King Fahd University of Petroleum \& Minerals Computer Engineering Dept

CSE 642 - Computer Systems Performance
Term 041
Dr. Ashraf S. Hasan Mahmoud
Rm 22-148-3
Ext. 1724
Email: ashraf@ccse.kfupm.edu.sa

Queuing Model

- Consider the following system:

$$
\mathrm{A}(\mathrm{t}) \quad \mathrm{N}(\mathrm{t})=\mathrm{A}(\mathrm{t})-\mathrm{D}(\mathrm{t}) \quad \mathrm{D}(\mathrm{t})
$$

Example: Queueing System

- a_{i} and I_{i} arrival and departure instances
- $T_{i}=l_{i}-a_{i}-$ time spent in the system
- If $A(t)=D(t) \rightarrow$ system is empty
- The graph is shown for FCFS service

Little's Formula

- Consider the time average of the number of customers in the system $\mathbf{N}(\mathbf{t})$ during (0,t],

$$
\langle N\rangle_{t}=\frac{1}{t} \int_{0}^{t} N(\tau) d \tau
$$

i.e. average area under the curve for $N(t)$ $\langle N\rangle_{t}$ is also given by

$$
\langle N\rangle_{t}=\frac{1}{t} \sum_{i=1}^{A(t)} T_{i}
$$

Little's Formula - cont'd

- The average arrival rate $\langle\lambda\rangle_{t}$ is given by

$$
\langle\lambda\rangle_{t}=\frac{A(t)}{t}
$$

- Combining the previous equations we get:

$$
\langle N\rangle_{t}=\langle\lambda\rangle_{t} \frac{1}{A(t)} \sum_{i=1}^{A(t)} T_{i}
$$

- Let the quantity $\langle T\rangle_{t}$ be the average time a customer spends in the system, then

$$
\langle T\rangle_{t}=\frac{1}{A(t)} \sum_{i=1}^{A(t)} T_{i}
$$

Little's Formula - cont'd

- Combining the last two equations:

$$
\langle N\rangle_{t}=\langle\lambda\rangle_{t}\langle T\rangle_{t}
$$

- Which relates the time averages of the arrival rate, the number of customers in the system and the average time spent in the system
- Let $\mathbf{t} \rightarrow \infty$, then one can write:

$$
E[N]=\lambda E[T]
$$

Little's Formula - cont'd

- Little's formula:

$$
E[N]=\lambda E[T]
$$

Holds for many service disciplines and for systems with arbitrary number of servers. It holds for many interpretations of the system as well

Note: $\sum_{i=1}^{A(t)} T_{i}=\sum_{i=1}^{A(t)} d_{i}-l_{i}=\sum_{i=1}^{A(t)} d_{i}-\sum_{i=1}^{A(t)} l_{i}$ does not depend on the service order

Intuitiveness of Little's Formula

- Little's formula:

$$
E[N]=\lambda E[T]
$$

- Formula applies to many interpretations of "system"!

Example 1:

- Problem: Let $\mathbf{N s}(\mathbf{t})$ be the number of customers being served at time t, and let τ denote the service time. If we designate the set of servers to be the "system" then Little's formula becomes:

$$
\mathbf{E}[\mathbf{N s}]=\boldsymbol{\lambda} \mathbf{E}[\tau]
$$

where $E[N s]$ is the average number of busy servers for a system in the steady state.

Example 1: cont'd

Note: for a single server $\mathrm{Ns}(\mathrm{t})$ can be either 0 or $1 \rightarrow \mathrm{E}[\mathrm{Ns}]$ represents the portion of time the server is busy. If $\mathbf{p}_{0}=$ $\operatorname{Prob}[\mathrm{Ns}(\mathrm{t})=0]$, then we have

$$
\begin{aligned}
\mathbf{1}-\mathbf{p}_{0} & =\mathrm{E}[\mathrm{Ns}]=\lambda E[\tau], \mathbf{O r} \\
\mathbf{p}_{0} & =\mathbf{1}-\boldsymbol{\lambda E}[\tau]
\end{aligned}
$$

The quantity $\lambda E[\tau]$ is defined as the utilization for a single server. Usually, it is given the symbol ρ

$$
\rho=\lambda E[\tau]
$$

For a c-servers system, we define the utilization (the fraction of busy servers) to be

$$
\rho=\lambda E[\tau] / \mathbf{c}
$$

Poisson Process

- Refer to the Summation process example in the Random Processes package
- Def: Poisson process to be the point process for which the number of events (successes), $X(t)$, in a t-second interval is given by the Poisson distribution

$$
P_{k}(t)=P(X(t)=k)=\frac{(\lambda t)^{k}}{k!} e^{-\lambda t} \quad k=0,1, \ldots
$$

where $\boldsymbol{\lambda}$ is the average rate of success per time unit

Poisson Process - Properties

- The random process $X(t)$ is a Markov

Process. For arbitrary times:
$t_{1}<t_{2}<\ldots<t_{k}<t_{k+1}$
$\operatorname{Prob}\left[X\left(t_{k+1}\right)=x_{k+1} / X\left(t_{k}\right)=x_{k}, \ldots, X\left(t_{1}\right)=x_{1}\right]$

$$
=\operatorname{Prob}\left[X\left(t_{k+1}\right)=x_{k+1} / X\left(t_{k}\right)=x_{k}\right]
$$

- Independent increments
- Stationary increments

Poisson Process - Interarrival Time

- Let T be the random time between two consecutive events
- The distribution function is given by

$$
\begin{aligned}
F_{T}(t) & =P(T \leq t) \\
& =P(a t \text { least one arrival in } t \text { seconds }) \\
& =1-P(0 \text { arrivals in } t \text { seconds }) \\
& =1-P_{0}(t) \\
& =1-e^{-\lambda t}
\end{aligned}
$$

Therefore $f_{T}(t)$ is equal to $\lambda e^{-\lambda t}$ for $t \geq 0$

- Poisson Process \equiv interarrival times are independent and exponentially distributed

Uniformity Property

- Def - give a number of arrivals in an interval, the arrivals are uniformly distributed throughout the interval!

time access

Uniformity Property - cont'd

- Proof:

Suppose that we are given than one arrival occurs in the interval $[0, t]$,
Let Y be the arrival time of the single customer $\rightarrow 0<y<t$
Let $X(y)$ be the number of events up to time $y \rightarrow X(t)-X(y)$ is the increment in the interval (\mathbf{y}, t]
$P(Y \leq y)=P(X(y)=1 / X(t)=1]$

$$
\begin{aligned}
& P(X(y)=1 \text { and } X(t)-X(y)=0] \\
&= P(X(t)=1) \\
&= P(X(t)=1) P(X(t)-X(y)=0) \\
&= \lambda y e^{-\lambda y} e^{-\lambda(t-y)} \\
&=-\cdots t e--\cdots t
\end{aligned}
$$

Kolmogorov Forward Differential Equations

- Consider the incremental time interval $\boldsymbol{\delta}_{\text {, }}$ so small that $\boldsymbol{\lambda} \boldsymbol{\delta} \ll \boldsymbol{1}$ for all $\boldsymbol{\lambda}$
- Using the Poisson density function and knowing that $\mathrm{e}^{-\lambda \delta} \approx 1-\lambda \delta+0(\delta)$ where $O(\delta)$ are higher order terms of δ (i.e. lim $0(\delta) / \delta=0$ as $\delta \rightarrow 0$)
- One can write:
$\mathbf{P}_{\mathbf{0}}(\boldsymbol{\delta})=1-\boldsymbol{\lambda} \delta+\mathbf{O}(\boldsymbol{\delta})$
This means, we choose δ small such that the likelihood of more than one arrival during δ is close to zero
$P_{1}(\delta)=\lambda \delta+0(\delta)$
$P_{i}(\delta)=0(\delta)$ for $i \geq 2$

