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Queuing Model

e Consider the following system:
A(t) N(t) = A(t) - D(t) D(t)

T eust ith customer
1th customer departs at time D;
arrives at time S;

‘ Queueing System ‘

.=D. T -5
A(t) — number of arrivals in (0, t] =D. - A
D(t) — number of departures in (0, t]
N(t) — number of customers in system in (0,t]
T, — duration of time spent in system for ith customer
W, — duration of time spent waiting for service for ith customer




Example: Queueing System

e a; and |, arrival
and departure ; ‘
instances I Lo

o T, =f—a—time
spent in the
system

«If A(t) = D(t) 2
system is empty

e The graph is
shown for FCFS
service

A(t) and D(t) for a queueing system
T T
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Little’s Formula

e Consider the time average of the number
of customers in the system N(t) during

(0,t], t
(N), = % ! N(r)dr

i.e. average area under the curve for N(t)
<N>, is also given by

(V). =
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Little’s Formula - cont’d

e The average arrival rate <A>, is given by

A
2, =47

e Combining the previous equations we get:
A1)

(M), =), 35 27

i=l
e Let the quantity <T>, be the average time a
customer spends in the system, then

1 A(t)

=0 2"
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Little’s Formula - cont’d

e Combining the last two equations:
(N), =(A)(T),

* Which relates the time averages of the
arrival rate, the number of customers in
the system and the average time spent in
the system

e Lett >, then one can write:

E[N]=AE[T]
Under what conditions will
<N> > E[N] for t > »?
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Little’s Formula - cont’d

e Little's formula:
E[N] = AE[T]

Holds for many service disciplines and for
systems with arbitrary number of
servers. It holds for many interpretations
of the system as well

A1) A(t) A1) A1)
Note: ZT :ledf =4 :Zl:dt ‘lelf does not
depend on the service order
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Intuitiveness of Little’s Formula

e Little's formula:

E[N] = AE[T]
. Arrivals during the service
Arrival of time of customer i Departure of
customer i customer i
N _/ time axis
—~,

Ti=a-1
time spent in the system
for customer i

e Formula applies to many interpretations of
“system”!
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Example 1:

e Problem: Let Ns(t) be the number of
customers being served at time t, and let
T denote the service time. If we
designate the set of servers to be the
“system” then Little’s formula becomes:

E[Ns] = AE[~]

where E[Ns] is the average number of busy
servers for a system in the steady state.
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Example 1: cont’d

Note: for a single server Ns(t) can be either 0 or 1 = E[Ns]
represents the portion of time the server is busy. If p, =
Prob[Ns(t) = 0], then we have

1 - p, = E[Ns] = AE[<], Or
Po =1-AE[r]

The quantity AE[‘c] is defined as the utilization for a single
server. Usually, it is given the symbol p

p = AE[1]

For a c-servers system, we define the utilization (the fraction
of busy servers) to be

p =AE[t] / c
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Poisson Process

e Refer to the Summation process example
in the Random Processes package

e Def: Poisson process to be the point
process for which the number of events
(successes), X(t), in a t-second interval is
given by the Poisson distribution

pk(z):p(x(t):k):(ﬁkﬁe—ﬂ k=0l

where A is the average rate of success per time unit
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Poisson Process - Properties

e The random process X(t) is a Markov
Process. For arbitrary times:
t, <t <...<t <t ;,

Prob[X(t,1) = Xs.1/X(t) =Xy «oor X(t1)=X4]
= Prob[X(ty.1) = Xi+1/X(t)=x,]

e Independent increments
e Stationary increments
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Poisson Process - Interarrival Time

e LetT be the random time between two
consecutive events

¢ The distribution function is given by

F;(t)=P(T=1t)
= P(at least one arrival in t seconds)
= 1 — P(0 arrivals in t seconds)
=1 = Py(t)
=1-eM
Therefore f,(t) is equal to AeM fort =0

e Poisson Process = interarrival times are
independent and exponentially distributed
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Uniformity Property

e Def — give a number of arrivals in an
interval, the arrivals are uniformly
distributed throughout the interval!

arrivals

L0

time access
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Uniformity Property - cont’d

Proof:

Suppose that we are given than one arrival occurs in the interval [0,t],

Let Y be the arrival time of the single customer > 0 <y <t

Let X(y) be the number of events up to time y = X(t) — X(y) is the increment in the
interval (y, t]

P(Y =y) = P(X(y) = 1/ X(t) = 1]

P(X(y) = 1 and X(t) — X(y) = 0]

= one arrival only

P(X(t) = 1) [
P(X(y) = 1) P(X(t) — X(y) = 0)
P(X(t) = 1)

Aye-lv @-At-y)

AteMt 1 >

0 y Y time access
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Kolmogorov Forward Differential
Equations

e Consider the incremental time interval o,
so small that Ad << 1forall A

e Using the Poisson density function and
knowing that e?® x 1- A5 +0(J) — where
O(0d) are higher order terms of 0 (i.e. lim
0(0)/6=0asd~>0)

® One can write: This means, we choose 6 small such

that the likelihood of more than one

Po(a) - 1 - AS +O(6) arrival during 9 is close to zero
Pl(a) = AS +O(6) . b e S e —
Pi(a) - 0(6) fOI‘ | 2 2 | Py(8)=1-13 | Py(8)=1-45 | Py(3)=1-18 |

