∞)
- PDF: $f_{X}(x)=\frac{x}{\alpha^{2}} e^{-x^{2} /\left(2 \alpha^{2}\right)}$
- For $\mathrm{x} \geq 0, \alpha>0$
- $\mathbf{E}[\mathbf{X}]=\alpha \sqrt{ }(\pi / 2), \quad \operatorname{Var}[\mathbf{X}]=(2-\pi / 2) \alpha^{2}$

Gamma Random Variable

- Versatile distribution ~ appears in modeling of lifetime of devices and systems
- Has two parameters: $\alpha>0$ and $\lambda>0$
- PDF:

$$
f_{X}(x)=\frac{\lambda(\lambda x)^{\alpha-1} e^{-\lambda x}}{\Gamma(\alpha)}
$$

- For $\mathbf{0}<\mathbf{x}<\infty$
- The quantity $\Gamma(z)$ is the gamma function and is specified by

$$
\Gamma(z)=\int_{0}^{\infty} x^{z-1} e^{-x} d x
$$

- The gamma function has the following properties:
- $\quad \Gamma(1 / 2)=\sqrt{ } \pi$
- $\quad \Gamma(z+1)=\mathbf{z \Gamma}(z)$ for $z>0$
- $\quad \Gamma(m+1)=m!\quad$ For m nonnegative integer
- $\quad E[X]=\alpha / \boldsymbol{\lambda}, \quad \operatorname{Var}[X]=\alpha / \boldsymbol{\lambda}^{2}$
- $\Phi_{\mathrm{x}}(\omega)=1 /(1-\mathrm{j} \omega / \lambda)^{\mathrm{a}}$

If $\alpha=1 \rightarrow$ gamma r.v.

10/3/2004
Dr. Ashraf S. Hasan Mahmoud

Pareto Random Variable

- Originally used by economists to model income and other soci-economic quantities.
- For \mathbf{a} (shape parameter) $>0, \beta$ (scale parameter) $>\mathbf{0}$, the PDF is given by

$$
f_{X}(x)=\frac{\alpha \beta^{\alpha}}{x^{\alpha+1}} \quad \beta \leq x
$$

- The CDF is given by

$$
F_{X}(x)=1-\left(\frac{\beta}{x}\right)^{\alpha} \quad \beta \leq x
$$

Pareto Random Variable - 2

- $\mathbf{n}^{\text {th }}$ moment (if it exists) is given by

$$
E\left[x^{n}\right]=\frac{\alpha \beta^{n}}{\alpha-n} \quad n<\alpha
$$

- Expected value: $E[x]=\frac{\alpha \beta}{\alpha-1} \quad 1<\alpha$
- Variance:

$$
\operatorname{Var}[x]=\frac{\alpha \beta^{2}}{(\alpha-1)^{2}(\alpha-2)} \quad 2<\alpha
$$

Example 6: Packet Size Modeling

- Pareto distribution is used to model the packet size, P, in bytes for internet traffic as follows: $\quad P=\min \left(x, S_{\text {max }}\right)$
where \mathbf{x} is a Pareto random variable with the following PDF

$$
f_{X}(x)=\left\{\begin{array}{cc}
\frac{\alpha \beta^{\alpha}}{x^{\alpha+1}} & \beta \leq x<S_{\max } \\
\theta & x=S_{\max }
\end{array}\right.
$$

$\boldsymbol{\theta}$ is given by $\quad \theta=1-F_{X}\left(S_{\text {max }}\right)$

Example 7: Packet Size Modeling

- Calculate the expected value for packet size using the model proposed in Example 3?
- Models proposed to test ETSI/UMTS networks use the following parameters: $\mathbf{a}=1.1, \beta=81.5$ Bytes, Smax $=66,666$ Byte (this results in a mean packet size of 480 Bytes)

Computer Methods for Generating Random Variables

(1) The transformation method

Procedure:

a. Obtain $\mathrm{F}_{\mathbf{x}}(\mathbf{x})$
b. Generate $\mathbf{U} \sim$ uniform between 0 and 1
c. Find $Z=F_{X}{ }^{-1}(U)-Z$ follows the distribution specified by $f_{x}(x)$

Example 8 - Generating
 Exponential r.v.

Problem: Generating exponential random variables with parameter $\boldsymbol{\lambda}$ Answer:
To generate an exponentially distributed r.v. X with parameter λ (i.e. its mean is $1 / \lambda$), we need to find $F_{x}(x)$ and invert it.
$F_{\mathrm{x}}(\mathrm{x})=1$ - $\mathrm{e}^{-\lambda \mathrm{x}}$ (see example 1)
Therefore, $\mathrm{F}_{\mathrm{x}}{ }^{-1}(\mathrm{x})$ is equal to

$$
X=-(1 / \lambda) \ln (1-U)
$$

where $\ln (t)$ is the natural logarithm of t while U is a uniform r.v. between 0 and 1. Note that the above expression can be simplified to be

$$
X=-(1 / \lambda) \ln (U)
$$

This is because $\mathbf{1 - U}$ is also a uniform random r.v. between $\mathbf{0}$ and 1

Example 9 - Generating Bounded Pareto Distribution

Problem: Generate a random variable conforming the bounded Pareto distribution specified in Example 4.
Answer: ?