Sequence of iid Bernoulli experiments

Kolmogorov Forward Differential
 Equations - cont'd

- This means, we choose $\boldsymbol{\delta}$ small such that the likelihood of more than one arrival during $\boldsymbol{\delta}$ is close to zero

Sequence of iid Bernoulli experiments

- The corresponding state diagram (for the discretized-time version) is given by

Kolmogorov Forward Differential Equations - cont'd

- Let us study the evolution of $\mathbf{P}_{\mathrm{n}}(\mathrm{t})$ with respect to time, t
- Remember $\mathbf{P}_{\mathbf{n}}(\mathbf{t})$ is the probability of \mathbf{n} arrivals in an interval t
- Consider the change in $P_{n}(t)$ in the incremental interval ($\mathbf{t}, \mathbf{t} \mathbf{+} \mathbf{\delta}$)

Kolmogorov Forward Differential
 Equations - cont'd

- Case $\mathbf{n}=0$
$P_{0}(\mathbf{t}+\boldsymbol{\delta})=P($ no arrivals in $(0, t+\delta))$
$=P($ no arrivals in ($0, t$)) $P($ no arrivals in ($\mathbf{t}, \mathbf{t}+\boldsymbol{\delta})$)
$=P_{0}(t)(1-\lambda \delta)$
- Case $\mathbf{n}>\mathbf{0}$
$P_{\mathrm{n}}(\mathrm{t}+\boldsymbol{\delta})=\mathbf{P}(\mathrm{n}$ arrivals in ($0, \mathrm{t}+\boldsymbol{\delta})$)
$=P(n$ arrivals in ($0, t$)) $P($ no arrivals in ($\mathbf{t}, \mathbf{t}+\boldsymbol{\delta})$)
$+P(n-1$ arrivals in ($0, t$)) $P(1$ arrival in ($\mathbf{t}, \mathrm{t}+\delta)$)
$=P_{\mathrm{n}}(\mathrm{t})(\mathbf{1}-\boldsymbol{\lambda} \boldsymbol{\delta})+\mathrm{P}_{\mathrm{n}-1} \mathbf{(t)}(\boldsymbol{\lambda} \boldsymbol{\delta})$
- The above equations can be written as

$$
\begin{aligned}
& {\left[P_{0}(t+\delta)-P_{0}(t)\right] / \delta=-\lambda P_{0}(t), \text { and }} \\
& {\left[P_{n}(t+\delta)-P_{n}(t)\right] / \delta=-\lambda P_{n}(t)+\lambda P_{n-1}(t), \quad n>0}
\end{aligned}
$$

Kolmogorov Forward Differential Equations - cont'd

- Take the limit as $\boldsymbol{\delta} \boldsymbol{\rightarrow} \mathbf{0}$, the previous equations can be written as:
$d P_{0}(t) / d t=-\lambda P_{0}(t)$, and
$d P_{n}(t) / d t=-\lambda P_{n}(t)+\lambda P_{n-1}(t), \quad n>0$
- Verify that $\mathbf{P}_{\mathbf{k}}(\mathbf{t})$ given by

$$
P_{k}(t)=\frac{(\lambda t)^{k}}{k!} e^{-\lambda t} \quad k=0,1, \ldots
$$

is a solution for the Kolmogorov Forward differential equations

Kolmogorov Forward Differential Equations - cont'd

- Another form for the Kolmogorov D.E. is as follows:

$$
\frac{d \widetilde{P}(t)}{d t}=\Lambda \widetilde{P}(t)
$$

where

$$
\begin{aligned}
\widetilde{P}(t) & =\left[\begin{array}{lllll}
P_{0}(t) & P_{1}(t) & P_{2}(t) & \ldots . .
\end{array}\right]^{T} \\
\Lambda & =\left[\begin{array}{ccccc}
-\lambda & 0 & 0 & 0 & \ldots \\
\lambda & -\lambda & 0 & 0 & \ldots \\
0 & \lambda & -\lambda & 0 & \ldots \\
0 & 0 & \lambda & -\lambda & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
\end{aligned}
$$

Adding Poisson Processes

- Sum of two INDEPENDENT Poisson processes
- Consider an incremental interval $\boldsymbol{\delta}$
- The probability of an arrival from either source is $\lambda_{1} \delta$ (1- $\left.\lambda_{2} \delta\right)+\left(1-\lambda_{1} \delta\right) \lambda_{2} \delta \approx\left(\lambda_{1}+\lambda_{2}\right) \delta$
- The probability of arrivals from both source is $\lambda_{1} \delta \lambda_{2} \delta$ $=\lambda_{1} \lambda_{2} \delta^{2} \approx 0$
- Therefore, the sum is a Poisson process with rate $\left(\lambda_{1}+\lambda_{2}\right)$

Splitting Poisson Processes

- Splitting of a Poisson processes
- Consider an incremental interval $\boldsymbol{\delta}$
- The probability of an arrival to bin 1: $\boldsymbol{\lambda} \boldsymbol{\delta} p$
- The probability of an arrival to bin 1: $\boldsymbol{\lambda} \mathbf{\delta}(1-p)$
- Since subsequence arrivals to either bins are independent and identically distributed
- Therefore, the arrivals processes to bin 1 and 2 Poisson with rate p λ and (1-p) λ, respectively

Pure Birth Processes

- Poisson process is a member of a wider class of "pure birth processes"
- In general the probability of an arrival in an interval δ can be function of the number in the system, $\boldsymbol{\lambda}_{\mathrm{n}} \delta$
- The corresponding state diagram will be

Pure Birth Processes - cont'd

- In the same manner, you can show that the corresponding Kolmogorov D.E are given by
$d P_{0}(t) / d t=-\lambda_{0} P_{0}(t)$, and
$d P_{n}(t) / d t=-\lambda_{n} P_{n}(t)+\lambda_{n-1} P_{n-1}(t), \quad n>0$
Subject to the condition $\quad \sum_{n=0}^{\infty} P_{n}(t)=1$

Pure Birth Processes - cont'd

- Putting the Kolmogorov D.E.s in a matrix form:

$$
\frac{d \widetilde{P}(t)}{d t}=\Lambda \widetilde{P}(t)
$$

Necessary and sufficient condition for stability is $\sum 1 / \lambda_{\mathrm{n}}=\infty$
where

$$
\widetilde{P}(t)=\left[\begin{array}{llll}
P_{0}(t) & P_{1}(t) & P_{2}(t) & \ldots . .
\end{array}\right]^{T}
$$

$$
\Lambda=\left[\begin{array}{ccccc}
-\lambda_{0} & 0 & 0 & 0 & \ldots \\
\lambda_{0} & -\lambda_{1} & 0 & 0 & \ldots \\
0 & \lambda_{1} & -\lambda_{2} & 0 & \ldots \\
0 & 0 & \lambda_{2} & -\lambda_{3} & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