P,(3)=)8 P,(3)M P ()-8 (XX

Sequence of iid Bernoulli experiments
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Kolmogorov Forward Differential
Equations - cont’d

* This means, we choose & small such that
the likelihood of more than one arrival
during 0 is close to zero

[— \ 7

3 3

Py(3)=1-18 P(8)=1-25 Py(3)=1-18
P, (3)=15 P,(3)=13 P,(3)=13 eo e

’ Sequence of iid Bernoulli experiments ‘
e The corresponding state diagram (for the
discretized-time version) is given by

1-A8 1-A8 1-A8
W@xﬁ\
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Kolmogorov Forward Differential
Equations - cont’d

e Let us study the evolution of P, (t) with
respect to time, t
e Remember P (t) is the probability of n
arrivals in an interval t
e Consider the change in P (t) in the
incremental interval (t, t+ 0)
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Kolmogorov Forward Differential
Equations - cont’d

e Casen=0
P,(t+ 8) = P(no arrivals in (0,t+ 3))
= P(no arrivals in (0,t)) P(no arrivals in (t,t+ 3))
= Py(t)(1 - A 3)
e Casen>0
P.(t+ 8) = P(n arrivals in (0,t+ 3))
= P(n arrivals in (0,t)) P(no arrivals in (t,t+ 3))
+ P(n-1 arrivals in (0,t)) P(1 arrival in (t,t+ 3))
= P,(t)(1 - A3) + P, ,(t)(A 3)

e The above equations can be written as
[Po(t+ 3) - Py(t)1/ 8 = - A Py(t), and
[P, (t+3)-P, (t)]/d=-AP,(t) + AP ,(t), n>0
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Kolmogorov Forward Differential
Equations - cont’d

¢ Take the limit as 6 2 0, the previous equations
can be written as:

dP,(t)/dt = - A P(t), and
dP (t)/dt = - AP (t) + AP, ,(t), n>0

e Verify that P (t) given by
()
B (t)= e k=0,1,..

is a solution for thé Kolmogorov Forward
differential equations
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Kolmogorov Forward Differential
Equations - cont’d

e Another form for the Kolmogorov D.E. is
as follows:

~

PO _ xp)

dt

where P()=[R() RE) A .
-2 0 0 0
A -2 0 0
A= 0 1 -1 0

A is the infinitesimal 0 0 /1 __/1
generator matrix L - : : ©
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Adding Poisson Processes

e Sum of two INDEPENDENT Poisson processes

e Consider an incremental interval o

e The probability of an arrival from either source is A,0
(1- A0)+(1-A0) A0 = (A, + A,)0

¢ The probability of arrivals from both source is A,8 A,0
=ANAO2ZRO0

¢ Therefore, the sum is a Poisson process with

rate (A, + A,) |

Arrival rate =,

|

Arrival rate = A,+),

121412004 Dr. Ashraf S. Hasan Mahméyrival rate =2, 22
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Splitting Poisson Processes

o Splitting of a Poisson processes

e Consider an incremental interval o
e The probability of an arrival to bin 1: Adp

e The probability of an arrival to bin 1: A3(1-p)
e Since subsequence arrivals to either bins are

independent and identically distributed
e Therefore, the arrivals processes to bin 1
and 2 Poisson with rate pA and (1-p)A,

respectively
p

I-p

pA
bin 1

g-p)k
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Pure Birth Processes

e Poisson process is a member of a wider
class of “pure birth processes”

e In general the probability of an arrival in
an interval & can be function of the
number in the system, A, 0

e The corresponding state diagram will be

1-1,8 1-1,3 1-1,3
W@xz—a\
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Pure Birth Processes - cont’d

e In the same manner, you can show that
the corresponding Kolmogorov D.E are

given by

dP,(t)/dt = - A, P,(t), and

dP . (t)/dt=-A, P, (t) +A,; P,4(t), N>0

Subject to the condition > 7(t)=1
n=0

12/4/2004
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Pure Birth Processes - cont’d

e Putting the Kolmogorov D.E.s in a matrix

form:

A is the infinitesimal
generator matrix L

12/4/2004

A=

4 0 0
A=A 0
0 A -4

Dr. Ashraf S. Hasan Mahmoud

Necessary and sufficient condition
for stability is )’ 1/A,=

’ Note sum of columns = zero
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Example: Yule-Furry Process

e For Yule-Furry process, A, = n A — linear rate
with system population
e The evolution equations are then given by

dP,(t)/dt = - nAP,(t) +(n-1)AP, ,(t); n=k

e For the initial condition P, (0)=1 for some k > 0,
show that

1 -
Pn(t):(z 1]e‘”’”(l—e‘l’) Y on2kt20

is a solution
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Poisson Arrivals See Time Averages
(PASTA)
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Birth And Death Processes

¢ The corresponding state diagram is as shown:

12,0 25 1-(h+p,)8 28 1-(,+,)8 AS I=(AyHp3)d
W -
NN NS
wd 8 W
e The Kolmogorov D.E are given by

dPo(t)/dt = - Ay Po(t) + p,Py(t), and
dPn(t)/dt =- (An+"1)Pn(t) + An-1Pn-1(t) + I'In+1Pn+1(t)I n>0