Example 10 - Generating Gaussian Random Variable

> Problem: Generate a Gaussian random variable of mean \boldsymbol{m} and standard deviation equal to δ.

Answer: ?

Computer Methods for Generating Random Variables

(2) Rejection Method
(3)Composition Method
(4)Convolution Techniques
(5)Characterization Method

See references for details

Transformation method is sufficient for simulations required in this course

J oint Distributions of Random Variables

- Def: The joint probability distribution of two r.v.s X and Y is given by

$$
F_{X Y}(x, y)=P(X \leq x, Y \leq y)
$$

where x and y are real numbers.

- This refers to the JOINT occurrence of $\{X$ $\leq x\}$ AND $\{Y \leq y\}$
- Can be generalized to any number of variables

J oint Distributions of Random Variables - Properties

- $\mathrm{F}_{\mathrm{XY}}(-\infty,-\infty)=0$
- $F_{X Y}(\infty, \infty)=1$
- $F_{X Y}\left(x_{1}, y\right) \leq F_{X Y}\left(x_{2}, y\right)$ for $x_{1} \leq x_{2}$
- $F_{X Y}\left(x_{1}, y_{1}\right) \leq F_{X Y}\left(x, y_{2}\right)$ for $y_{1} \leq y_{2}$
- The marginal distributions are given by
- $\mathrm{F}_{\mathrm{X}}(\mathrm{x})=\mathrm{F}_{\mathrm{XY}}(\mathrm{x}, \infty)$
- $F_{\mathbf{Y}}(\mathbf{y})=\mathrm{F}_{\mathrm{XY}}(\infty, \mathbf{y})$

J oint Distributions of Random
Variables - Properties - 2

- Density function: $f_{X Y}(x, y)=\frac{\partial^{2} F_{X Y}(x, y)}{\partial x \partial y}$
or

$$
F_{X Y}(x, y)=\int_{-\infty}^{x} \int_{-\infty}^{y} f_{X Y}(\alpha, \beta) d \alpha d \beta
$$

- Marginal densities: $f_{X}(x)=\int_{-\infty}^{\infty} f_{X Y}(x, y) d y$ and

$$
f_{y}(y)=\int_{-\infty}^{\infty} f_{X Y}(x, y) d x
$$

J oint Distributions of Random Variables - Independence

- Two random variables are independent if the joint distribution functions are products of the marginal distributions:

$$
F_{X Y}(x, y)=F_{X}(x) F_{Y}(y)
$$

or

$$
f_{X Y}(x, y)=f_{X}(x) f_{Y}(y)
$$

- Def:

$$
F_{X Y}(x, y)=\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} P\left(X=x_{i}, Y=y_{i}\right) U\left(x-x_{i}\right) U\left(y-y_{i}\right)
$$

where

$$
P(X=x i, Y=y i) \text { is the joint probability for }
$$ the r.v.s X and Y

$\mathbf{U (X)}$ is $\mathbf{1}$ for $\mathbf{x} \geq \mathbf{0}$ and $\mathbf{0}$ otherwise

Example 11:

- Problem: The number of bytes \mathbf{N} in a message has a geometric distribution with parameter p. The message is broken into packets of maximum length M bytes. Let \mathbf{Q} be the number of full packets in a message and let R be the number of bytes left over. Find the join pmf and the marginal pmfs of \mathbf{Q} and \mathbf{R}.

Example 11: cont'd

- Solution:
$N \sim$ geometric $\rightarrow P(N=k)=(1-p) p^{k}$

Message of \mathbf{N} bytes $\rightarrow \mathbf{Q}$ full M-bytes packets + R remaining bytes
Therefore: $Q \in\{0,1,2, \ldots\}, R \in\{0,1,2, \ldots, M-1\}$

The join pmf is given by:
$P(Q=q, R=r)=P(N=q M+r)=(1-p) p^{(q M+r)}$

Example 11: cont'd

- Solution:

The marginal pmfs:

$\left.\begin{array}{l}P(Q=q)= \\ =\sum_{r=0}^{M-1} P(Q=q, R=r) \\ \\ =\sum_{r=0}^{M-1}(1-p) p^{(q M+r)} \\ \\ \text { and } \quad=\left(1-p^{M}\right)\left(p^{M}\right)^{q} \quad q=0,1,2, \ldots \\ P(R=r)\end{array}\right)=\sum_{q=0}^{\infty} P(Q=q, R=r)$.

Independent Discrete R.V.s

- For Discrete random variables:

$$
P(M=i, N=j)=P(M=i) P(N=j)
$$

Example 12:

- Problem: Are the \mathbf{Q} and \mathbf{R} random variables of Example 11 independent? Why?