Example: Yule-Furry Process

- For Yule-Furry process, $\boldsymbol{\lambda}_{\mathbf{n}}=\mathbf{n} \boldsymbol{\lambda}$ - linear rate with system population
- The evolution equations are then given by

$$
d P_{n}(t) / d t=-n \lambda P_{n}(t)+(n-1) \lambda P_{n-1}(t) ; n \geq k
$$

- For the initial condition $\mathbf{P}_{\mathbf{k}}(\mathbf{0})=\mathbf{1}$ for some $\mathbf{k}>\mathbf{0}$, show that

$$
P_{n}(t)=\binom{n-1}{k-1} e^{-n \lambda t}\left(1-e^{-\lambda t}\right)^{n-k} \quad n \geq k, t \geq 0
$$

is a solution

Poisson Arrivals See Time Averages (PASTA)

Birth And Death Processes

- The corresponding state diagram is as shown:

- The Kolmogorov D.E are given by

$$
\begin{aligned}
& d P_{0}(t) / d t=-\lambda_{0} P_{0}(t)+\mu_{1} P_{1}(t) \text {, and } \\
& d P_{n}(t) / d t=-\left(\lambda_{n}+\mu_{1}\right) P_{n}(t)+\lambda_{n-1} P_{n-1}(t)+\mu_{n+1} P_{n+1}(t), \quad n>0
\end{aligned}
$$

Subject to the condition $\sum_{n=0}^{\infty} P_{n}(t)=1$

Birth And Death Processes - cont'd

- Putting the Kolmogorov D.E.s in a matrix form:

$$
\frac{d \widetilde{P}(t)}{d t}=M \widetilde{P}(t)
$$

where $\quad \widetilde{P}(t)=\left[\begin{array}{llll}P_{0}(t) & P_{1}(t) & P_{2}(t) & \ldots . .\end{array}\right]^{T}$

$$
M=\left[\begin{array}{ccccc}
-\lambda_{0} & \mu_{1} & 0 & 0 & \cdots \\
\lambda_{0} & -\lambda_{1}-\mu_{1} & \mu_{2} & 0 & \cdots \\
0 & \lambda_{1} & -\lambda_{2}-\mu_{2} & \mu_{3} & \cdots \\
0 & 0 & \lambda_{2} & -\lambda_{3}-\mu_{3} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

Global Balance Equations

- Steady state solution $\rightarrow \mathrm{dP}(\mathrm{t}) / \mathrm{dt}=\mathbf{0}$
- The resulting set of equations:

$$
\lambda_{0} P_{0}=\mu_{1} P_{1}, \text { and }
$$

$$
\left(\lambda_{n}+\mu_{n}\right) P_{n}=\lambda_{n-1} P_{n-1}+\mu_{n+1} P_{n+1}, \quad n>0
$$

In addition to the normalizing condition $\sum_{n=0}^{\infty} P_{n}=1$

Global Balance Equations - cont'd

- The state transition flow diagram:

- We can show the solution for the global balance equation is given by
and

$$
P_{n}=P_{0} \prod_{i=1}^{n} \frac{\lambda_{i-1}}{\mu_{i}}
$$

$$
P_{0}=\left[1+\sum_{n=1}^{\infty} \prod_{i=1}^{n} \frac{\lambda_{i-1}}{\mu_{i}}\right]^{-1}
$$

The basis for all queueing formula to come!!

Queueing Models: M/M/1

- Making the substitutions: $\boldsymbol{\lambda}_{\mathrm{n}}=\boldsymbol{\lambda}$ and $\mu_{\mathrm{n}}=\boldsymbol{\mu}$, and defining $\rho=\boldsymbol{\lambda} / \boldsymbol{\mu}$, one can write

$$
P_{n}=(1-\rho) \rho^{n} \quad n=0,1,2, \ldots
$$

or

$$
P(z)=\frac{1-\rho}{1-z \rho}
$$

- The mean and variance of number of customers in system, $\mathrm{E}[\mathrm{N}]$ and $\operatorname{Var}[\mathrm{N}]$ are given by

$$
E[N]=\frac{\rho}{1-\rho} \quad \operatorname{Var}[N]=\frac{\rho}{(1-\rho)^{2}}
$$

- The mean delay in the M/M/1 queue can be obtained through the application of Little's formula:

$$
E[D]=E[N] / \lambda=\frac{1}{\mu-\lambda}
$$

M/M/1- Delay Distribution

- The probability of \mathbf{n} customers as a departing customer departs after spending \mathbf{t} seconds in system is given by
or

$$
\begin{gathered}
P_{n}=\int_{0}^{\infty} \frac{(\lambda t)^{n} e^{-\lambda t}}{n!} d(t) d t \quad n=0,1, \ldots \\
P(z)=\sum_{n=0}^{\infty} p_{n} z^{n}=\sum_{n=0}^{\infty} z^{n} \int_{0}^{\infty} \frac{(\lambda t)^{n}}{n!} e^{-\lambda t} d(t) d t \\
P(z)=\int_{0}^{\infty} e^{-\lambda t(1-z)} d(t) d t=D(\lambda(1-z))
\end{gathered}
$$

Note this probability is the same as the probability of \mathbf{n} customers in system Also equal to the probability of finding n customers in system by an arriving customer (refer to PASTA property)
$\mathrm{d}(\mathrm{t})$ is the PDF for the total delay time
Therefore, $\mathrm{D}(\mathrm{s})$ is given by

$$
D(s)=\frac{\mu-\lambda}{s+\mu-\lambda}
$$

i.e. the delay for M/M/1 queue is exponentially distributed with mean $1 /(\mu-$入),

$$
d(t)=(\mu-\lambda) e^{-(\mu-\lambda) t} \quad t \geq 0
$$

Queueing Models: M/M/1/L

- Finite Capacity Case: $\boldsymbol{\lambda}_{\mathbf{j}}=\boldsymbol{\lambda}$ for $\mathbf{j}<\mathrm{L}$

0 for $\mathrm{j} \geq \mathrm{L}$
also
$\mu_{j}=\boldsymbol{\mu}$

- The state-transition flow diagram of M/M/1/L queue is as shown below

Queueing Models: M/M/1/L - cont'd

Steady-state pmf is given by

$$
P_{n}= \begin{cases}\frac{(1-\rho) \rho^{n}}{1-\rho^{L+1}} & n \leq L \\ 0 & n>L\end{cases}
$$

- What is $P(z)$ equal to?
- In particular, the blocking probability, $\boldsymbol{P}_{\boldsymbol{L}}$ is given by the relation above for $\mathbf{n}=\mathbf{L}$

Queueing Models: M/M/1/L - cont'd

- In particular, the blocking probability, P_{L} is given by the relation above for $\mathbf{n}=\mathrm{L}$
$P_{L}=\frac{(1-\rho) \rho^{L}}{1-\rho^{L+1}}$

Example: M/M/1/L - cont'd

- Problem: A voice signal is digitized at a rate of $\mathbf{8 0 0 0}$ bps. The average length of a voice message is 3 min . Messages are transmitted on a DS-1 line, which has the capacity of 1.344 Mbps. While waiting for transmission, the messages are stored in a buffer which has a capacity of $\mathbf{1 0 7}$ bit. Plot the blocking probability versus the voice message arrival rate.

