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Queuing Model
• Consider the following system:

Queueing System

ith customer
arrives at time Si

ith customer
departs at time Di

A(t) N(t) = A(t) – D(t) D(t)

Ti = Di – Ai
A(t) – number of arrivals in (0, t]
D(t) – number of departures in (0, t]
N(t) – number of customers in system in (0,t]
Ti – duration of time spent in system for ith customer
Wi – duration of time spent waiting for service for ith customer

Wi = Ti – Si
= Di – Ai – Si
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Example: Queueing System
• ai and li arrival 

and departure 
instances

• Ti = li – ai – time 
spent in the 
system

• If A(t) = D(t) 
system is empty

• The graph is 
shown for FCFS 
service

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8
A(t) and D(t) for a queueing system

time

T1

T2

T3

empty
system

a1
a2

a3l1 l2
l3

12/4/2004 Dr. Ashraf S. Hasan Mahmoud 4

Little’s Formula
• Consider the time average of the number 

of customers in the system N(t) during 
(0,t],

i.e. average area under the curve for N(t)
<N>t is also given by
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Little’s Formula – cont’d
• The average arrival rate <λ>t is given by

• Combining the previous equations we get:

• Let the quantity <T>t be the average time a 
customer spends in the system, then
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Little’s Formula – cont’d
• Combining the last two equations:

• Which relates the time averages of the 
arrival rate, the number of customers in 
the system and the average time spent in 
the system

• Let t ∞, then one can write:

ttt
TN λ=

][][ TENE λ=
Under what conditions will 
<N>t E[N] for t ∞?
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Little’s Formula – cont’d
• Little’s formula: 

E[N] = λE[T]

Holds for many service disciplines and for 
systems with arbitrary number of 
servers. It holds for many interpretations 
of the system as well

Note:                                           does not 
depend on the service order 
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Intuitiveness of Little’s Formula
• Little’s formula: 

E[N] = λE[T]

Arrival of
customer i

Departure of
customer i

Arrivals during the service
time of customer i

time axis

Ti = ai – li
time spent in the system 

for customer i

• Formula applies to many interpretations of 
“system”!
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Example 1: 
• Problem: Let Ns(t) be the number of 

customers being served at time t, and let 
τ denote the service time. If we 
designate the set of servers to be the 
“system” then Little’s formula becomes:

E[Ns] = λE[τ]

where E[Ns] is the average number of busy 
servers for a system in the steady state. 
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Example 1: cont’d
Note: for a single server Ns(t) can be either 0 or 1 E[Ns] 

represents the portion of time the server is busy. If p0 = 
Prob[Ns(t) = 0], then we have

1 - p0 = E[Ns] = λE[τ], Or
p0 = 1 - λE[τ]

The quantity λE[τ] is defined as the utilization for a single 
server. Usually, it is given the symbol ρ

ρ = λE[τ] 

For a c-servers system, we define the utilization (the fraction 
of busy servers) to be

ρ = λE[τ] / c
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Poisson Process
• Refer to the Summation process example 

in the Random Processes package

• Def: Poisson process to be the point 
process for which the number of events 
(successes), X(t), in a t-second interval is 
given by the Poisson distribution
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where λ is the average rate of success per time unit
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Poisson Process - Properties
• The random process X(t) is a Markov 

Process. For arbitrary times: 
t1<t2<…<tk<tk+1

Prob[X(tk+1) = xk+1/X(tk)=xk, …, X(t1)=x1]  

=   Prob[X(tk+1) = xk+1/X(tk)=xk]

• Independent increments
• Stationary increments
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Poisson Process – Interarrival Time
• Let T be the random time between two 

consecutive events
• The distribution function is given by

FT(t) = P(T ≤ t) 
= P(at least one arrival in t seconds)
= 1 – P(0 arrivals in t seconds)
= 1 – P0(t)
= 1 – e-λt

Therefore fT(t) is equal to λe-λt for t ≥ 0
• Poisson Process ≡ interarrival times are 

independent and exponentially distributed
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Uniformity Property
• Def – give a number of arrivals in an 

interval, the arrivals are uniformly 
distributed throughout the interval!

time access

arrivals
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Uniformity Property – cont’d
• Proof:

Suppose that we are given than one arrival occurs in the interval [0,t], 
Let Y be the arrival time of the single customer 0 < y < t
Let X(y) be the number of events up to time y X(t) – X(y) is the increment in the 

interval (y, t]

P(Y ≤ y) = P(X(y) = 1 / X(t) = 1]

P(X(y) = 1 and X(t) – X(y) = 0]
= -------------------------------------

P(X(t) = 1)

P(X(y) = 1) P(X(t) – X(y) = 0)
= -------------------------------------

P(X(t) = 1)