Conditional Distributions

- Def: for continuous X and Y

Or

$$
F_{Y / X}(y / x)=P(Y \leq y / X \leq x)=\frac{F_{X Y}(x, y)}{F_{X}(x)}
$$

$$
f_{Y / X}(y / x)=\frac{f_{X Y}(x, y)}{f_{X}(x)}
$$

- For discrete M and N

$$
P(M=i / N=j)=\frac{P(M=i, N=j)}{P(N=j)}
$$

Conditional Distributions - 2

- For mixed types:

$$
\begin{aligned}
F_{X}(x) & =\sum_{i=0}^{\infty} P(N=j, X \leq x) \\
& =\sum_{j=0}^{\infty} P(N=j) P(X \leq x / N=j)
\end{aligned}
$$

or

$$
P(N=j)=\int_{-\infty}^{\infty} P(N=j / X=x) f_{X}(x) d x
$$

Conditional Distributions - 3

- For mixed types:

$$
\begin{aligned}
& F_{X_{1}, x_{2}, \ldots x_{N}}\left(x_{1}, x_{2}, \ldots, x_{N}\right)= \\
& \quad=F_{X_{1}}\left(x_{1}\right) \times F_{X_{2} / X_{1}}\left(x_{2} / x_{1}\right) \times \ldots \times F_{X_{N} / X_{1}, \ldots, x_{N-1}}\left(x_{N} / x_{1}, \ldots, x_{N-1}\right)
\end{aligned}
$$

or

$$
\begin{aligned}
& f_{X_{1}, X_{2}, \ldots, X_{N}}\left(x_{1}, x_{2}, \ldots, x_{N}\right)= \\
& \quad=f_{X_{1}}\left(x_{1}\right) \times f_{X_{2} / X_{1}}\left(x_{2} / x_{1}\right) \times \ldots \times f_{X_{N} / X_{1}, \ldots, x_{N-1}}\left(x_{N} / x_{1}, \ldots, x_{N-1}\right)
\end{aligned}
$$

Example 14:

- Problem: The number of customers that arrive at a service station during a time t is a Poisson random variable with parameter $\beta \mathrm{t}$. The time required to service each customer is exponentially distributed with parameter a. Find the pmf for the number of customers \mathbf{N} that arrive during the service time \mathbf{T} of a specific customer. Assume the customer arrivals are independent of the customer service time.

Example 14: cont'd

- Solution:

The PDF for \mathbf{T} is given by $f_{T}(t)=\alpha e^{-\alpha t} \quad t \geq 0$
Let $\mathbf{N}=$ number of arrivals during time t
\rightarrow the arrivals conditional pmf is given by

$$
P(N=j / T=t)=\frac{(\beta t)^{j} e^{-\beta t}}{j!} \quad j=0,1, \ldots \quad t \geq 0
$$

To find the arrivals pmf during service time T, we use:

$$
P(N=j)=\int_{-\infty}^{\infty} P(N=j / T=t) f_{T}(t) d t
$$

this reduces to:

$$
\begin{aligned}
& =\int_{0}^{-\infty} \frac{\infty}{\infty}\left(\frac{\alpha \beta)^{j}}{j!} e^{-\alpha} e^{-\beta} d t\right. \\
P(N=j) & =\left(\frac{\alpha}{\alpha+\beta}\right)\left(\frac{\beta}{\alpha+\beta}\right)^{j} \quad j=0,1, \ldots
\end{aligned}
$$

$$
\Gamma(j+1)=\int_{0}^{\infty} t^{j} e^{-1} d t=j!
$$

Thus \mathbf{N} is geometrically distributed with probability of success equal to $\mathbf{a} /(\boldsymbol{\beta}+\boldsymbol{a})$

J oint Moments

- For continuous X and Y:

$$
E[g(X, Y)]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f_{X Y}(x, y) d x d y
$$

- For discrete \mathbf{X} and \mathbf{Y}

$$
E[g(X, Y)]=\sum_{\forall i} \sum_{\forall j} g\left(x_{i}, y_{j}\right) P\left(X=x_{i}, Y=y_{j}\right)
$$

Autocorrelation and

Autocovariance Function

- Autocorrelation:

- For continuous \mathbf{X} and \mathbf{Y} :

$$
E[X Y]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y f_{X Y}(x, y) d x d y
$$

- For discrete X and Y

$$
E[X Y]=\sum_{\forall i} \sum_{\forall j} x_{i} y_{j} P\left(X=x_{i}, Y=y_{j}\right)
$$

- Autocovariance:

$$
\operatorname{Cov}[X, Y]=E[(X-E[X])(Y-E[Y])]
$$

Autocorrelation and Autocovariance Function-2

- \mathbf{X} and \mathbf{Y} are uncorrelated if

$$
E[X Y]=E[X] E[Y]
$$

or equivalently $\rightarrow \operatorname{Cov}[X, Y]=0$

- Independent variables are uncorrelated, the reverse DOES NOT HOLD - Gaussian r.v.s are the exception