Example: M/M/1/L - cont'd

- Solution:

0001 \% Example 3.7 - voice multiplexing - page 91
0003 clear all
${ }^{00035}$ LineWidth $=3$;
0006 DS1_Capacity
0007 BuffSizeBits
$=1.344 \mathrm{e} 6 ; \% \mathrm{bits} / \mathrm{sec}$
$=1 \mathrm{e} 7$; \% different than textbook
Note since voice message size is 1440000 bits, then buffer size can not be 10^{6} bits as stated in the textbook. Here we use buffer size of 10^{7} bits which means, buffer can accommodate 6 voice messages before it overflows.
Refer to example 3.7 page 91 in textbook
0008 BPSPerVoiceMsg $=8000 ; \%$ bps per voice msg
0009 VoiceMsgDuration $=3 * 60$; \% second;
0010 VoiceMsgSizeBits = VoiceMsgDuration * BitsPerVoiceMsg;
0011 ServiceTime = VoiceMsgSizeBits / DS1_Capacity;
0012 \% \# of msgs buffer can fit
0013 BufferSizeMsgs = floor(BuffSizeBits/VoiceMsgSizeBit
014
0015 Step $=0.01$;
0016 Lamda $=$ [0:step: (1 -Step)/serviceTime $]$
$\begin{aligned} 0017 \text { Rho } & =\text { Lamda } * \text { ServiceTime } \\ & =(1-\text { Rho }) \text {. } \mathrm{*Ro} \text {. }\end{aligned}$
0019% Plot results
020% Plot resu
021 figure(1)
0023 set(h, 'LineWidth', Linewidth);
0024 xlabel ('voice message arrival rate'); grid
0025 ylabel('overflow probability');

Queueing Models: M/M/S Multiserver Systems

- Assume S servers system, therefore:

$$
\begin{aligned}
& \mu_{j}=j \mu \text { for } \mathrm{j} \leq \mathrm{S} \\
& \mathrm{~S} \mu \text { for } \mathrm{j}>\mathrm{S}
\end{aligned}
$$

and

- The state-transition flow diagram of M/M/S queue is as shown below

μ

(S-1) $\mu \quad \mathrm{S} \mu$

Queueing Models: M/M/S -
 Multiserver Systems - cont'd

- Solving the balance equations, results in

$$
P_{j}= \begin{cases}\frac{P_{0} \rho^{j}}{j!} & j \leq S \\ \frac{P_{0} \rho^{j}}{S!S^{j-S}} & j>S\end{cases}
$$

$\mathbf{P}_{\mathbf{0}}$ is calculated as $\quad P_{0}=\left[\sum_{j=0}^{s-1} \frac{\rho^{j}}{j!}+\frac{S \rho^{s}}{S!(S-\rho)}\right]^{-1}$

- The traffic utilization, $\rho=\lambda / \mu$
- Note the condition for solution validity is p/S < 1
i.e. in the S -server case, the traffic load ranges 0 to S .

Queueing Models: M/M/S -
 Multiserver Systems - cont'd

- The probability of queueing is equal to the probability of finding all \mathbf{S} servers busy, therefore,

$$
P_{c}(S, \rho)=\sum_{j=S}^{\infty} P_{j}=P_{0} \frac{\rho^{s}}{S!} \frac{S}{(S-\rho)}
$$

- The mean number of customers in queue, $\mathrm{E}[\mathrm{Nq}]$, is given by

$$
\bar{Q}=E[N q]=\sum_{j=0}^{\infty} j P_{j+S}=P_{0} \frac{\rho^{S}}{S!} \frac{S \rho}{(S-\rho)^{2}}
$$

- Therefore, the relation between average number of customers in queue and probability of queueing is given by

$$
\bar{Q}=\frac{P_{c} \rho}{(S-\rho)}
$$

Exercise: M/M/S/ ∞

- Show that the waiting time distribution is given by

$$
F_{W}(x)=1-\frac{p_{c} S}{S-\rho} e^{-\mu(S-\rho) x} \quad x>0
$$

Refer to slides of "Queueing Models" for COE 541 for proof.

Example: M/M/S/ ∞

- Problem: a 160 kb/s line is used for data transmission. Two options are provided
a) Implement a $\mathbf{1 6}$-channel TDM scheme where every channel provides $10 \mathrm{~kb} / \mathrm{s}$.
b) Use the overall trunk as one fat data transmission pipe.
Assume data frames arrive at a Poisson rate $\boldsymbol{\lambda}$ and are exponentially distributed in length with average of 2000 bits per frame.

Which scheme provides less delay?

Example: M/M/S/o - cont'd

- Solution:

a) S = $\mathbf{1 6}$ servers - Model M/M/S
$\mathrm{R}_{\mathrm{c}}=10 \mathrm{~kb} / \mathrm{s} \rightarrow \mathrm{E}[\tau]=1 / \mu=2000 / 10=200 \mathrm{msec}$
$p=\lambda / \mu=\lambda E[\tau]=200 \lambda$
$\mathrm{E}[\mathrm{T}]=\mathrm{E}[\mathrm{W}]+\mathrm{E}[\tau]=\mathrm{E}[\mathrm{Nq}] / \boldsymbol{\lambda}+\mathrm{E}[\tau]$
$=P_{c}(1 / \mu) /(S-\rho)+E[\tau]$
b) $\mathbf{S}=1$ server - Model $M / M / 1$
$R_{\mathrm{c}}=160 \mathrm{~kb} / \mathrm{s} \rightarrow \mathrm{E}[\tau]=1 / \mu=2000 / 160=1.25 \mathrm{msec}$
$\rho=\lambda / \mu=\lambda E[\tau]=1.25 \lambda$
$\mathrm{E}[\mathrm{T}]=\mathrm{E}[\mathrm{W}]+\mathrm{E}[\tau]=\mathrm{E}[\mathrm{Nq}] / \boldsymbol{\lambda}+\mathrm{E}[\tau]$
$=1 /(\mu-\lambda)$

Example: M/M/S/o - cont'd

- Solution:

For option (a)

- minimum service time is equal to $\mathbf{2 0 0} \mathbf{~ m s e c}$

For option (b)

- minimum service time is equal to 1.25 msec

Option (b) provides better (less) system

Note: The x-axis in the textbook graph is not correct (Example 3.8 page 94). Verify?

Queueing Models: M/M/S/L

- S server model with finite waiting room
- Assuming L $\geq \mathbf{S}$, we have

$$
\begin{aligned}
\mu_{j} & =j \mu \text { for } j \leq S \\
& S \mu \text { for } j>S \\
\lambda_{j}= & \lambda \text { for } j<L \\
& 0 \text { for } j \geq L
\end{aligned}
$$

and

- The state transition flow diagram $M / M / S / L$ queue

μ

Queueing Models: M/M/S/S

- Special case of M/M/S/L where L = S;
- The state transition flow diagram M/M/S/S queue

Queueing Models: M/M/S/S - cont'd

- Solving the balance equation yields:
and

$$
P_{n}=\frac{P_{0} \rho_{n}}{n!} \quad n=0,1,2, \ldots, S
$$

$$
P_{0}=\left[\sum_{n=0}^{s}=\frac{\rho^{n}}{n!}\right]^{-1}
$$

- When an arrival finds all S servers busy, it is blocked or dropped (no waiting room) - Probability of blocking is given by

$$
\begin{aligned}
& P_{B}(S, \rho)=\frac{\rho^{S} / S!}{\sum_{n=0}^{S} \frac{\rho^{n}}{n!}} \\
& P_{B}(S, \rho)=\frac{\rho P_{B}(S-1, \rho)}{S+\rho P_{B}(S-1, \rho)}
\end{aligned}
$$

where $\boldsymbol{P}_{\mathbf{B}}(\mathbf{0}, \mathrm{\rho})=\mathbf{1}$

- Insensitivity Property of Erlang-B formula: Blocking probability does NOT depend on the distribution of the service time, but rather its mean

Example: M/M/S/S

- Problem: constant length frames of $\mathbf{1 0 0 0}$ bit each arrive an a multiplexer which has 16 output lines, each operating at a 50 kb / s rate. Suppose that frames arrive at an average rate of $\mathbf{1 , 4 4 0 , 0 0 0}$ frame per hour. There is no storage; thus if a frame is not served immediately it lost.
Calculate the blocking probability at the multiplexer.