λye-λy e-λ(t-y)

= ----------------
λte-λt

= y / t time access0 t

one arrival only

y
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Kolmogorov Forward Differential 
Equations 
• Consider the incremental time interval δ, 

so small that λδ << 1 for all λ
• Using the Poisson density function and 

knowing that e-λδ ≈ 1- λδ +O(δ) – where 
O(δ) are higher order terms of δ (i.e. lim
O(δ)/ δ = 0 as δ 0)

• One can write:
P0(δ) = 1 - λδ +O(δ) 
P1(δ) = λδ +O(δ) 
Pi(δ) = O(δ)   for i ≥ 2

This means, we choose δ small such 
that the likelihood of more than one 
arrival during δ is close to zero

P0(δ)=1-λδ
P1(δ)=λδ

δ δ δ

P0(δ)=1-λδ
P1(δ)=λδ

P0(δ)=1-λδ
P1(δ)=λδ

Sequence of iid Bernoulli experiments
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Kolmogorov Forward Differential 
Equations – cont’d 
• This means, we choose δ small such that 

the likelihood of more than one arrival 
during δ is close to zero

• The corresponding state diagram (for the 
discretized-time version) is given by

P0(δ)=1-λδ
P1(δ)=λδ

δ δ δ

P0(δ)=1-λδ
P1(δ)=λδ

P0(δ)=1-λδ
P1(δ)=λδ

Sequence of iid Bernoulli experiments

0 1

λδ
1−λδ

2

λδ
1−λδ

3

λδ
1−λδ
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Kolmogorov Forward Differential 
Equations – cont’d
• Let us study the evolution of Pn(t) with 

respect to time, t
• Remember Pn(t) is the probability of n 

arrivals in an interval t

• Consider the change in Pn(t) in the 
incremental interval (t, t+ δ)
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Kolmogorov Forward Differential 
Equations – cont’d
• Case n = 0

P0(t+ δ) = P(no arrivals in (0,t+ δ))
= P(no arrivals in (0,t)) P(no arrivals in (t,t+ δ))
= P0(t)(1 - λ δ) 

• Case n > 0
Pn(t+ δ) = P(n arrivals in (0,t+ δ))

= P(n arrivals in (0,t)) P(no arrivals in (t,t+ δ))
+ P(n-1 arrivals in (0,t)) P(1 arrival in (t,t+ δ))

= Pn(t)(1 - λ δ) + Pn-1(t)(λ δ) 

• The above equations can be written as

[P0(t+ δ) - P0(t)]/ δ = - λ P0(t), and

[Pn(t+ δ) - Pn(t)]/ δ = - λ Pn(t) + λ Pn-1(t),   n> 0
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Kolmogorov Forward Differential 
Equations – cont’d
• Take the limit as δ 0, the previous equations 

can be written as:

dP0(t)/dt = - λ P0(t), and

dPn(t)/dt = - λ Pn(t) + λ Pn-1(t),   n> 0

• Verify that Pk(t) given by

is a solution for the Kolmogorov Forward 
differential equations 

( ) ( ) ,...1,0
!

== − ke
k
ttP t

k

k
λλ
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Kolmogorov Forward Differential 
Equations – cont’d
• Another form for the Kolmogorov D.E. is 

as follows:

where 

( ) ( )tP
dt

tPd ~~
Λ=

( ) ( ) ( ) ( )[ ]TtPtPtPtP ....~
210=
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...00

...00

...00

...000

λλ
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λλ
λ

Λ is the infinitesimal 
generator matrix 

Note sum of columns = zero
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Adding Poisson Processes
• Sum of two INDEPENDENT Poisson processes
• Consider an incremental interval δ

• The probability of an arrival from either source is λ1δ
(1- λ2δ)+(1-λ1δ) λ2δ ≈ (λ1+ λ2)δ

• The probability of arrivals from both source is λ1δ λ2δ
= λ1λ2δ2 ≈ 0 

• Therefore, the sum is a Poisson process with 
rate (λ1+ λ2)

Arrival rate = λ1

Arrival rate = λ2

Arrival rate = λ1+λ2
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Splitting Poisson Processes
• Splitting of a Poisson processes
• Consider an incremental interval δ