[^0]
Example 14: J oint Gaussian Variables - cont'd

- Solution:

The joint distribution for \mathbf{X} and \mathbf{Y} is given by

$$
\begin{aligned}
& f_{X Y}(x, y)= \\
& \frac{\exp \left[\left(\frac{-1}{2\left(1-\rho_{X Y}^{2}\right)}\right)\left\{\left(\frac{x-\mu_{x}}{\sigma_{x}}\right)^{2}-2 \rho_{X Y}\left(\frac{x-\mu_{x}}{\sigma_{x}}\right)\left(\frac{y-\mu_{y}}{\sigma_{y}}\right)+\left(\frac{y-\mu_{y}}{\sigma_{y}}\right)^{2}\right\}\right]}{2 \pi \sigma_{x} \sigma_{y} \sqrt{1-\rho_{X Y}^{2}}}
\end{aligned}
$$

where:
μ_{x} and μ_{x} are equal to $\mathrm{E}[\mathrm{X}]$ and $\mathrm{E}[\mathrm{Y}]$, respectively σ_{X} and σ_{Y} are the respective standard deviations $\boldsymbol{P}_{\mathbf{X Y}}=\operatorname{Cov}(\mathbf{X}, \mathbf{Y}) /\left(\sigma_{\mathbf{X}} \boldsymbol{\sigma}_{\mathbf{Y}}\right)$

Example 14: J oint Gaussian Variables - cont'd

- Solution:

If X and Y are uncorrelated $\rightarrow \operatorname{Cov}(X, Y)=$ 0 or $\rho_{X Y}=0$. Rewriting the joint distribution yields

$$
f_{x y}(x, y)=\frac{\exp \left\{-\left(x-\mu_{x}\right)^{2} /\left(2 \sigma_{x}^{2}\right)-\left(y-\mu_{y}\right)^{2} /\left(2 \sigma_{y}^{2}\right)\right\}}{2 \pi \sigma_{x} \sigma_{y}}
$$

but the last expression is equal to $\mathbf{f}_{\mathbf{X}}(\mathbf{x}) \mathrm{f}_{\mathrm{Y}}(\mathbf{y})$

Therefore, X and Y are independent

Functions of a Random Variable

- Problem setting:
- Let X be a r.v.,
- Let $g(x)$ be a real-valued function
- $\mathbf{Y}=\mathbf{g}(\mathbf{X})$
- What is the probability distribution for Y ?
- General Approach:

$$
\begin{aligned}
\operatorname{Prob}[Y \text { in } C] & =\operatorname{Prob}[g(X) \text { in } C] \\
& =\operatorname{Prob}[X \text { in } B]
\end{aligned}
$$

These events are equivalent

Example 15: The MAX Function

- Let $\mathbf{g}(\mathbf{x})=(\mathbf{x})^{+}$

$$
\begin{aligned}
=\mathbf{0} & \text { if } x<0 \\
x & \text { if } x \geq 0
\end{aligned}
$$

Note $\mathbf{g}(x)$ can be written in other forms:

$$
g(x)=\max (x, 0)
$$

e.g:

1. \# of customers arriving in batch sizes greater than $\mathbf{M} \rightarrow \mathbf{Y}=(\mathbf{X}-\mathbf{M})^{+}$
2. voltage output of a half-wave rectifier

Example 16: The MAX Function

- Problem: Let X be an nonnegative integervalued r.v. Let $P(X=i)=p_{i}$, for $i=0,1, \ldots$
Y is defined as $Y=\max (X-M, 0)$ where M is +ve integer
Find pmf for the r.v. Y
- Solution:
$Y=\max (X-M, 0)=(X-M)^{+}$has the range $\{0,1$, ...\}

$$
\begin{aligned}
P(Y=0) & =\operatorname{Prob}[X \leq M] \\
& =\Sigma p_{i} \quad i=0,1, \ldots, M
\end{aligned}
$$

$$
\mathbf{P}(\mathbf{Y}=\mathbf{k})=\underset{\text { Dr. Ashraf S. Hasan Mahmoud }}{\mathbf{p}_{\mathbf{k}+\mathbf{M}}} \underset{\mathbf{1}}{\mathbf{2}} \mathbf{2 , \ldots}
$$

Example 17: Quantization

- Let $\mathbf{Y}=\mathbf{q}(X)$ be the uniform quantization function defined in figure
- Note Y can be written as
$Y=\operatorname{floor}(X)+0.5 d$
e.g. PCM voice

Example 18: Quantization

- Problem: Let X be a sample voltage of a speech waveform and suppose that X is uniform on the interval [-4d, 4d]. Let $Y=$ $q(X)$, where the quantizer input-output characteristic is as shown in previous example. Find the pmf for Y.