1

Subject to the condition iPn(t)
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Birth And Death Processes - cont’d

e Putting the Kolmogorov D.E.s in a matrix

form: 5
. dP(t ~
& =MP (t ) +ve solution exists if
dt 0=<A,<p,

where  P(0)=[R() Rl) Al) ..J

4 H, 0 0
A A Hy 0
M= 0 4 — A — i, H;
0 0 4, — A=
12/4/2004 Dr. Ashraf S. Hasan Mahmoud 30
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Global Balance Equations

o Steady state solution & dP(t)/dt=0
* The resulting set of equations:

Ay Py = p4Py, and
(An+|'|n)Pn = An-1Pn-1 + |"|n+1Pn+1l n> 0

In addition to the normalizing condition ip,, =1
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Global Balance Equations - cont’d

* The state transition flow diagram:

Ao A A, Mt Ay At
odcdBo@Bcso@BcEl
l”tl H2 “’3 “’n l’l'n+1 “’n+2

 We can show the solution for the global
balance equation is given by

n ﬂ,
P =R]T
and oA
. _ The basis for all queueing

Sy A formula to come!!
R

n=l izl H;
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Queueing Models: M/M/1

e Making the substitutions: A, = A and y, = y, and
defining p = A/ {4, one can write
P =(-p)p" n=0,12,.

or P(e)= I-p

¢ The mean and variance of number of customers in
system, E[N] and Var[N] are given by
E[N]= I_L Var[N]= %

2

P -p
e The mean delay in the M/M/1 queue can be
obtained through the application of Little’s
formula: ELD]= EIN]/ A=)
H—A
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M/M/1- Delay Distribution

e The probability of n customers as a degarting customer departs after
spending t seconds in system is given by

ES At
or P, :I%d(t)dl n=0,1,...
o Al L
P(z)= > p" =) z".[ (;U') e d(t)dt
n=0 n=0 0 n.

8

P(z)=[e™?d(e)dt = D(A(1-z))

Note this probability is the sa|g1e as the probability of n customers in system —
Also equal to the probability of finding n customers in system by an
arriving customer (refer to PASTA property)

d(t) is the PDF for the total delay time

Therefore, D(s) is given by

-1
Ds)=—~
s+u—A
i.e. )t‘;le delay for M/M/1 queue is exponentially distributed with mean 1/(p-
' d(t)=(u—-2A)e ™ 120
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Queueing Models: M/M/1/L

* Finite Capacity Case: A; = A for j<L
0 for j=L
also H;=H

e The state-transition flow diagram of
M/M/1/L queue is as shown below

A A A A A
o@iodBo@BoRsc@BC
u u u H U
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Queueing Models: M/M/1/L - cont’d

Steady-state pmf is given by

= (i:pzﬁn n<lL
0 n>1L

B

e What is P(z) equal to?

e In particular, the blocking probability, 2,
is given by the relation above forn = L
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Queueing Models: M/M/1/L - cont’d

e In particular, the blocking probability, P,
is given by the relation above forn = L

L M/M/1/L queue
T T T T

Probability of blocking

4 L | | | \l. | T T
0 01 02 03 04 05 06 07 08 09 1
12/4/2004 D Load (Rho)

Example: M/M/1/L - cont’d

* Problem: A voice signal is digitized at a
rate of 8000 bps. The average length of a
voice message is 3 min. Messages are
transmitted on a DS-1 line, which has the
capacity of 1.344 Mbps. While waiting for
transmission, the messages are stored in a
buffer which has a capacity of 107 bit. Plot
the blocking probability versus the voice
message arrival rate.
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Example: M/M/1/L - cont’d

-
. : . L. -

bt M . Note since voice message size is 1440000 bits, then

0001 % . 6 T .

0002 % Example 3.7 - volce multiplexing - page 91 buffer size can not be 10° bits as stated in the

0003 clear all textbook. Here we use buffer size of 107 bits which

0004 LineWidth = 3; .

0005 means, buffer can accommodate 6 voice messages

0006 DS1_Capacity = 1.344e6; % bits/sec before it overflows.

0007 BuffSizeBits = le7; % different than textbook Refer to example 3.7 page 91 in textbook

0008 BPSPerVoiceMsg = 8000 ps per voice msg

0009 VoiceMsgDuration = 3*60; % second;
0010 VoiceMsgSizeBits = VoiceMsgDuration * BitsPerVoiceMsg;

0011 ServiceTime = VoiceMsgSizeBits / DS1_Capacity;
0012 % # of msgs buffer can fit

0013 BufferSizeMsgs = floor(BuffSizeBits/VoiceMsgSizeBit
0014

0015 Step = 0.01;

0016 Lamda = [0:Step:(1-Step)/ServiceTime];

0017 Rho = Lamda * ServiceTime;

0018 PB = (1-Rho).*Rho.”BufferSizelsgs./(1-Rho.~(BufferSizeMsgs+1));
0019 %

0020 % Plot results

0021 figure(1)

0022 h = plot(Landa, PB,*-r*);

0023 set(h, “LineWidth®, LineWidth);

0024 xlabel(*voice message arrival rate®); grid
0025 ylabel(*overflow probability*);

0026 axis([0 1 0 0.21);

0027

overflow probability
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wice message arrival rate