• The probability of an arrival to bin 1: λδp
• The probability of an arrival to bin 1: λδ(1-p)
• Since subsequence arrivals to either bins are 

independent and identically distributed 
• Therefore, the arrivals processes to bin 1 

and 2 Poisson with rate pλ and (1-p)λ, 
respectively

λ

pλ
bin 1

(1-p)λ
bin 2

p

1-p
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Pure Birth Processes
• Poisson process is a member of a wider 

class of “pure birth processes”
• In general the probability of an arrival in 

an interval δ can be function of the 
number in the system, λnδ

• The corresponding state diagram will be

0 1

λ0δ
1−λ0δ

2

λ1δ
1−λ1δ

3

λ2δ
1−λ2δ
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Pure Birth Processes – cont’d
• In the same manner, you can show that 

the corresponding Kolmogorov D.E are 
given by

dP0(t)/dt = - λ0 P0(t), and

dPn(t)/dt = - λn Pn(t) + λn-1 Pn-1(t),   n> 0

Subject to the condition ( ) 1
0

=∑
∞

=n
n tP
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Pure Birth Processes – cont’d
• Putting the Kolmogorov D.E.s in a matrix 

form:

where 

( ) ( )tP
dt

tPd ~~
Λ=

( ) ( ) ( ) ( )[ ]TtPtPtPtP ....~
210=

⎥
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21

10

0

λλ
λλ

λλ
λ

Λ is the infinitesimal 
generator matrix 

Note sum of columns = zero

Necessary and sufficient condition 
for stability is ∑1/λn= ∞
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Example: Yule-Furry Process
• For Yule-Furry process, λn = n λ – linear rate 

with system population
• The evolution equations are then given by

dPn(t)/dt = - nλPn(t) +(n-1)λPn-1(t);  n≥ k

• For the initial condition Pk(0)=1 for some k > 0, 
show that

is a solution 

( ) ( ) 0,1
1
1
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−
−

=
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Poisson Arrivals See Time Averages 
(PASTA)
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Birth And Death Processes
• The corresponding state diagram is as shown:

• The Kolmogorov D.E are given by

dP0(t)/dt = - λ0 P0(t) + µ1P1(t), and

dPn(t)/dt = - (λn+µ1)Pn(t) + λn-1Pn-1(t) + µn+1Pn+1(t),   n> 0

Subject to the condition

0 1

λ0δ
1−λ0δ

2

λ1δ
1−(λ1+µ1)δ

3

λ2δ
1−(λ2+µ2)δ

µ1δ µ2δ µ3δ

1−(λ3+µ3)δ

( ) 1
0

=∑
∞

=n
n tP
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Birth And Death Processes – cont’d
• Putting the Kolmogorov D.E.s in a matrix 

form:

where 

( ) ( )tPM
dt

tPd ~~
=
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M

+ve solution exists if
0 ≤ λn < µn
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Global Balance Equations
• Steady state solution dP(t)/dt = 0
• The resulting set of equations:

λ0 P0 = µ1P1, and

(λn+µn)Pn = λn-1Pn-1 + µn+1Pn+1,   n> 0

In addition to the normalizing condition 1
0

=∑
∞

=n
nP
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Global Balance Equations – cont’d
• The state transition flow diagram:

• We can show the solution for the global 
balance equation is given by

and

0 1

λ0

µ1

λ1

µ2

2 3

λ2

µ3

n n+1

λn
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λn-1 λn+1
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The basis for all queueing
formula to come!!
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Queueing Models: M/M/1
• Making the substitutions: λn = λ and µn = µ, and 

defining ρ = λ/ µ, one can write

or 

• The mean and variance of number of customers in 
system, E[N] and Var[N] are given by

• The mean delay in the M/M/1 queue can be 
obtained through the application of Little’s
formula:

( ) ,...2,1,01 =−= nP n
n ρρ

( )
ρ
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==

1/][][ NEDE
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M/M/1- Delay Distribution
• The probability of n customers as a departing customer departs after 

spending t seconds in system is given by

or

Note this probability is the same as the probability of n customers in system –
Also equal to the probability of finding n customers in system by an 
arriving customer (refer to PASTA property)

d(t) is the PDF for the total delay time
Therefore, D(s) is given by 

i.e. the delay for M/M/1 queue is exponentially distributed with mean 1/(µ-
λ),
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Queueing Models: M/M/1/L
• Finite Capacity Case: λj = λ for j<L

0 for j≥L
also                             µj = µ

• The state-transition flow diagram of 
M/M/1/L queue is as shown below

0 1

λ

µ

λ

µ

2 3

λ

µ

L L

λ

µµ

λ
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Queueing Models: M/M/1/L – cont’d
Steady-state pmf is given by

• What is P(z) equal to?