Example 18: Quantization - cont'd

- Solution:
$Y=q(x),-4 d \leq x \leq 4 d, Y \in\{ \pm 7 d / 2$,
$\pm 5 \mathrm{~d} / 2, \pm 3 \mathrm{~d} / 2, \pm \mathrm{d} / 2\}$
The PDF for X is given by:

$$
f_{X}(x)=1 /(8 d) \quad-4 d \leq x \leq 4 d
$$

Therefore, the PDF for \mathbf{Y} is computed as:

$$
\begin{aligned}
P(Y=k) & =\int_{k-0.5 d}^{k+0.5 d} f_{X}(x) d x \\
& =1 / 8 \quad k \in\{ \pm 7 / 2 d, \pm 5 / 2 d, \pm 3 / 2 d, \pm 1 / 2 d\}
\end{aligned}
$$

General Rule

- Problem: Let $Y=\mathbf{g}(\mathbf{x})$, if the PDF for X is given by $f_{x}(x)$, find the PDF for the r.v. Y.

- Solution:
$\begin{array}{lllllll}x_{1} & x_{1}+d x_{1} & x_{2} & x_{2}+d x_{2} & x_{3} & x_{3}+d x_{3} & \boldsymbol{X}\end{array}$
$\operatorname{Prob}[y<Y<y+d y]=f_{Y}(y)|d y|$
The event $\{y<Y<y+d y\}$ is equivalent to the event $\left\{x_{1}<X<x_{1}\right.$
$\left.+d x_{1}\right\} \cup\left\{x_{2}<X<x_{2}+d x_{2}\right\} \cup\left\{x_{3}<X<x_{3}+d x_{3}\right\}$
$\rightarrow f_{Y}(y)|d y|=f_{x}\left(x_{1}\right)\left|d x_{1}\right|+f_{x}\left(x_{2}\right)\left|d x_{2}\right|+f_{x}\left(x_{3}\right)\left|d x_{3}\right|$
In general: $\quad f_{Y}(y)=\sum_{k} f_{X}(x)\left|\frac{d x}{d y}\right|_{x=x_{k}}$

Linear Transformations $-\mathrm{Y}=\mathrm{aX}+\mathrm{b}$

- This is a special case of "Functions of Random Variables"
- The PDF of \mathbf{Y} can be shown to be

$$
f_{Y}(y)=\frac{1}{|a|} f_{X}\left(\frac{y-b}{a}\right)
$$

- One can also show that

$$
E[Y]=a E[X]+b
$$

and

$$
\operatorname{Var}[Y]=a^{2} \operatorname{Var}[X]
$$

Example 19: $\mathrm{Y}=\mathrm{X}^{2}$

- Problem: Let $Y=X^{2}$, where X is a continuous r.v. Find the PDF of Y.
- Solution:
$y=x^{2} \rightarrow$ has two solutions: $x_{0,1}= \pm \sqrt{ } y$
$|d y / d x|=2 x=2 \sqrt{ } y$
therefore $\mathbf{f}_{\mathbf{Y}}(\mathbf{y})$ is given by:

$$
f_{Y}(y)=\frac{f_{X}(\sqrt{y})}{2 \sqrt{y}}+\frac{f_{X}(-\sqrt{y})}{2 \sqrt{y}}
$$

Functions of Multiple Random Variables

- Let $X_{1}, X_{2}, \ldots, X_{n}$ be random variables and let Z be defined as

$$
Z=g\left(X_{1}, X_{2}, \ldots, X_{n}\right)
$$

The CDF of Z is found as follows:

$$
\{Z \leq z\} \equiv R_{z}=\left\{X=\left(x_{1}, x_{2}, \ldots, x_{n}\right): g(X) \leq z\right\}
$$

Therefore,

$$
F_{Z}(z)=P\left(X \text { in } R_{z}\right)
$$

or $\quad F_{Z}(z)=\int \ldots \int f_{X_{1}, x_{2}, \ldots, x_{N}}\left(x_{1}, x_{2}, \ldots, x_{N}\right) d x_{1} d x_{2} \ldots d x_{N}$
where the integrals are carried over $\mathbf{R}_{\mathbf{z}}$

Example 20: $Z=X+Y$

- Problem: Let $Z=X+Y$, find $F_{Z}(z)$ and $f_{Z}(z)$ in terms of $\overline{\mathbf{f}_{\mathrm{XY}}}(\mathbf{x}, \mathrm{y})$
- Solution:
$\mathbf{P (Z \leq z)}=\mathbf{P}(X+Y \leq z)$
or $\quad F_{Z}(z)=\int_{-\infty}^{\infty} \int_{-\infty}^{z-x^{\prime}} f_{X Y}\left(x^{\prime}, y^{\prime}\right) d x^{\prime} d y^{\prime}$
The PDF for \mathbf{Z} is given by $f_{Z}(z)=\int_{-\infty}^{\infty} f_{X Y}\left(x^{\prime}, z-x^{\prime}\right) d x^{\prime}$

Note that is X and Y are independent, then $f_{z}(z)$ can be written as:

$$
f_{Z}(z)=\int^{\infty} f_{X}\left(x^{\prime}\right) f_{Y}\left(z-x^{\prime}\right) d x^{\prime}=f_{X}(x) * f_{Y}(y)
$$

The later relation is know as the convolution integral of the marginal PDFs for X and Y
One can also show that $\quad \Phi_{Z}(\omega)=\Phi_{X}(\omega) \Phi_{Y}(\omega)$
where $\Phi(\omega)$ is the characteristic function for the respective r.v.