Example: M/M/S/S - cont'd

- Solution:
frame arrival rate, $\lambda=1,440,000$ frame/hour

$$
\text { = } 400 \text { frame/sec }
$$

frame service time, $1 / \mu=1000 / 50 \mathrm{~kb} / \mathrm{s}$

$$
=0.02 \mathrm{sec}
$$

Traffic intensity, $\rho=\lambda / \mu=8$
Number of servers, $S=16$ (verify $\rho / S<1$)
Using the iterative formula $\boldsymbol{\rightarrow}$

M/M/S/S - Infinite Servers Case

- Special case of the M/M/S/S queue
- Let $\mathbf{S} \rightarrow \infty$, i.e. an arriving customer always has a server available
- The probability of system in state zero is given by

$$
P_{0}=\left[\sum_{n=0}^{\infty} \frac{\rho^{n}}{n!}\right]^{-1}=e^{-\rho}
$$

- Therefore, the probability of system in state $\mathbf{n} \geq \mathbf{0}$ is computed as

$$
P_{n}=\frac{\rho^{n}}{n!} e^{-\rho}
$$

Which is the Poisson distribution!!

Finite Source Queueing - Engset Distribution

- Assume a finite population of \mathbf{N} - each generate a message with rate λ (or with probability $\lambda \bar{\delta}$ in the interval ($t, t+\delta)$). The next message is not transmitted till the prior one is served. Assume no storage case, i.e. if a source generates a message when no server is available, the message is lost and the source returns to idle state immediately.
- The state transition flow diagram is as shown:

Finite Source Queueing - Engset Distribution - cont'd

- You can show that the pmf is given by and

$$
P_{n}=P_{0}\binom{N}{n}\left(\frac{\lambda}{\mu}\right)^{n} \quad n=0,1, \ldots, S
$$

$$
P_{0}=\left[\sum_{n=0}^{S}\binom{N}{n}\left(\frac{\lambda}{\mu}\right)^{n}\right]^{-1}
$$

- Remember $\boldsymbol{P}_{\boldsymbol{S}}$ is the probability of blocking
- There is no blocking for $\mathbf{N} \leq \mathbf{S} \mathbf{- W h y}$?

Method Of Stages - Erlang
 Distribution (E_{r})

- Single state server:

$$
\begin{gathered}
f_{T}(t)=\mu e^{-\mu \mu} \quad t \geq 0 \\
F_{T}(s)=\frac{\mu}{s+\mu} \\
E[T]=1 / \mu \quad \operatorname{Var}[T]=1 / \mu^{2} \quad C_{b}=1
\end{gathered}
$$

- r-Stage server:

$$
\begin{aligned}
& f_{T}(t)=\frac{r \mu(r \mu t)^{r-1} e^{-r, \mu t}}{(r-1)!} \quad t \geq 0 \\
& F_{T}(s)=\left(\frac{r \mu}{s+r \mu}\right)^{r} \\
& \text { r-stages }
\end{aligned}
$$

Method Of Stages - Erlang Distribution - cont'd

0001 \%
0002 \% Erlang distribution
0003 LineWidth = 3;
0004 Rs = [1 2 3 5 20];
0005 Mue = 1;
0006 t $=$ [0:Step:4];
$0007 \mathrm{f}=$ zeros(length(Rs), length(
0008
0009 for i=1:length(Rs)
$0010 \quad r=\operatorname{Rs}(i)$;

0012 end
0013
0015 figure(1);
0016 h = plot(t, f); grid
0017 set(h,'LineWidth', LineWidth);
0018 xlabel('t');
0019 ylabel('f(t)');
0020 LegendStr = ['legend('];
0021 for $i=1$: length(Rs) -1 ;
0022 LegendStr = [LegendStr '''r num2str(Rs(i)) '1',];
0023 end
0024 LegendStr = [LegendStr '''r =
 0025 eval(LegendStr)

Erlang Distribution - Observations

- Let $\mathbf{r} \rightarrow \infty$, the distribution of \mathbf{T} approaches a constant (deterministic) value of $1 / \mu$

$$
\lim _{r \rightarrow \infty} F_{T}(s)=\lim _{r \rightarrow \infty}\left(\frac{1}{1+s / r \mu}\right)^{r}=e^{-s / \mu}
$$

Or

$$
f_{T}(t)=\delta(t-1 / \mu)
$$

where

$$
E[T]=1 / \mu \quad \operatorname{Var}[T]=0
$$

The Queue M/Er $/ 1$

- Service time ~ r-stages Erlangian distribution
- System state:
- Number of customers in system
- Number of stages remaining in the service
- Define $\mathbf{j}=$ number of stages left in total system (i.e. for all customers)
- If system contains \mathbf{k} customers
- ($k-1$) waiting
- One is in service - let him be in the $i^{\text {th }}$ stage
- Therefore, \mathbf{j} is given by

$$
\begin{aligned}
\mathbf{j} & =(k-1) r+(r-i+1), \text { or } \\
& =r k-i+1 ;
\end{aligned}
$$

The Queue $M / E_{r} / 1$ - cont'd

- Define $P_{j}=$ Prob of \mathbf{j} stages in system
- Define $p_{k}=$ Prob of k customers in system
- $P_{\mathbf{j}}$ and $\mathbf{p}_{\mathbf{k}}$ are related as follows:

$$
p_{k}=\sum_{j=(k-1)_{r+1}^{k r}}^{k} P_{j} \quad k=1,2, \ldots
$$

Note: $p_{0}=P_{0}$!!

The Queue $M / E_{r} / 1$ - cont'd

- The state-transition-rate diagram for number of stages is as shown
- Every arrival brings along r new stages to be completed!
- Note that state 0, 1, ..., r-1 - are special boundary states! - WHY?

The Queue M/E/I - Forward Equations

- Forward equations in equilibrium,
$\lambda P_{0}=r \mu P_{1,}$ and
$(\lambda+r \mu) P_{j}=\lambda P_{j-r}+r \mu P_{j+1,} \quad j=1,2, \ldots$
- Define P(z) to be $P(z)=\sum_{j=0}^{\infty} P_{j} z^{j}$

> Note:
> $P_{j}=0$ for $\mathrm{j}<0$

- Therefore, $\sum_{j=1}^{\infty}(\lambda+r \mu) P_{j} z^{j}=\sum_{j=1}^{\infty} \lambda P_{j,-1} z^{j}+\sum_{j=1}^{\infty} r \mu P_{j+1} z^{i}$

$$
\begin{aligned}
&(\lambda+r \mu)\left[\sum_{j=0}^{\infty} P_{j} z^{j}-P_{0}\right]=\lambda z^{r} \sum_{j=1}^{\infty} \lambda P_{j-r} z^{j-r}+\frac{r \mu}{z} \sum_{j=1}^{\infty} P_{j+1} z^{j+1} \\
&(\lambda+r \mu)\left[P(z)-P_{0}\right]=\lambda z^{r} P(z)+\frac{r \mu}{z}\left[P(z)-P_{0}-P_{1} z\right] \\
& \text { Dr. Ashraf S. Hasan Mahmoud }
\end{aligned}
$$