• In particular, the blocking probability, PL, 
is given by the relation above for n = L

( )
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Queueing Models: M/M/1/L – cont’d
• In particular, the blocking probability, PL, 

is given by the relation above for n = L

( )
11

1
+−

−
= L

L

LP
ρ
ρρ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10-14

10-12

10-10

10-8

10-6

10-4

10-2

100
M/M/1/L queue

Load (Rho)

P
ro

ba
bi

lit
y 

of
 b

lo
ck

in
g

L = 4
L = 16
L = 64

12/4/2004 Dr. Ashraf S. Hasan Mahmoud 38

Example: M/M/1/L – cont’d
• Problem: A voice signal is digitized at a 

rate of 8000 bps. The average length of a 
voice message is 3 min. Messages are 
transmitted on a DS-1 line, which has the 
capacity of 1.344 Mbps. While waiting for 
transmission, the messages are stored in a 
buffer which has a capacity of 107 bit. Plot 
the blocking probability versus the voice 
message arrival rate.
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Example: M/M/1/L – cont’d
• Solution:
0001 %
0002 % Example 3.7 - voice multiplexing - page 91
0003 clear all
0004 LineWidth = 3;
0005 

0006 DS1_Capacity     = 1.344e6; % bits/sec

0007 BuffSizeBits = 1e7; % different than textbook

0008 BPSPerVoiceMsg = 8000;% bps per voice msg

0009 VoiceMsgDuration = 3*60; % second;

0010 VoiceMsgSizeBits = VoiceMsgDuration * BitsPerVoiceMsg; 

0011 ServiceTime = VoiceMsgSizeBits / DS1_Capacity;

0012 % # of msgs buffer can fit

0013 BufferSizeMsgs = floor(BuffSizeBits/VoiceMsgSizeBits);
0014 
0015 Step  = 0.01;
0016 Lamda = [0:Step:(1-Step)/ServiceTime];
0017 Rho = Lamda * ServiceTime;
0018 PB    = (1-Rho).*Rho.^BufferSizeMsgs./(1-Rho.^(BufferSizeMsgs+1));
0019 %
0020 % Plot results
0021 figure(1)
0022 h = plot(Lamda, PB,'-r'); 
0023 set(h, 'LineWidth', LineWidth);
0024 xlabel('voice message arrival rate'); grid
0025 ylabel('overflow probability');
0026 axis([0 1 0 0.2]);
0027 
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Note since voice message size is 1440000 bits, then 
buffer size can not be 106 bits as stated in the 
textbook. Here we use buffer size of 107 bits which
means, buffer can accommodate 6 voice messages 
before it overflows. 
Refer to example 3.7 page 91 in textbook
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Queueing Models: M/M/S –
Multiserver Systems
• Assume S servers system, therefore: 

µj = jµ for j ≤ S
Sµ for j > S

and                  λj = λ for all j
• The state-transition flow diagram of 

M/M/S queue is as shown below

0 1

λ

µ

S-1 S

λ

Sµ

j j+1

λ

SµSµ

λ λ

Sµ

λ

2µ (S-1)µ

λ

Erlang C model – Blocked calls are QUEUED
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Queueing Models: M/M/S –
Multiserver Systems – cont’d
• Solving the balance equations, results in

P0 is calculated as

• The traffic utilization, ρ = λ/ µ
• Note the condition for solution validity is 
ρ/S < 1
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i.e. in the S-server case, the traffic load ranges 0 to S.
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Queueing Models: M/M/S –
Multiserver Systems – cont’d
• The probability of queueing is equal to the 

probability of finding all S servers busy, therefore,

• The mean number of customers in queue, E[Nq], 
is given by

• Therefore, the relation between average number 
of customers in queue and probability of 
queueing is given by
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Exercise: M/M/S/∞
• Show that the waiting time distribution is 

given by

Refer to slides of “Queueing Models” for 
COE 541 for proof. 

( ) 01 )( >
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SpxF xSc
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ρµ
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Example: M/M/S/∞
• Problem: a 160 kb/s line is used for data 

transmission. Two options are provided
a) Implement a 16-channel TDM scheme where 
every channel provides 10 kb/s.
b) Use the overall trunk as one fat data 
transmission pipe.
Assume data frames arrive at a Poisson rate λ and 
are exponentially distributed in length with 
average of 2000 bits per frame.

Which scheme provides less delay?
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Example: M/M/S/∞ - cont’d
• Solution:

a) S = 16 servers – Model M/M/S
Rc = 10 kb/s E[τ] = 1/ µ = 2000/10 = 200 msec
ρ = λ/µ = λ E[τ] = 200 λ
E[T] = E[W] + E[τ] = E[Nq]/ λ + E[τ] 

= Pc (1/µ) /(S- ρ) + E[τ] 

b) S = 1 server – Model M/M/1
Rc = 160 kb/s E[τ] = 1/ µ = 2000/160 = 1.25 msec
ρ = λ/µ = λ E[τ] = 1.25 λ
E[T] = E[W] + E[τ] = E[Nq]/ λ + E[τ] 

=  1/ (µ – λ)
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Example: M/M/S/∞ - cont’d
• Solution:

For option (a)
- minimum service time is 

equal to 200 msec

For option (b) 
- minimum service time is 

equal to 1.25 msec

Option (b) provides better 
(less) system 

Note: The x-axis in the 
textbook graph is not 
correct (Example 3.8 
page 94). Verify?   
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Example: M/M/S/∞ - cont’d
0001 %
0002 % Example 3.8 - voice multiplexing - page 94
0003 clear all
0004 LineWidth = 3;
0005 
0006 Line_Capacity = 160e3; % bits/sec
0007 NoOfChannels = 16; % No of TDM channels
0008 RateTDMChannel = Line_Capacity/NoOfChannels;% bps per channel
0009 AvgFrameSizeBits = 2000; % bits 
0010 %
0011 % option (a) - 16 TDM channels - M/M/S queue
0012 ServiceTime_a = AvgFrameSizeBits / RateTDMChannel;
0013 S             = NoOfChannels;
0014 Step          = 0.05;
0015 Lamda_a = [Step:Step:S/ServiceTime_a - Step];
0016 
0017 Rho_a = Lamda_a * ServiceTime_a;
0018 [P0 PS Pc]    = Get_M_M_S(S, Rho_a);
0019 W_a = Pc.*Rho_a./(S-Rho_a)./Lamda_a;
0020 T_a = W_a + ServiceTime_a;
0021 %
0022 % option (b) - 1 160 kb/s channel - M/M/1 queue
0023 
0024 ServiceTime_b = AvgFrameSizeBits / Line_Capacity;
0025 Step          = 0.05;
0026 Lamda_b = [Step:Step:1/ServiceTime_b-Step];
0027 Rho_b = Lamda_b * ServiceTime_b;
0028 T_b = 1./(1./ServiceTime_b - Lamda_b);
0029 %
0030 % Plot results
0031 figure(1)
0032 h = plot(Lamda_a, T_a,'-', Lamda_b, T_b,'--r'); 
0033 set(h, 'LineWidth', LineWidth);
0034 xlabel('data frame arrival rate (frame/sec)'); grid
0035 ylabel('total frame time (sec)');
0036 legend('16 TDM channels', 'One 160kb/s channel', 2);
0037 axis([0 100 0 2]);

0001 function [P0, PS, Pc]    = Get_M_M_S(S, Rho);
0002 % compute P0, PS, and Pc for an M/M/S queue given S and Rho
0003 P0 = zeros(size(Rho));
0004 PS = zeros(size(Rho));
0005 Pc = zeros(size(Rho));
0006 
0007 temp = zeros(size(Rho));
0008 for i=0:S-1
0009     temp = temp + Rho.^i./factorial(i);
0010 end
0011 temp = temp + S.*Rho.^S./(factorial(S).*(S - Rho));
0012 
0013 P0 = 1./temp;
0014 PS = P0 .* Rho.^S./factorial(S);
0015 Pc = PS .* S./(S - Rho);

Code to generate key probabilities 
(P0, PS, Pc) for M/M/S system

Code to compare between 
options (a) and (b)
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Queueing Models: M/M/S/L
• S server model with finite waiting room
• Assuming L ≥ S, we have

µj = jµ for j ≤ S
Sµ for j > S

and                  λj = λ for  j < L
0   for  j ≥ L

• The state transition flow diagram M/M/S/L queue
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µ

S-1 S

λ

Sµ
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SµSµ
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2µ (S-1)µ
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Queueing Models: M/M/S/S
• Special case of M/M/S/L where L = S;

• The state transition flow diagram 
M/M/S/S queue
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Erlang B model – Blocked calls are CLEARED
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Queueing Models: M/M/S/S – cont’d
• Solving the balance equation yields:

and 

• When an arrival finds all S servers busy, it is blocked or 
dropped (no waiting room) – Probability of blocking is given 
by

where PB(0,ρ) = 1

• Insensitivity Property of Erlang-B formula: Blocking 
probability does NOT depend on the distribution of the 
service time, but rather its mean
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Example: M/M/S/S 
• Problem: constant length frames of 1000 

bit each arrive an a multiplexer which has 
16 output lines, each operating at a 50 
kb/s rate. Suppose that frames arrive at 
an average rate of 1,440,000 frame per 
hour. There is no storage; thus if a frame 
is not served immediately it lost.
Calculate the blocking probability at the 
multiplexer.
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Example: M/M/S/S – cont’d
• Solution: 

frame arrival rate, λ = 1,440,000 frame/hour
= 400 frame/sec

frame service time, 1/ µ = 1000 / 50 kb/s
= 0.02 sec

Traffic intensity, ρ = λ / µ = 8
Number of servers, S = 16  (verify ρ/S < 1)

Using the iterative formula 

PB(S, ρ)

S

PB(S, ρ)