Sum of Random Variables

- Let $X_{1}, X_{2}, \ldots, X_{n}$ be random variables and let Y be defined as

$$
Y=X_{1}+X_{2}+\ldots+X_{n}
$$

- It is easy to show that

$$
E[Y]=E\left[X_{1}\right]+E\left[X_{2}\right]+\ldots+E\left[X_{n}\right]
$$

This results holds whether X_{i} s are independent or not

- Furthermore,

$$
\operatorname{Var}[Y]=\sum_{i=1}^{n} \operatorname{Var}\left[X_{i}\right]+\sum_{i=1}^{n} \sum_{j=1, i \neq j}^{n} \operatorname{Cov}\left(X_{i}, X_{j}\right)
$$

For uncorrelated $X_{i} s_{\text {, }}$ the relation reduces to

$$
\operatorname{Var}[Y]=\sum_{i=1}^{n} \operatorname{Var}\left[X_{i}\right]
$$

Sum of Random Variables - cont'd

- Generalizing the results of Example 20, the PDF of the random variable \mathbf{Y} is given by

$$
f_{Y}(y)=f_{X_{1}}\left(x_{1}\right) * f_{X_{2}}\left(x_{2}\right) * \ldots f_{X_{N}}\left(x_{N}\right)
$$

or

$$
\Phi_{Y}(\omega)=\Phi_{X_{1}}(\omega) \Phi_{X_{2}}(\omega) \ldots \Phi_{X_{N}}(\omega)
$$

- Note the above relation is valid for the probability generating function $N(Z)$ and the Laplace transform $X(s)$ as well.

Sum of Two Nonnegative IntegerValued Random Variables

- Let $\mathbf{N}=K_{1}+K_{2}$, where K_{1} and K_{2} are nonnegative integervalued random variables. The distribution for \mathbf{N} is given by

$$
\begin{aligned}
P(N=n) & =P(i+j=n) \quad \forall i, j=0,1, \ldots \\
& =\sum_{i=0}^{n} P\left(K_{1}=i, K_{2}=n-i\right) \quad n=0,1, \ldots
\end{aligned}
$$

if the variables K_{1} and $K_{\mathbf{2}}$ are independent, then the distribution can be written as

$$
P(N=n)=\sum_{i=0}^{n} P\left(K_{1}=i\right) P\left(K_{2}=n-i\right) \quad n=0,1, \ldots
$$

which is the discrete form of the convolution integral introduced in Example 20

Example 21: Sum of Two Independent Poisson R.V.s

- Problem: Define $Y=K_{1}+K_{2}$, where K_{1} and K_{2} are two independent Poisson random variables with mean $\lambda_{1} t$ and $\lambda_{2} t$. Find the distribution of \mathbf{Y}

Example 21: Sum of Two

Independent Poisson R.V.s - cont'd

- Solution 1:

The pmfs of $K_{\mathbf{1}}$ and $K_{\mathbf{2}}$ are given by

$$
P\left(K_{i}=j\right)=\frac{\left(\lambda_{i} t\right)^{i}}{j!} e^{-k_{i},} \quad i=1,2 ; j=0,1, \ldots
$$

Using the convolution relation, the pmf for \mathbf{N} is computed as $_{P(N=n)=} \sum_{i=0}^{n} \frac{\left(\lambda_{1} t\right)^{j}}{i!} e^{-\lambda_{i} t} \frac{\left(\lambda_{2} t\right)^{n+1}}{(n-i)!} e^{-\lambda_{2} t}$

$$
\begin{aligned}
& =e^{-\left(\lambda_{1}+\lambda_{2}\right)} \sum_{i=0}^{n} \frac{\left(\lambda_{1} t\right)^{i}\left(\lambda_{2} t\right)^{n-i}}{i\left(\left(n_{1}\right)!\right.} \\
& =\frac{\left[\left(\lambda_{1}+\lambda_{2}\right) t\right]^{n}}{n!} e^{-\left(\lambda_{1}+\lambda_{2}\right) t}
\end{aligned}
$$

Examining the last expression, one can conclude that \mathbf{N} itself follows the Poisson distribution with mean ($\boldsymbol{\lambda}_{1} \mathrm{t}+\boldsymbol{\lambda}_{2} \mathrm{t}$)

Example 21: Sum of Two
 Independent Poisson R.V.s - cont'd

- Solution 2:

The pmfs of K_{1} and K_{2} are given by

$$
P\left(K_{i}=j\right)=\frac{\left(\lambda_{i} t\right)^{j}}{j!} e^{-\lambda_{i} t} \quad i=1,2 ; j=0,1, \ldots
$$