Queueing Models: M/M/S -
Multiserver Systems

e Assume S servers system, therefore:
M;=juforj=s
Suforj>S
and A; = A forallj

e The state-transition flow diagram of
M/M/S queue is as shown below

A A A A A A A
oS ORI : @B oRs @SN
U 2u (S-Dp S Su Sp Su

12/4/2004 DIWXNE Erlang C model — Blocked calls are QUEUED
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Queueing Models: M/M/S -
Multiserver Systems - cont’d

» Solving the balance equations, results in

J
LT
Bl
P o’ )
S5 7S

Pois calculatedas , [$1p/ sp° |
Cla it Ss(S-p)
e The traffic utilization, p = A/ 4
* Note the condition for solution validity is

p/S<1

1.e. in the S-server case, the traffic load ranges 0 to S.
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Queueing Models: M/M/S -
Multiserver Systems - cont’d

¢ The probability of queueing is equal to the
probability of finding alls servers busy, therefore,

S
ZP S' (s-p)

¢ The mean number of customers in queue, E[Nq],
is given by

0

S,
=N = 2 s S(S/;)

¢ Therefore, the relation between average number
of customers in queue and probability of

queueing is given by
0 Ep

“(5-p)
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Exercise: M/M/S/~

e Show that the waiting time distribution is
given by

FW(x)zl—LSe_”(S_p)x x>0
S-p

Refer to slides of "Queueing Models” for
COE 541 for proof.
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Example: M/M/S/«

¢ Problem: a 160 kb/s line is used for data
transmission. Two options are provided

a) Implement a 16-channel TDM scheme where
every channel provides 10 kb/s.

b) Use the overall trunk as one fat data
transmission pipe.

Assume data frames arrive at a Poisson rate A and
are exponentially distributed in length with
average of 2000 bits per frame.

Which scheme provides less delay?

12/4/2004 Dr. Ashraf S. Hasan Mahmoud a4
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Example: M/M/S/~ - cont’d

e Solution:
a) S = 16 servers — Model M/M/S
R.=10kb/s & E[t] =1/ p = 2000/10 = 200 msec
P =A/u= AE[t] =200A
E[T] = E[W] + E[r] = E[Nq]/ A + E[1]
=P, (1/p) /(S- p) + E[1]

b) S = 1 server — Model M/M/1
R. =160 kb/s = E[t] =1/ p = 2000/160 = 1.25 msec
P =A/p= AE[t]=1.25A
E[T] = E[W] + E[r] = E[Nq]/ A + E[1]
=1/ (p—-A)

12/4/2004 Dr. Ashraf S. Hasan Mahmoud 45

Example: M/M/S/~ - cont’d

e Solution:

For option (a) — Teomchames | 1 1| |
minimum service time is 1.8|| === One 160kb/s channel | — — L — - _ I _ ®§_ _ 4 _
- | | | |
equal to 200 msec e e e B e GEF B
P S A SR D (SR AN NU B SRR
For option (b) IR
- - - - - =l - """ tT- -t - -7 f- T
- minimum service timeis ¢ I T
equal to 1.25 msec e e e A
Option (b) provides better ST NP R A (-
(less) system N I S RN (I
o IR i
Note: The x-axis in the O
textbook graph is not I TR R,
;g;reegt4SExvaer::= Ig 3'8 data frame arrival rate (frame/sec)
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Example: M/M/S/~ - cont’d

0001 %

0002 % Example 3.8 - voice multiplexing - page 94 0001 function [PO, PS, Pc] = Get_M_M_S(S, Rho);

0003 clear all 0002 % compute PO, PS, and Pc for an M/W/S queue given S and Rho
0004 LineWidth = 3; 0003 PO = zeros(size(Rho));

0005 0004 PS = zeros(size(Rh0));

0006 Line_Capacity = 160e3; % bits/sec 0005 Pc = zeros(size(Rho))

0007 NoOfChannels = 16; % No of TDM channels 0006

0008 RateTDMChannel = Line_Capacity/NoOfChannels;% bps per channel ggg; ;g'jpl’ {ergS(S'Ze(Rho))i

0009 AvgFrameSizeBits = 2000; % bits - " -
0010 12 1zest v bits 0009 temp = temp + Rho.~i./factorial (i);
0011 % option (a) - 16 TDM channels - W/M/S queue 0010

0012 ServiceTime_a = AvgFrameSizeBits / RateTDWChannel; 0011 = temp + S.*Rho."S./(factorial(S).*(S - Rho));

0012
s : 05 o = 1./t
0015 Landa_a = [Step:Step:S/ServiceTime_a - Step]: o014 PO .* Rho.”S./factorial(s);
0016 0015 PS .* S./(S - Rho);
0017 Rho_a Lamda_a * ServiceTime_a;
0018 [PO PS Pc] et_M_M_S(S, Rho_a):
0019 W_a = Pc.*Rho_a./(S-Rho_a)./Lamda_a;
0020 T_a = W_a + ServiceTime_a;
0021 %
0022 % option (b) - 1 160 kb/s channel - M/M/1 queue
0023
0024 ServiceTime_b = AvgFrameSizeBits / Line_Capacity; PO
0025 Step .05;
0026 Landa_b Step:Step:1/ServiceTime_b-Step]; COde to generate key prObablhtleS
0027 Rho_b amda_b * ServiceTime_b;
0028 T_b = 1./(1./ServiceTime_b - Landa_b); (PO, PS’ Pc) fOI' M/M/ S System
0029 %