S

161514131211109

87654321

0.00450.00910.01720.03070.05140.08130.12170.1731

0.23560.30820.38980.47900.57460.67550.78050.8889

our 
answer
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M/M/S/S – Infinite Servers Case
• Special case of the M/M/S/S queue
• Let S ∞, i.e. an arriving customer always has a 

server available
• The probability of system in state zero is given by

• Therefore, the probability of system in state n ≥ 0 
is computed as

Which is the Poisson distribution!!
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Finite Source Queueing – Engset
Distribution
• Assume a finite population of N – each generate a 

message with rate λ (or with probability λδ in the 
interval (t, t+δ)). The next message is not 
transmitted till the prior one is served. Assume no 
storage case, i.e. if a source generates a message 
when no server is available, the message is lost 
and the source returns to idle state immediately.

• The state transition flow diagram is as shown:
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Finite Source Queueing – Engset
Distribution – cont’d
• You can show that the pmf is given by

and

• Remember PS is the probability of blocking
• There is no blocking for N ≤ S – Why?
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Method Of Stages – Erlang
Distribution (Er)
• Single state server:

• r-Stage server:
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Method Of Stages – Erlang
Distribution – cont’d
0001 %
0002 % Erlang distribution
0003 LineWidth = 3;
0004 Rs = [1 2 3 5 20];
0005 Mue = 1;
0006 t   = [0:Step:4];
0007 f   = zeros(length(Rs), length(t));
0008 
0009 for i=1:length(Rs)
0010     r = Rs(i);
0011     f(i,:) = r*Mue*(r*Mue*t).^(r-

1).*exp(-r*Mue*t)./ ...
0012              factorial(r-1);
0013 end
0014 
0015 figure(1);
0016 h = plot(t, f); grid
0017 set(h,'LineWidth', LineWidth);
0018 xlabel('t');
0019 ylabel('f(t)');
0020 LegendStr = ['legend('];
0021 for i=1:length(Rs)-1;
0022     LegendStr = [LegendStr '''r = '

num2str(Rs(i)) ''','];
0023 end
0024 LegendStr = [LegendStr '''r = '

num2str(Rs(length(Rs))) ''');'];
0025 eval(LegendStr);
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Erlang Distribution - Observations
• Let r ∞, the distribution of T approaches 

a constant (deterministic) value of 1/ µ

or 

where
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The Queue M/Er/1
• Service time ~ r-stages Erlangian distribution
• System state:

• Number of customers in system
• Number of stages remaining in the service

• Define j = number of stages left in total system 
(i.e. for all customers)

• If system contains k customers
• (k – 1) waiting
• One is in service – let him be in the ith stage

• Therefore, j is given by
j   = (k - 1)r + (r – i + 1), or

= rk – i + 1;
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The Queue M/Er/1 – cont’d
• Define Pj = Prob of j stages in system
• Define pk = Prob of k customers in system
• Pj and pk are related as follows:

( )
K,2,1

11
== ∑

+−=

kPp
kr

rkj
jk Note: p0 = P0!!
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The Queue M/Er/1 – cont’d
• The state-transition-rate diagram for 

number of stages is as shown

• Every arrival brings along r new stages to 
be completed!

• Note that state 0, 1, …, r-1 – are special 
boundary states!! – WHY?

λ

rµ

0 1 r r+12 j-r j j+1

λ λ λ λ

rµ rµ rµ rµ
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The Queue M/Er/1 – Forward 
Equations
• Forward equations in equilibrium,

λ P0 = rµ P1, and
(λ+rµ)Pj = λ Pj-r + rµPj+1,   j=1,2, …

• Define P(z) to be

• Therefore,
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The Queue M/Er/1 – Forward 
Equations
• After simplifying, P(z) can be written as

• P0 can be found using the condition P(z = 
1) = 1 P0 = 1 –λ/µ

• If we define ρ = λ/µ, P(z) can be rewritten 
as 
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Example:  M/Er/1
• Problem: show that M/M/1 queue is a special case of 

M/Er/1 where r = 1

• Solution: Using r = 1, P(z) reduces to

Which is the generating function for number of customers in 
an M/M/1 queue

The probability of k customers in system, pk is given by
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M/Er/1 Queue Solution
• Problem: How to invert P(z) in general for r > 1. 