Or equivalently, the respective probability generating functions are given by

$$
N_{K_{i}}(z)=e^{-\lambda_{i}(1-z)} \quad i=1,2 ;|z| \leq 1
$$

Using the convolution relation, the probability generating function for the sum \mathbf{N} is given by

$$
\begin{aligned}
N_{N}(z) & =N_{K_{1}}(z) N_{K_{2}}(z) \\
& =e^{-\lambda_{1}(1-z)} e^{-\lambda_{2}(1-z)} \\
& =e^{-\left(\lambda_{1}+\lambda_{2}\right)(1-z)}
\end{aligned}
$$

Examining the last expression, one can conclude that \mathbf{N} itself follows the Poisson distribution with mean ($\boldsymbol{\lambda}_{1}+\boldsymbol{\lambda}_{2}$)t

Example 22: Sum of Two Exponential Random Variables

- Problem: Let $Y=X_{1}+X_{2}$ where X_{1} and X_{2} are identical independent (iid) exponential r.v.s with parameter μ. Find the distribution of Y.
- Solution:

The exponential PDF is given by $\quad f_{X_{i}}(x)=\mu e^{-\mu x} \quad i=1,2 ; x \geq 0$ Using the convolution integral, the PDF for \mathbf{Y} is computed as

$$
\begin{aligned}
f_{Y}(y) & =\int_{0}^{\bar{\infty}} \mu e^{-\mu x} \times \mu e^{-\mu(y-x)} d x \\
& =y \mu^{2} e^{-\mu y} \quad y \geq 0
\end{aligned}
$$

One can show in general that the distribution of the sum of \mathbf{k} iid exponential r.v.s is given by

$$
\begin{aligned}
& \text { given by } \\
& f_{Y}(y)=\frac{\mu(\mu y)^{k-1} e^{-\mu y}}{(k-1)!} \quad y \geq 0 ; k=1,2, \ldots
\end{aligned}
$$

The above is referred to as \mathbf{k}-stage Erlang distribution
Exercise: prove that the $E[Y]=k / \mu$ and $\operatorname{Var}[Y]=k / \mu^{\mathbf{2}}$

It is useful to note $X_{Y}(s)=\left[\frac{\mu}{\mu+s}\right]^{k}$ 100

Example 23: Sum of Random Number of Exponential Random Variables

- Problem: Let \mathbf{Y} be the sum of \mathbf{k} iid exponential r.v.s as in previous example. The number of random number k is itself a geometric r.v. with parameter p. Find the distribution of Y.
- Solution:

Using the results of previous example, the Laplace transform of the r.v. Y conditioned on the fact \mathbf{k} is equal to \mathbf{n} is given by

$$
X_{Y}(s / k=n)=\left[\frac{\mu}{\mu+s}\right]^{n}
$$

Therefore, the average Laplace transform is given by

$$
\begin{aligned}
X_{Y}(s) & =\sum_{n=1}^{\infty} X_{Y}(s / k=n) P(k=n) \\
& =\sum_{n=1}^{\infty}(1-p)^{n-1} p\left[\frac{\mu}{\mu+s}\right]^{n} \\
& =\frac{p \mu}{p \mu+s}
\end{aligned}
$$

Examining the last formula, one can conclude that the sum is itself an exponentially distributed r.v. with mean $1 /(p \mu)$

Inequalities and Bounds

- Markov Inequality
- Chebyshev Inequality
- Chernoff Bound

Markov Inequality

- Let X be a nonnegative random number and $h(X)$ is a nondecreasing function of X, then the expectation $h(X)$ can be written as
$E[h(X)]=\int_{-\infty}^{\infty} h(x) f_{X}(x) d x \geq \int_{t}^{\infty} h(x) f_{X}(x) d x \geq h(t) \int_{t}^{\infty} f_{X}(x) d x \geq h(t) P(X \geq t)$
Therefore,

$$
P(X \geq t) \leq \frac{E[h(X)]}{h(t)} \quad t \geq 0
$$

Two popular example of $h(X)$, are $h(X)=x$ and $h(X)=e^{\text {ax }}$
For $h(X)=x$, we can write

$$
P(X \geq t) \leq \frac{E[X]}{t} \quad t \geq 0
$$

The above is referred to as the simple Markov inequality

Example 24: Markov Inequality

- Problem: Find the simple Markov inequality and compare with the exact survivor function for an Erlang 4 distribution with $\mu=2$.
- Solution:
$E[X]$ is given by $k / \mu=2$ (see example 23)
therefore, the simple Markov inequality is given by

$$
P(X \geq t) \leq \frac{E[X]}{t}=\frac{2}{t} \quad t \geq 0
$$

The exact survivor function is evaluated as

Example: Markov Inequality - cont'd

- Solution:

The former integral can be evaluated either numerically or using tables of integrals, using the latter,

$$
P(X \geq t)=e^{-2 t} \sum_{j=0}^{k-1} \frac{(2 t)^{k-1-j}}{(k-1-j)!} \quad k=4
$$