0030 % Plot results
0031 figure(l)
0032 h = plot(Landa_a, T_a

*, Lamda_b, T_b,"--r");
0033 set(h, “LineWid dth);

0034 xlabel (*data frame arrival rate (frame/sec)?); grid
0035 iaber o frae i (se0>" <:| Code to compare between

0036 legend(*16 TDM channels®™, “One 160kb/s channel*, 2);

0037 axis([0 100 0 2]); Options (a) and (b)
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Queueing Models: M/M/S/L

¢ S server model with finite waiting room
e Assuming L = S, we have
y;=juforj=s
Suforj>sS
and A=A for j<L
0 for j=1L

¢ The state transition flow diagram M/M/S/L queue

A A A A
S @i s @B
(S-Hu  Sp Sp Su
12/4/2004 Dr. Ashraf S. Hasan Mahmoud 48
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Queueing Models: M/M/S/S
o Special case of M/M/S/L where L = S;

e The state transition flow diagram
M/M/S/S queue

A A
U 2u (S-Hp Sp

12/4/2004

IWXNE Erlang B model — Blocked calls are CLEARED

Queueing Models: M/M/S/S - cont’d

¢ Solving the balance equation yields:

K"

})n =9

and S
R=|Y2

n=0,.12,..,5

¢ When an arrival finds éi‘i S servers busy, it is blocked or
dropped (no waiting room) — Probability of blocking is given
by Bs.p)= 2L

s o
P
o n!

PB(S> )7M

 S+pP(S-1,p)
where Pg(0,p) =1

Insensitivity Property of Erlang-B formula: Blocking
probability does NOT depend on the distribution of the
service time, but rather its mean

12/4/2004 Dr. Ashraf S. Hasan Mahmoud
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Example: M/M/S/S

e Problem: constant length frames of 1000
bit each arrive an a multiplexer which has
16 output lines, each operating at a 50
kb/s rate. Suppose that frames arrive at
an average rate of 1,440,000 frame per
hour. There is no storage; thus if a frame
is not served immediately it lost.

Calculate the blocking probability at the
multiplexer.
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Example: M/M/S/S - cont’d

e Solution:
frame arrival rate, A = 1,440,000 frame/hour
= 400 frame/sec
frame service time, 1/ gy = 1000 / 50 kb/s
= 0.02 sec
Trafficintensity,p =A/p =8
Number of servers, S = 16 (verify p/S< 1)

Using the iterative formula 2

s 1 2 3 4 5 6 7 8
HENN 0.8889 | 07805 | 0.6755 | 0.5746 | 0.4790 | 0.3898 | 03082 [ op%56] |

s 9 10 1 12 13 14 15 16 our
EN 01731 | 0.1217 | 0.0813 | 0.0514 | 0.0307 | 0.0172 | 0.008L | 0.0045,]

-y
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M/M/S/S - Infinite Servers Case

» Special case of the M/M/S/S queue
e LetS > o, i.e. an arriving customer always has a
server available
¢ The probability of system in state zero is given by
w55 -
¢ Therefore, the probability of system in staten =0
is computed as

p=L ¢

"ol

Which is the Poisson distribution!!
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Finite Source Queueing - Engset
Distribution

¢ Assume a finite population of N — each generate a
message with rate A (or with probability Ad in the
interval (t, t+08)). The next message is not
transmitted till the prior one is served. Assume no
storage case, i.e. if a source generates a message
when no server is available, the message is lost
and the source returns to idle state immediately.

¢ The state transition flow diagram is as shown:

NA (N=1)1 (N-S+2)A (N=S+1)A
oo« @O
U 2u (S-Hp Sp
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Finite Source Queueing - Engset
Distribution — cont’d

e You can show that the pmf is given by

N ﬂ/ n
P =P Z n=0]1,..,S
and n\H

L Wol

« Remember P;is the probability of blocking
e There is no blocking for N = S — Why?
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Method Of Stages - Erlang
Distribution (E))

» Single state server:

frO=pe™ 120 ®

Fr(s)= 2
S+u

E[T]=Vu Valr]=1/u? C, =1

e r-Stage server:

N @

F.(s)= ( de j
S+ru r-stages
E[r)=yu varlr)=iu?) =N
12/4/2004 Dr. Ashraf S. Hasan Mahmoud 56

28



Method Of Stages - Erlang
Distribution — cont’d

0001 %

0002 % Erlang distribution
0003 LineWidth = 3;

0004 Rs [1 2 35 20];
0005 Mue
0006 t [O Step:4];

0007 f zeros(length(Rs), length( ;

0008 18 — — - — — R
0009 for i=1:length(Rs) | |
0010 r = Rs(i); 16 —— - ! !

0011 D = r*Mue*(r*Mue*t) ~Q : : :

(

1) .*exp(- r*Mue*t) - ——-A-tb-q---1---
0012 factorlal(r 1);
0013 end 120 - — o
0014 |

-
|
|

f(t)
-
|
|

0015 figure(l);
0016 h = plot(t, f); grid o8l \_ | RN
0017 set(h,"LineWidth", LineWidth); ’
0018 xlabel("t"); 06
0019 ylabel ("f(t)"); !
0020 LegendStr = ["legend("]; 041 - - h -
|
4

0021 for i=1:length(Rs)-1;

0022 LegendStr = [LegendStr ttr 0.2
num2str(Rs(i)) """, 1;

0023 end 0 !