• Solution: P(z) in general is given by

The denominator is a polynomial of degree r+1 It r+1 
roots
It is clear that z = 1 is one of the roots
We must identify the remaining r roots 

Let the denominator be
Let  the r zeros be denoted by {z1, z2, …, zr}

Then P(z) can be written as
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Finding the ZEROS of D(z) is the most challenging task!!
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M/Er/1 Queue Solution – cont’d
• Solution:

We can perform partial fraction expansion on P(z) to obtain:

where

Therefore, P(z) can be inverted as

Note 
• The distribution of the number of stages in the system is a 

weighted sum of geometric distributions.
• The above is NOT the distribution of customers in the 

system yet!!
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The Queue Er/M/1
• Imagine the following configuration

Insert 1 arrival when 
facility is empty

rλ rλ rλ

r-stage arrival facility Typical queue with infinite 
waiting room
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The Queue Er/M/1 – cont’d
• Interarrival time ~ r-stages Erlangian distribution
• Service time ~ exponential with rate µ
• System state:

• Number of customers already in system
• Number of arrival stages of customer to arrive

• Define j = number of arrival stages in system
• If system contains k customers

• Arriving customer is in the ith stage ( 1≤i≤r) – i.e. he 
finished i-1 stages

• k customer fully arrived – each brought r-stages of 
arrival

• Therefore, j is given by
j   = r k + i – 1
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The Queue Er/M/1 – cont’d
• The state-transition-rate diagram for number of 

stages is as shown
• Define Pj = Prob of j arrival stages in system
• Define pk = Prob of k customers in system
• Pj and pk are related as follows:

• Every departure removes r stages of arrival from 
system!
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The Queue Er/M/1 – Forward 
Equations
• Forward equations in equilibrium,

rλ P0 = µ Pr, and
rλPj = rλ Pj-1 + µPj+r,   j=1,2,…,r-1

(rλ+µ)Pj = rλ Pj-1 + µPj+r,   j=r,r+1, …

rλ

0 1 r r+12 j-1 j j+1 j+r

rλ rλ rλ rλ

µ
µ µ
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The Queue Er/M/1 – Solution

• Define P(z) to be

• Therefore,

• Finally,

where ρ= λ/µ
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The Queue Er/M/1 – Solution – cont’d
• Consider the denominator of P(z), D(z)

• D(z) has r+1 roots
• z = 1 is one root
• It can be shown that r-1 roots are within the 

unit circle – i.e. |z| < 1 (Rouche’s Theorem)
• Remaining zero, z0, lies outside the unit 

circle, |z0| > 1

( ) ( ) 111 ++−= + rr zrzrzD ρρ
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The Queue Er/M/1 – Solution – cont’d
• Consider the numerator of P(z), N(z)

• N(z) has 2r-1 roots
• r roots at z = 1

• Since P(z) is analytic on |z| < 1 P(z) is 
bounded for all |z| < 1 (i.e. no 
singularities inside the unit circle)

• The remaining r roots of N(z) (contributed 
by the summation term) are inside the unit 
circle and cancel those r roots of D(z)
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The Queue Er/M/1 – Solution – cont’d
• Therefore, one can write

• This means, P(z) can be written as

since P(1) = 1 K = r/(1-1/z0)
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The Queue Er/M/1 – Solution – cont’d
• We are now in a position to solve for the 

final pmf – performing the partial fraction 
expansion on P(z), yields

• If we let 
• Then

• Clearly,   
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0 otherwise
Aαn ↔ A/(1- αz)
If fn ↔ P(z), then fn-r ↔ zrP(z)
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The Queue Er/M/1 – Solution – cont’d
• Therefore, Pj for j≥r is given by

• For  0 ≤ j < r, we observe fj-r = 0 Pj = fj only.
• Hence, the over all pmf is given by

• It can be shown that the pmf for the number of 
customers in the system is given by
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Generalization of the Erlangian
Distribution – First attempt
• The previous Erlangian distribution is 

limited in the sense that Cb = 1/√r ≤ 1

• Consider a series of r-stages; each with 
parameter µi
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But Cb is again always less than 1 for any choice of 1/µi
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Generalization of the Erlangian
Distribution – Second attempt
• Consider the 2-stage parallel server

• Only one customer is allowed at a time in 
the service facility
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Generalization of the Erlangian
Distribution – Second attempt – cont’d
• Consider the R-stage parallel server
• fT(t) ~ hyperexponential distribution (denoted by 

HR)
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M/HR/1, HR/M/1, HRa/HRb/1 Queues
• Analysis by method of stages exists

• Take into account the hperexponential
service (or arrival) facility by merely 
specifying which stage within service (or 
arrival) facility the customer currently 
occupies.                      PLUS

• Number of customers in system

• The above forms a Markov chain which 
may be analyzed as we did before



41

12/4/2004 Dr. Ashraf S. Hasan Mahmoud 81

Example: M/H2/1
• State-transition-rate diagram is as shown
• ki – implies system contains k customers and the 

customer in service is in service stage i
• REMEMBER: only ONE customer can be in service 

facility
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Example: M/E2/2/2
• Problem: Consider an M/E2/2/2 – a 

system with two servers, each with 2 
identical stages. There is no storage room, 
and packets arriving to system while 
serving two packets are lost. 
Assume packets arrive with rate λ, while 
the service rate in a stage is given by µ.