The Queue M/Er/1 - Forward Equations

- After simplifying, $\mathbf{P}(\mathbf{z})$ can be written as

$$
P(z)=\frac{r \mu P_{0}(1-z)}{r \mu+\lambda z^{r+1}-(\lambda+r \mu) z}
$$

- P_{0} can be found using the condition $P(z=$ 1) $=1 \rightarrow P_{0}=1-\lambda / \mu$
- If we define $\rho=\boldsymbol{\lambda} / \boldsymbol{\mu}, P(z)$ can be rewritten as

$$
P(z)=\frac{r \mu(1-\rho)(1-z)}{r \mu+\lambda z^{r+1}-(\lambda+r \mu) z}
$$

Example: M/Er/1

- Problem: show that $M / M / 1$ queue is a special case of $\mathrm{M} / \mathrm{E}_{\mathrm{r}} / 1$ where $\mathrm{r}=1$
- Solution: Using $\mathbf{r}=\mathbf{1}, \mathbf{P (z)}$ reduces to

$$
\begin{aligned}
P(z) & =\frac{\mu(1-\rho)(1-z)}{\mu+\lambda z^{2}-(\lambda+\mu) z} \\
& =\frac{(1-\rho)(1-z)}{1+\rho z^{2}-(1+\rho) z} \\
& =\frac{(1-\rho)}{1-\rho z}
\end{aligned}
$$

Which is the generating function for number of customers in an M/M/1 queue

The probability of \mathbf{k} customers in system, $\boldsymbol{p}_{\boldsymbol{k}}$ is given by

M/E/1 Queue Solution

- Problem: How to invert $\mathbf{P (z)}$ in general for $r>1$.
- Solution: $\mathbf{P}(\mathbf{z})$ in general is given by $P(z)=\frac{r \mu(1-\rho)(1-z)}{r \mu+\lambda z^{+1}-(\lambda+r \mu) z}$

The denominator is a polynomial of degree $\mathbf{r + 1} \boldsymbol{\rightarrow}$ It $\mathbf{r + 1}$ roots
It is clear that $\mathbf{z = 1}$ is one of the roots
We must identify the remaining r roots
Let the denominator be $\quad D(z)=(1-z)\left[r \mu-\lambda\left(z+z^{2}+\cdots+z^{r}\right)\right]$
Let the r zeros be denoted by $\left\{z_{1}, z_{2}, \ldots, z_{r}\right\}$

$$
D(z)=r \mu(1-z)\left(1-z / z_{1}\right)\left(1-z / z_{2}\right) \cdots\left(1-z / z_{r}\right)
$$

Then $P(z)$ can be written as

$$
P(z)=\frac{1-\rho}{\left(1-z / z_{1}\right)\left(1-z / z_{2}\right) \cdots\left(1-z / z_{r}\right)}
$$

Finding the ZEROS of $\mathrm{D}(\mathrm{z})$ is the most challenging task!!

M/Er/1 Queue Solution - cont'd

- Solution:

We can perform partial fraction expansion on $\mathbf{P}(\mathbf{z})$ to obtain:
where

$$
\begin{aligned}
P(z) & =(1-\rho) \sum_{i=1}^{r} \frac{A_{i}}{\left(1-z / z_{i}\right)} \\
A_{i} & =\prod_{\substack{n=1 \\
n \neq i}}^{r} \frac{1}{\left(1-z_{i} / z_{n}\right)}
\end{aligned}
$$

Therefore, $\mathbf{P}(\mathbf{z})$ can be inverted as

Note

$$
P_{j}=(1-\rho) \sum_{i=1}^{r} A_{i}\left(z_{i}\right)^{-j} \quad j=1,2, \cdots, r
$$

- The distribution of the number of stages in the system is a weighted sum of geometric distributions.
- The above is NOT the distribution of customers in the system yet!!

The Queue $\mathrm{E}_{\mathrm{r}} / \mathrm{M} / 1$

- Imagine the following configuration

The Queue $E_{r} / M / 1$ - cont'd

- Interarrival time ~ r-stages Erlangian distribution
- Service time \sim exponential with rate μ
- System state:
- Number of customers already in system
- Number of arrival stages of customer to arrive
- Define $\mathbf{j}=$ number of arrival stages in system
- If system contains k customers
- Arriving customer is in the $i^{\text {th }}$ stage ($\left.1 \leq i \leq r\right)$ - i.e. he finished i -1 stages
- k customer fully arrived - each brought r-stages of arrival
- Therefore, \mathbf{j} is given by

$$
\mathbf{j}=\mathbf{r} \mathbf{k}+\mathbf{i}-\mathbf{1}
$$

The Queue $\mathrm{E}_{\mathrm{r}} / \mathrm{M} / 1$ - cont'd

- The state-transition-rate diagram for number of stages is as shown
- Define $\mathbf{P}_{\mathbf{j}}=$ Prob of \mathbf{j} arrival stages in system
- Define $p_{k}=$ Prob of k customers in system
- $P_{\mathbf{j}}$ and $\mathbf{p}_{\mathbf{k}}$ are related as follows:

$$
p_{k}=\sum_{j=k r}^{(k+1) r-1} P_{j} \quad k=0,1,2, \ldots
$$

- Every departure removes \mathbf{r} stages of arrival from system!

The Queue $E_{r} / \mathrm{M} / 1$ - Forward Equations

- Forward equations in equilibrium,

$$
\begin{aligned}
& r \lambda P_{0}=\mu P_{r \prime} \text { and } \\
& r \lambda P_{j}=r \lambda P_{j-1}+\mu P_{j+r} \\
&(r \lambda+\mu) P_{j}=r \lambda P_{j-1}+\mu P_{j+r} \\
& j=r, 2, \ldots, r+1, \ldots
\end{aligned}
$$

The Queue $\mathrm{E}_{\mathrm{r}} / \mathrm{M} / 1$ - Solution

- Define $\mathbf{P (z)}$ to be

$$
P(z)=\sum_{j=0}^{\infty} P_{j} z^{j}
$$

- Therefore,

$$
\begin{aligned}
& \text { re, } \sum_{j=1}^{\infty}(\mu+r \lambda) P_{j} z^{j}-\sum_{j=1}^{r-1} \mu P_{j} z^{j}=\sum_{j=1}^{\infty} r \lambda P_{j-1} z^{j}+\sum_{j=1}^{\infty} \mu P_{j+r} z^{j} \\
& (\mu+r \lambda)\left[P(z)-P_{0}\right]-\sum_{j=1}^{r-1} \mu P_{j} z^{j}=r \lambda z P(z)+\frac{\mu}{z^{r}}\left[P(z)-\sum_{j=0}^{r} P_{i} z^{j}\right]
\end{aligned}
$$

- Finally,

$$
P(z)=\frac{\left(1-z^{r}\right) \sum_{j=0}^{r-1} P_{j} z^{j}}{r \rho z^{r+1}-(1+r \rho) z^{r}+1}
$$

where $\rho=\boldsymbol{\lambda} / \boldsymbol{\mu}$

The Queue $E_{r} / M / 1$ - Solution - cont'd

- Consider the denominator of $P(z), D(z)$

$$
D(z)=r \rho z^{r+1}-(1+r \rho) z^{r}+1
$$

- $D(z)$ has $\mathbf{r + 1}$ roots
- $z=1$ is one root
- It can be shown that $\mathbf{r - 1}$ roots are within the unit circle - i.e. $|z|<1$ (Rouche's Theorem)
- Remaining zero, z_{0}, lies outside the unit circle, $\left|z_{0}\right|>1$