0024 LegendStr = [LegendStr """r =
num2str(Rs(length(Rs))) “') “1;

0025 eval (LegendStr);
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Erlang Distribution - Observations

e Let r 2> oo, the distribution of T approaches

a constant (deterministic) valueof 1/ p

hmF +(s) =1im| _ =
oo 14 s/ru

or .
fr(0)=6(e~1/u)
where 0
E[l]=/u Var[T]=0
1
1
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The Queue M/E /1

e Service time ~ r-stages Erlangian distribution
System state:

¢ Number of customers in system

¢ Number of stages remaining in the service
Define j = number of stages left in total system
(i.e. for all customers)
If system contains k customers

e (k-1) waiting

e Oneisin service — let him be in the ith stage
Therefore, j is given by

j =(k-r+(r—i+1),0r
=rk—-i+1;
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The Queue M/E /1 - cont’d

 Define P; = Prob of j stages in system
» Define p, = Prob of k customers in system
 P; and p, are related as follows:

ke
p= 2P k=12,
T [Note: py =Pyl
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The Queue M/E /1 - cont’d

* The state-transition-rate diagram for
number of stages is as shown

* Every arrival brings along r new stages to
be completed!

* Note that state 0, 1, ..., r-1 — are special
boundary states!! — WHY?

ru il
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The Queue M/E /1 - Forward
Equations

* Forward equations in equilibrium,
APy =rpP,, and
(A+rp)P; = A Py, + rpPy,,, J=1,2, ...

« Define P(z) to be p(z)-Sp./ -

o Therefore, S (i+rpz/ =3P 2/+3 P,z

J=1

(A+ }’/J{i Pz’ - PO} = ﬂz’iﬂ}’ﬂz” +%§:1’Mz”1
j=0 j=l j=1
(2+rufP(z)-B]= 22" P(s)+ "2 [P(z)- B, - B2]
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The Queue M/E /1 - Forward
Equations

o After simplifying, P(z) can be written as
__ k(-2
P(Z)_ ru+ Az —(/1+r,u)z

e P, can be found using the condition P(z =
1)=1=2P,=1-A/p

o If we define p = A/, P(2) can be rewritten

as
(o) ri=pNi-2)

ot Az - (A+ru)z
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Example: M/E /A

¢ Problem: show that M/M/1 queue is a special case of
M/E./1 wherer=1

¢ Solution: Using r = 1, P(z) reduces to

__ull-p)i-2)
Ple)= u+izt—(A+pu)z
__(-p)i-2)
1+ p2* =(1+ p)z
_(-p)
1-pz
Which is the generating function for number of customers in
an M/M/1 queue

The probability of k customers in system, p, is given by

k
P = (1 - p)p
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M/E /1 Queue Solution

e Problem: How to invert P(z) in general for r > 1.

rull-pll—z
o Solution: P(z) in general is given by ” (Z)zwf%m

The denominator is a polynomial of degree r+1 = It r+1
roots
It is clear that z = 1 is one of the roots

We must identify the remaining r roots

Let the denominator be  D(z)=(1-z)fru-a(z+22++27)]
Let the r zeros be denoted by {z,, z,, ..., 2.}
D(z)=ru(1-z)1-2/2 M1~ 2/z,)-(1~2/z,)
Then P(z) can be written as
zZ)= I=p
R (e =y

Finding the ZEROS of D(z) is the most challenging task!!
65
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M/E /1 Queue Solution - cont’d

e Solution:
We can perform partial fraction expansion on P(z) to obtain:

o4
where Ple)= (1_'0),-2:1: (1-z/z,)
o]

o ":1_ (1_Zi/Zn)

n#i

Therefore, P(z) can be inverted as

P (=) A(z ) =12,--,
Note = p); (z) r

e The distribution of the number of stages in the system is a
weighted sum of geometric distributions.

e The above is NOT the distribution of customers in the
system yet!!
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The Queue E,/M/1

* Imagine the following configuration

Insert 1 arrival when

facility is empty
e —>O—>

- AN J
N N

r-stage arrival facility Typical queue with infinite
waiting room
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The Queue E,/M/1 - cont’d

e Interarrival time ~ r-stages Erlangian distribution
Service time ~ exponential with rate p
System state:

¢ Number of customers already in system
 Number of arrival stages of customer to arrive
Define j = number of arrival stages in system
If system contains k customers
e Arriving customer is in the ith stage ( 1<i<r) —i.e. he
finished i-1 stages

¢k customer fully arrived — each brought r-stages of
arrival

Therefore, j is given by
j =rk+i-1
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The Queue E,/M/1 - cont’d

¢ The state-transition-rate diagram for number of
stages is as shown

 Define P; = Prob of j arrival stages in system

e Define p, = Prob of k customers in system

e P;and p, are related as follows:

k+1)r-1
P k=012,

J=hr

¢ Every departure removes r stages of arrival from
system!