Compute the blocking probability for this 
system?
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Example: M/E2/2/2 – cont’d
• Solution:

Let the state for such system be (i, j) – where i 
and j are, respectively, the number of packets in 
the first and seconds stages.

possible states: (0,0), (0,1), (0,2), (1,0), (2,0), 
(1,1)
The state transition flow diagram is as shown:

00 10 20

1101

02

λ λ

λ

µ µ
µ

2µ

2µ µ
Note the state variable is different than 
that we used for the M/Er/1 queue

12/4/2004 Dr. Ashraf S. Hasan Mahmoud 84

Example: M/E2/2/2 – cont’d
• Solution: cont’d

We then proceed with writing the equilibrium equations:
λ P00 = µ P01,

(λ+ µ) P01 = 2 µ P02 + µ P01,
2 µ P02 = µ P11,

(λ+ µ) P10 = λ P00 + µ P11,
2 µ P20 = λ P10,
2 µ P11 = λ P01 + 2 µ P20

Note that Blocking probability, PB is given by
PB = P11+ P02 + P20

Solving, the above equations: you can show that

2(λ/ µ)2

PB =  --------------------------
1 + 2(λ/µ) + 2(λ/µ)2

00 10 20

1101

02

λ λ

λ

µ µ
µ

2µ

2µ µ

Note:
The blocking probability DOES not depend on the service 
time distribution, but rather on the mean service time – This
is referred to as the insensitivity property of Erlang-B 
formula!!
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More Generalization – Series-
Parallel Service
• Note: r1, …, ri, …, rR are not necessarily equal
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More Generalization – Cox Network
• Consider the network of stages shown – Cox 

Network
• Prob of going through exactly i stages:

• Assume q0 = 1, qK = 0, then
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Characterization of Cox Network –
con’t
• The Laplace transform of the service time 

if i stages are used:

• The Laplace transform for the service time 
in K-stages network:
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Characterization of Cox Network –
con’t
• M(s) given by

is known as the Coxian distribution

• You can show (refer to textbook), the 
mean is given by
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Characterization of Cox Network –
con’t
• Note that for qi = 1, and µi = µ for all i, 

then the expression for M(s) reduces to

which the K-stage Erlang-distribution 
previously discussed on slide 56

• The expected delay in this case is given by
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Example: M/G/N/N
• Consider a queueing system where

• Arrivals are Poisson with rate λ
• N servers and no waiting room
• Each server is a Coxian server with K stages

• Objective: compute blocking probability? 
And show that it depends only on the 
mean service rate and the mean arrival 
rate (i.e. no dependence on the probability distribution of 
the service time – the insensitivity property of the Erlang-B 
formula)
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Example: M/G/N/N – cont’d
• System state: K-dimensional vector 

• i.e. state = (k1, k2, …, kK) – where ki; i=1,2, 
…, K is the number of customers in stage I

• Obviously, sum of kis should be less or equal 
to N. Note it is equal to N if all servers are 
busy – remember too that only one 
customer can be in any server!!

12/4/2004 Dr. Ashraf S. Hasan Mahmoud 92

Example: M/G/N/N – cont’d
• Consider a case where N  = 3 and K = 2.

µ1

q0 = 1

1-q0

µ2

q1

1-q1 1-q2=1

q2=0

µ1

q0 = 1

1-q0
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1-q1 1-q2=1

q2=0

µ1

q0 = 1

1-q0

µ2

q1

1-q1 1-q2=1

q2=0

arrivals departures
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Example: M/G/N/N – cont’d
• System States: examples

q0 = 1 q1

arrivals departures

µ1

1-q0

µ2

1-q1 1-q2=1
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µ1
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arrivals departures
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State = (0,0)

State = (2,1) –
system full

State = (0,1)

State = (1,1)

State = (0,3) –
system full

State = (2,1) –
system full
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Example: M/G/N/N – cont’d
• Exercise: For the K= 2, N = 3 case 

explained before
• A) draw the state transition diagram
• B) show that the state equilibrium equations 

(3.76 and 3.77) are satisfied
• C) Derive the detailed balance equation 3.78

• The exercise is worth 10% points bonus in 
the final exam

• Deliver a soft copy in power point of the 
detailed solution

• Deadline: January 3rd, 2005
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Example: M/G/N/N – Blocking 
Probability
• Blocking probability is equal to the probability  of 

system being in states where the sum of kis is 
equal to N. i.e.

• The textbook shows that the blocking probability 
is given by

where P(0) is a constant term found through the 
normalization equation

• Refer for textbook for derivation details.
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