The Queue $E_{r} / M / 1$ - Solution - cont'd

- Consider the numerator of $\mathbf{P (z) , N (z)}$
- $N(z)$ has $\mathbf{2 r - 1}$ roots

$$
N(z)=\left(1-z^{r} \sum_{j=0}^{-1-1} P_{j} z^{j}\right.
$$

- r roots at $z=1$
- Since $P(z)$ is analytic on $|z|<1 \rightarrow P(z)$ is bounded for all $|z|<1$ (i.e. no singularities inside the unit circle)
- The remaining r roots of $\mathbf{N}(z)$ (contributed by the summation term) are inside the unit circle and cancel those r roots of $D(z)$

The Queue $E_{r} / M / 1$ - Solution - cont'd

- Therefore, one can write

$$
\begin{aligned}
\frac{D(z)}{(1-z)\left(1-z / z_{0}\right)} & =K \sum_{j=0}^{r-1} P_{j} z^{j} \\
\frac{r \rho z^{r+1}-(1+r \rho) z^{r}+1}{(1-z)\left(1-z / z_{0}\right)} & =K \sum_{j=0}^{r-1} P_{j} z^{j}
\end{aligned}
$$

- This means, $\mathbf{P (z)}$ can be written as

$$
\begin{aligned}
P(z) & =\frac{\left(1-z^{r}\right)}{K(1-z)\left(1-z / z_{0}\right)} \\
& =\frac{\left(1-z^{r}\right)\left(1-1 / z_{0}\right)}{r(1-z)\left(1-z / z_{0}\right)}
\end{aligned}
$$

since $P(1)=1 \rightarrow K=r /\left(1-1 / z_{0}\right)$

The Queue $E_{r} / M / 1$ - Solution - cont'd

- We are now in a position to solve for the final pmf - performing the partial fraction expansion on $P(z)$, yields

$$
P(z)=\left(1-z^{r}\right)\left[\frac{1 / r}{1-z}+\frac{-1 /\left(r z_{0}\right)}{1-z / z_{0}}\right]
$$

- If we let $\left[\frac{1 / r}{1-z}+\frac{-1 /\left(r z_{0}\right)}{1-z / z_{0}}\right] \stackrel{z^{-1}}{\Rightarrow} \Rightarrow f_{j}$
- Then $P_{j}=f_{j}-f_{j-r}$

Recall $f_{j}=0$ for $j<0$

- Clearly, $f_{j}= \begin{cases}\frac{1}{r}\left(1-z_{0}^{j-1}\right) & j \geq 0 \\ 0 & j<0\end{cases}$

The Queue $E_{r} / M / 1$ - Solution - cont'd

- Therefore, $\mathbf{P}_{\mathbf{j}}$ for $\mathbf{j} \geq \mathbf{r}$ is given by

$$
\begin{aligned}
P_{j} & =\frac{1}{r} z_{0}^{r-j-j-1}\left(1-z_{0}^{-r}\right) \quad j \geq r \\
& =\rho\left(z_{0}-1\right) z_{0}^{r-j-1} \quad j \geq r
\end{aligned}
$$

$\because D\left(z_{0}\right)=r \rho z_{0}^{r+1}-(1+r \rho) z_{0}{ }^{r}+1=0$
$\Rightarrow r \rho\left(z_{0}-1\right)=1-z_{0}{ }^{-r}$
$\Rightarrow r \rho\left(z_{0}-1\right)=1-z_{0}{ }^{-r}$

- For $\mathbf{0} \leq \mathbf{j}<\mathbf{r}$, we observe $\mathrm{f}_{\mathbf{j}-\mathrm{r}}=\mathbf{0} \rightarrow \mathrm{P}_{\mathbf{j}}=\mathrm{f}_{\mathrm{j}}$ only.
- Hence, the over all pmf is given by

$$
P_{j}=\left\{\begin{array}{lr}
\frac{1}{r}\left(1-z_{0}^{-j-1}\right) & 0 \leq j<r \\
\rho\left(z_{0}-1\right) z_{0}^{r-j-1} & j \geq r
\end{array}\right.
$$

- It can be shown that the pmf for the number of customers in the system is given by

$$
\begin{gathered}
p_{k}=\left\{\begin{array}{lr}
1-\rho & k=0 \\
\rho\left(z_{0}^{r}-1\right) z_{0}{ }^{-r k} & k>0
\end{array}\right. \\
\text { Dr. Ashraf S. Hasan Mahmoud }
\end{gathered}
$$

Generalization of the Erlangian Distribution - First attempt

- The previous Erlangian distribution is limited in the sense that $C_{b}=1 / \sqrt{ } r \leq 1$
- Consider a series of r-stages; each with parameter $\boldsymbol{\mu}_{\mathbf{i}}$
$f_{T}(t)=f_{T_{1}}(t) \otimes f_{T_{2}}(t) \otimes \cdots \otimes f_{T_{T}}(t)$
$F_{T}(s)=\left(\frac{\mu_{1}}{s+\mu_{1}}\right)\left(\frac{\mu_{2}}{s+\mu_{2}}\right) \cdots\left(\frac{\mu_{r}}{s+\mu_{r}}\right)$
$E[T]=\sum_{i=1}^{r} 1 / \mu_{i} \quad \operatorname{Var}[T]=\sum_{i=1}^{r} 1 / \mu_{i}^{2} \quad C_{b}^{2}=\left(\sum_{i=1}^{r} 1 / \mu_{i}^{2}\right) /\left(\sum_{i=1}^{r} 1 / \mu_{i}\right)^{2}$
But C_{b} is again always less than 1 for any choice of $1 / \mu_{i}$

Generalization of the Erlangian Distribution - Second attempt

- Consider the 2-stage parallel server
- Only one customer is allowed at a time in the service facility

$$
\begin{aligned}
& f_{T}(t)=\alpha_{1} \mu_{1} e^{-\mu_{l} t}+\alpha_{2} \mu_{2} e^{-\mu_{2} t} \\
& F_{T}(s)=\alpha_{1} \frac{\mu_{1}}{s+\mu_{1}}+\alpha_{2} \frac{\mu_{2}}{s+\mu_{2}}
\end{aligned}
$$

Service Facility $\alpha_{1}+\alpha_{2}=1$

Generalization of the Erlangian
 Distribution - Second attempt - cont'd

- Consider the R-stage parallel server
- $f_{7}(t) \sim$ hyperexponential distribution (denoted by H_{R})
$\sum_{i=1}^{R} \alpha_{i}=1$
$f_{T}(t)=\sum_{i=1}^{R} \alpha_{i} \mu_{i} e^{-\mu_{i} t} \quad t \geq 0$
$F_{T}(s)=\sum_{i=1}^{R} \alpha_{i} \frac{\mu_{i}}{s+\mu_{i}}$
$E[T]=\sum_{=1}^{n} \frac{\alpha_{i}}{\mu_{i}}$
5
$E\left[T^{2}\right]=2 \sum_{i=1}^{R} \frac{\alpha_{i}}{\mu_{i}^{2}}$
Cauchy-Schwartz inequality:

$M / H_{R} / 1, H_{R} / M / 1, H_{R a} / H_{R b} / 1$ Queues

- Analysis by method of stages exists
- Take into account the hperexponential service (or arrival) facility by merely specifying which stage within service (or arrival) facility the customer currently occupies.

PLUS

- Number of customers in system
- The above forms a Markov chain which may be analyzed as we did before

Example: $\mathrm{M} / \mathrm{H}_{2} / 1$

- State-transition-rate diagram is as shown
- k_{i} - implies system contains k customers and the customer in service is in service stage i
- REMEMBER: only ONE customer can be in service facility

Example: M/E/2/2

- Problem: Consider an $M / E_{2} / 2 / 2$ - a system with two servers, each with 2 identical stages. There is no storage room, and packets arriving to system while serving two packets are lost.
Assume packets arrive with rate λ, while the service rate in a stage is given by μ.