(
P =

A A e

u
g B
~
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oo iogs @f‘@(

The Queue E/M/1 - Forward
Equations

* Forward equations in equilibrium,
rAP,=puP, and
rAP;=rA Py, + pPy,, j=1,2,...,r-1
(rA+p)P; = rA Py, + PPy, J=rr+1, ...

A A ™

p
n
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The Queue E,/M/1 - Solution

o0

e Define P(z) to be P(z)=Y Pz’

e Therefore, . 4
z,u+rl Pz Z

Jj=

(u+r2)P(z)-P]- Zypz =rizP(z +{ ZP2:|

Ms

rﬂPHz’ + z llle+ij
Jj=1

e Finally,
(-=)5
Pz)= rpz ™t — (l-i:rp)z" +1
where p= A/p
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The Queue E/M/1 - Solution - cont’d

e Consider the denominator of P(z), D(z)

D(z)=rpz"™' —(1+rp)z" +1
e D(z) has r+1 roots
e z=1isoneroot

e It can be shown that r-1 roots are within the
unit circle —i.e. |z| < 1 (Rouche’s Theorem)

* Remaining zero, z,, lies outside the unit
circle, |z,] > 1
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The Queue E /M/1 - Solution - cont’d

e Consider the numerator of P(z), N(z)

N(z) = (l -z )S:szf

* N(z) has 2r-1 roots
e rrootsatz=1

e Since P(z) is analyticon |z] <12 P(2)is
bounded for all |z| < 1 (i.e. no
singularities inside the unit circle)

e The remaining r roots of N(z) (contributed
by the summation term) are inside the unit
circle and cancel those r roots of D(z)
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The Queue E/M/1 - Solution - cont’d

e Therefore, one can write
D(z)

(s (e O

r+l r—1
rpz —(l+rp)z”+1 ;
K» Pz’
IZ(; !

(-2)i-z/z) 4
e This means, P(z) can be written as

1-z"
P(Z):K(l—z)(l—z/zo)
(== )11z,
r(l—z)(l—z/zo)
sinceP(1) =12 K=r/(1-1/z,)
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The Queue E /M/1 - Solution - cont’d

 We are now in a position to solve for the
final pmf — performing the partial fraction
expansion on P(z), yields

P(z)= (1—2"{1/r+ —1/(%)}

1-z l—z/zo

e If we let Llir;:/gz)}:z:ﬁ

 Then Pi=ti=ti ’RecallijOforj<0
1 ( —j .
-1 1_ZO ’ ) J 20 Z-transform Pairs:
¢ Clearly’ fi=qr . Sm=1n=0,1,... < 1/1=)
0 Jj<0 0 otherwise

Ao’ — A/(1- az)
If f, <> P(z), then f, <> z'P(z)

12/4/2004 Dr. Ashraf S. Hasan Mahmoud

The Queue E/M/1 - Solution - cont’d

 Therefore, P; for j=r is given by

P = z M=z, ) = ~ Dlzy)=rpe, " ~(1+7p)z," +1=0
.

i =rp(zy—1)=1-2z,"

= p(ZO _I)Zori jzr
e For 0 =j<r, weobservef, =0 P, =f;only.

¢ Hence, the over all pmf is given by

P :{i(l—zojl) 0<j<r

J
P(Zo _1)20“

i jzr
¢ It can be shown that the pmf for the number of

customers in the system is given by
k=0

1-p
Pi= -
lelz, 1kt k>0
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Generalization of the Erlangian
Distribution - First attempt

* The previous Erlangian distribution is
limited in the sense thatC, = 1/Vr=<1

» Consider a series of r-stages; each with

parameter L;
L) =08 £, ()®---® f, (1) W@ - @

FT(S)Z( th J{ 2 j( , ] I=h+hL+.+1,

S+,U1 S+lur

S+

E[T]: Z[r:ll/lui Var[T]= Z;ll/tuiz C, = (Zi l/,u»z)/(ZZ l/,u.)Z

But C,is again always less than 1 for any choice of 1/ H;
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Generalization of the Erlangian
Distribution — Second attempt

* Consider the 2-stage parallel server

e Only one customer is allowed a
the service facility

fr O = me™ +ay e

H +0’/L

S+ 44 2S"'/v‘z

F.(s)=a,

Service Facility
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Generalization of the Erlangian
Distribution — Second attempt - cont’d

¢ Consider the R-stage parallel server
J 2([) ~ hyperexponential distribution (denoted by

R
Za,. =1
i=l1
fr (@)= ZR:a,-y,.e"’" t>0
i=l1
R
_ H;
FT(S)—;% S
— S ﬁ 2| R i
E[T]= le P E[r’] 22}; 2
2ZR: @ Cauchy-Schwartz inequality:

’ ’ Q,
oot | [z o
a; 2 q, 2 (& & g 5 g,

12/4/2004 (;ﬂ) or A [Z;J S[Za)[zﬂ—]g[zj] .

M/H /1, H,/M/1, H;_/H; /1 Queues

* Analysis by method of stages exists

e Take into account the hperexponential
service (or arrival) facility by merely
specifying which stage within service (or
arrival) facility the customer currently
occupies. PLUS

¢ Number of customers in system

e The above forms a Markov chain which
may be analyzed as we did before
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Example: M/H,/1

o State-transition-rate diagram is as shown
* k;— implies system contains k customers and the
customer in service is in service stage 7

e REMEMBER: only ONE customer can be in service
facility 2
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Example: M/E./2/2

e Problem: Consider an M/E,/2/2 —a
system with two servers, each with 2
identical stages. There is no storage room,
and packets arriving to system while
serving two packets are lost.