- The simple Markov inequality and the exact survivor function are plotted in the graph. It is clear the computed bound it quite loose!!
- Actually for $0<t<2 \rightarrow$ the bound value is greater than $1!$

Chebyshev Inequality

- Using Markov's inequality one can write

$$
P\left(Y \geq \varepsilon^{2}\right) \leq \frac{E[Y]}{\varepsilon^{2}}
$$

Let $\mathbf{Y}=(X-E[X])^{\mathbf{2}} \rightarrow \mathrm{E}[\mathrm{Y}]=\operatorname{Var}[\mathrm{X}]$
therefore,

$$
P\left((X-E[X])^{2} \geq \varepsilon^{2}\right) \leq \frac{\operatorname{Var}[X]}{\varepsilon^{2}}
$$

but $P\left(|X-E[X]|^{2} \geq \varepsilon^{2}\right)$ is equal to $P(|X-E[X]|$ $\geq \varepsilon)$; Hence the inequality can be rewritten
as

$$
P(\mid X-E[X] \geq \varepsilon) \leq \frac{\operatorname{Var}[X]}{\varepsilon^{2}}
$$

Example 25: Chebyshev Inequality

- Problem: Find Chebyshev inequality for the Erlang 4 distribution of previous example.
- Solution:

The mean of the Erlang 4 distribution, $\mathrm{E}[\mathrm{X}]$, is equal to $k / \mu=2$, while variance is equal to $k / \mu^{2}=1$.
Therefore, the inequality is then

$$
P(|X-2| \geq \varepsilon) \leq \frac{1}{\varepsilon^{2}}
$$

Example: Chebyshev Inequality cont'd

- Solution:

The exact solution of $P(|X-2| \geq \varepsilon)$ is given by

$$
\begin{aligned}
P(|X-2| \geq \varepsilon) & =P(X \geq 2+\varepsilon) \quad x \geq 2 \\
& =\int_{2+\varepsilon}^{\infty} f_{X}(x) d x \quad x \geq 2 \\
& =e^{-2(2+\varepsilon)} \sum_{j=0}^{k} \frac{[2(2+\varepsilon)]^{k-1-j}}{(k-1-j)!}
\end{aligned}
$$

- The graph shows a comparison between Chebyshev inequality and the exact solution. The bound is loose!

Chernoff Bound

- Using Markov's bound, and letting $h(t)=e^{a t}$; where $\mathbf{a} \geq \mathbf{0}$, one can write

$$
P(X \geq d) \leq e^{-\alpha d} E\left[e^{\alpha X}\right]=e^{-\alpha d} X(-\alpha) \quad \alpha \geq 0
$$

where $X(-a)$ is the Laplace transform of the variable X evaluated at $s=-a$.

- Note that for discrete r.v.s, Let $z=e^{a}$ in the previous expression, this results in the following bound

$$
P(X \geq j) \leq z^{-j} N(-\ln \alpha) \quad \alpha \geq 0
$$

where $\mathbf{N}(\mathbf{z})$ is the probability generating function for the r.v. X.

Example: Chernoff Bound

- Problem: Find Chernoff bound for the Erlang 4 distribution of previous example.
- Solution:

Substituting directly into the Chernoff bound formula,

$$
P(X \geq t) \leq e^{-\alpha t}\left(\frac{\mu}{-\alpha+\mu}\right)^{k}
$$

To determine the value of a that minimizes the RHS we differentiate with respect to a and solve for a
$\rightarrow \mathrm{a}=\boldsymbol{\mu}-\mathrm{k} / \mathrm{t}$

Example: Chernoff Bound - cont'd

- Solution:

 Therefore,$$
P(X \geq t) \leq e^{-t \mu+k}\left(\frac{\mu t}{k}\right)^{k}
$$

It is interesting to note that the bound decays at
 the same rate as that of the exact solution!

Weak Law of Large Numbers

- Let $X_{1}, X_{2}, \ldots, X_{n}$ be a sequence of iid random variables with finite mean $E[X]=\mu$.
Define $M_{n}=1 / n\left(X_{1}+X_{2}+\ldots+X_{n}\right)$

It can be shown that for $\boldsymbol{\varepsilon}>\mathbf{0}$
$\lim P\left(\left|M_{n}-\mu\right|<\varepsilon\right)=1$
$n \rightarrow \infty$
Prove this law

Note:

- M_{n} is referred to as the sample mean
- The weak law states that for a large enough fixed value of n, the sample mean using \mathbf{n} samples will be close to the true mean with high probability
- The above is true even if the variance not finite!!

References

- Alberto Leon-Garcia, Probability and Random Processes for Electrical Engineering, Chapter 3, Addison Wesley, 1989
- J. Hayes and T.V.J. Ganesh Babu, Modeling and Analysis of Telecommunications Networks, Chapter 2, Wiley, 2004

[^0]: Example 14: J oint Gaussian Variables

 - Problem: show that if X and Y are two uncorrelated Gaussian r.v.s, then they are independent