Assume packets arrive with rate A, while
the service rate in a stage is given by p.

Compute the blocking probability for this
system?
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Example: M/E./2/2 - cont’d

¢ Solution:
Let the state for such system be (i, j) — where i
and f, are, respectively, the number of packets in
i

the first and seconds stages.

-()lplcsssible states: (0,0), (0,1), (0,2), (1,0), (2,0),
14

The state transition flow diagram is as shown:

Note the state variable is different than
that we used for the M/E /1 queue
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Example: M/E./2/2 - cont’d

¢ Solution: cont'd

We then proceed with writing the equilibrium equations:
APgo = M Poy,

(A+ 1) Poy = 2 4 Py + P Py,
2 Py, = P Py,

(A+ W) Pyg = APgy + P Pyy,

2 Py = APy,

2HPy; =APo + 2Py

Note that Blocking probability, Py is given by 2p
Pg = Py3+ Pg, + Py R
»{ 20
Solving, the above equations: you can show that
2(A/ p)?
PB = Note:
1+ Z(A/p) -+ Z(A/p)z The blocking probability DOES not depend on the service
time distribution, but rather on the mean service time — This
is referred to as the insensitivity property of Erlang-B
formula!!
84
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More Generalization - Series-
Parallel Service

* Note: ry, ..., r; ..., Iz are not necessarily equal

0= 33 AT

i=1 S+I"/Jx

o-gefity

If the rates in stages within
one branch are not equal, then

L6

F.(s)= ZaH Ay

+ﬂy

12/4/2004

More Generalization - Cox Network

e Consider the network of stages shown — Cox
Network

¢ Prob of going through exactly i stages: Hq, a,)

e Assume g, =1, g,=0,then > ]Hq -q,)=

1-q, 1-q, o l-gg, iy I-qg=1
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Characterization of Cox Network -
con’t

e The Laplace transform of the service time
if i stages are used:

i

MT/[(S):HL

S L

* The Laplace transform for the service time
in K-stages network:

H H H
M (s)=q,(1-g))—"—+qyq,(1- ¢, ————"—
S+ 4 S+ ST i
+ 1_\’u1 o) A 4ot 1— \_th Hy Hi
90919 e e Q19>+ i+ W e e
K
Hy
q
O-Slo-01. 2,
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Characterization of Cox Network -
con’t

* M(s) given by

j=0 k15+ﬂk

EM%

is known as the Coxian distribution

* You can show (refer to textbook), the
mean is given by «
E[r]=3"[Ta,0-q Z*

i=1 j=0 k=1 My
i

K 4q;

=>

=1 M
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Characterization of Cox Network -
con’t

* Note that for g;= 1, and g, = yfor all j
then the expression for M(s) reduces to

=[]

which the K-stage Erlang-distribution
previously discussed on slide 56

» The expected delay in this case is given by

E[T] :%
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Example: M/G/N/N

e Consider a queueing system where
e Arrivals are Poisson with rate A
* N servers and no waiting room
e Each server is a Coxian server with K stages

e Objective: compute blocking probability?
And show that it depends only on the
mean service rate and the mean arrival

rate (i.e. no dependence on the probability distribution of
the service time — the insensitivity property of the Erlang-B
formula)

12/4/2004 Dr. Ashraf S. Hasan Mahmoud 90

45



Example: M/G/N/N - cont’d

* System state: K-dimensional vector
* lLe. state = (k,, k,, ..., ki) —where k;; i=1,2,
..., K is the number of customers in stage I
e Obviously, sum of k;s should be less or equal
to N. Note it is equal to N if all servers are
busy — remember too that only one
customer can be in any server!!
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Example: M/G/N/N - cont’d

e Consider a case whereN =3 and K = 2.

q9=1 9

1-q, 1-q, 1-q,=1
q9=1 9

q,=0
m : departures

1-q, 1-q, 1-g,=1
q9=1 9

1-q, 1-q, 1-g,=1
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Example: M/G/N/N - cont’d

o System States: examples

: ,;j

State = (0,1) State = (0,3) —
system full

State = (2,1) — State = (1,1) State = (2,1) —
system full system full
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Example: M/G/N/N - cont’d

e Exercise: For the K= 2, N = 3 case
explained before
¢ A) draw the state transition diagram

¢ B) show that the state equilibrium equations
(3.76 and 3.77) are satisfied

e C) Derive the detailed balance equation 3.78

* The exercise is worth 10% points bonus in
the final exam

» Deliver a soft copy in power point of the
detailed solution

e Deadline: January 3, 2005
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Example: M/G/N/N - Blocking
Probability

¢ Blocking probability is equal to the probability of
system being in states where the sum of k;s is

equal to N. i.e.
P, =Pr ob@f k, = N)

i=1 !

¢ The textbook shows that the blocking probability
is given by -
K I14,

o) &L
B |2,

where P(0) is a constant term found through the
normalization equation

¢ Refer for textbook for derivation details.
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