Compute the blocking probability for this system?

Example: M/E ${ }_{2} / 2 / 2$ - cont'd

- Solution:

Let the state for such system be (\mathbf{i}, \mathbf{j}) - where i and j are, respectively, the number of packets in the first and seconds stages.
\rightarrow possible states: (0,0), (0,1), ($\mathbf{0}, \mathbf{2}$), ($\mathbf{1 , 0} \mathbf{0}),(\mathbf{2}, 0)$, $(\mathbf{1}, \mathbf{1})$
The state transition flow diagram is as shown:

Example: M/E $/ 2 / 2$ - cont'd

- Solution: cont'd

We then proceed with writing the equilibrium equations:

$$
\lambda P_{00}=\mu P_{01}
$$

$(\lambda+\mu) P_{01}=2 \mu P_{02}+\mu P_{01}$,
$2 \mu P_{02}=\mu P_{11 \prime}$
$(\lambda+\mu) P_{10}=\lambda P_{00}+\mu P_{11}$,
$2 \mu P_{20}=\lambda P_{10}$
$2 \mu P_{11}=\lambda P_{01}+2 \mu P_{20}$
Note that Blocking probability, P_{B} is given by $\mathbf{P}_{\mathrm{B}}=\mathrm{P}_{11}+\mathrm{P}_{\mathbf{0 2}}+\mathrm{P}_{\mathbf{2 0}}$

Solving, the above equations: you can show that

More Generalization - SeriesParallel Service

- Note: $r_{1}, \ldots, r_{i,}, \ldots, r_{R}$ are not necessarily equal

$$
f_{T}(t)=\sum_{i=1}^{R} \alpha_{i} \frac{r_{i} \mu_{i}\left(r_{i} \mu_{i} t\right)^{r_{i}-1} e^{-r_{i} \mu_{i} t}}{\left(r_{i}-1\right)!} \quad t \geq 0
$$

$$
F_{T}(s)=\sum_{i=1}^{R} \alpha_{i}\left(\frac{r_{i} \mu_{i}}{s+r_{i} \mu_{i}}\right)^{r_{i}}
$$

If the rates in stages within one branch are not equal, then

$$
F_{T}(s)=\sum_{i=1}^{R} \alpha_{i} \prod_{i=1}^{r_{i}} \frac{\mu_{i j}}{s+\mu_{i j}}
$$

More Generalization - Cox Network

- Consider the network of stages shown - Cox Network
- Prob of going through exactly \mathbf{i} stages: $\prod_{j=0}^{i-1} q_{j}\left(1-q_{i}\right)$
- Assume $\boldsymbol{q}_{\mathbf{0}}=\mathbf{1}, \boldsymbol{q}_{\boldsymbol{K}}=\mathbf{0}$, then $\quad \sum_{i=1}^{K} \prod_{j=0}^{i-1} q_{j}\left(1-q_{i}\right)=1$

Characterization of Cox Network con't

- The Laplace transform of the service time if i stages are used:

$$
M_{T / i}(s)=\prod_{j=1}^{i} \frac{\mu_{i}}{s+\mu_{i}}
$$

- The Laplace transform for the service time in K-stages network:
$M(s)=q_{0}\left(1-q_{1}\right) \frac{\mu_{1}}{s+\mu_{1}}+q_{0} q_{1}\left(1-q_{2}\right) \frac{\mu_{1}}{s+\mu_{1}} \frac{\mu_{2}}{s+\mu_{2}}$
$+q_{0} q_{1} q_{2}\left(1-q_{3}\right) \frac{\mu_{1}}{s+\mu_{1}} \frac{\mu_{2}}{s+\mu_{2}} \frac{\mu_{3}}{s+\mu_{3}}+\cdots+q_{0} q_{1} q_{2} \cdots q_{K-1}\left(1-q_{K}\right) \frac{\mu_{1}}{s+\mu_{1}} \frac{\mu_{2}}{s+\mu_{2}} \cdots \frac{\mu_{K}}{s+\mu_{K}}$
$M(s)=\sum_{\substack{i=1 \\ 12 / 1 / 2004}}^{K} \prod_{i=0}^{i-1} q_{j}\left(1-q_{i}\right) \prod_{k=1}^{i} \frac{\mu_{k}}{s+\mu_{k}}$

Characterization of Cox Network con't

- M(s) given by

$$
M(s)=\sum_{i=1}^{K} \prod_{j=0}^{i-1} q_{j}\left(1-q_{i}\right) \prod_{k=1}^{i} \frac{\mu_{k}}{s+\mu_{k}}
$$

is known as the Coxian distribution

- You can show (refer to textbook), the mean is given by

$$
E[T]=\sum_{i=1}^{K} \prod_{j=0}^{i-1} q_{j}\left(1-q_{i}\right) \sum_{k=1}^{i} \frac{1}{\mu_{k}}
$$

$$
=\sum_{i=1}^{K} \prod_{j=0}^{i-1} q_{j}
$$

Characterization of Cox Network con't

- Note that for $q_{i}=1$, and $\mu_{i}=\mu$ for all i, then the expression for $M(s)$ reduces to

$$
M(s)=\left(\frac{\mu}{s+\mu}\right)^{K}
$$

which the K-stage Erlang-distribution previously discussed on slide 56

- The expected delay in this case is given by

$$
E[T]=\frac{K}{\mu}
$$

Example: M/G/N/N

- Consider a queueing system where
- Arrivals are Poisson with rate $\boldsymbol{\lambda}$
- \mathbf{N} servers and no waiting room
- Each server is a Coxian server with K stages
- Objective: compute blocking probability? And show that it depends only on the mean service rate and the mean arrival rate (i.e. no dependence on the probability distribution of the service time - the insensitivity property of the Erlang-B formula)

Example: M/G/N/N - cont'd

- System state: K-dimensional vector
- i.e. state $=\left(k_{1}, k_{2}, \ldots, k_{k}\right)-$ where $k_{i j} ; i=1,2$, ..., K is the number of customers in stage I
- Obviously, sum of $\mathbf{k}_{\mathbf{i}} \mathbf{s}$ should be less or equal to \mathbf{N}. Note it is equal to \mathbf{N} if all servers are busy - remember too that only one customer can be in any server!!

Example: M/G/N/N - cont'd

- Consider a case where N = 3 and $K=2$.

Example: M/G/N/N - cont'd

- System States: examples

Example: M/G/N/N - cont'd

- Exercise: For the $K=2, N=3$ case explained before
- A) draw the state transition diagram
- B) show that the state equilibrium equations (3.76 and 3.77) are satisfied
- C) Derive the detailed balance equation 3.78
- The exercise is worth $\mathbf{1 0 \%}$ points bonus in the final exam
- Deliver a soft copy in power point of the detailed solution
- Deadline: January 3rd, 2005

Example: M/G/N/N - Blocking

Probability

- Blocking probability is equal to the probability of system being in states where the sum of $\mathbf{k}_{\mathbf{i}} \mathbf{s}$ is equal to \mathbf{N}. i.e.

$$
P_{B}=\operatorname{Pr} o b\left(\sum_{i=1}^{K} k_{i}=N\right)
$$

- The textbook shows that the blocking probability is given by

$$
\left.P_{B}=\frac{P(0)}{N!} \lambda \sum_{n=1}^{K} \prod_{i=1}^{K h} q_{j} q_{j}\right]^{N}
$$

where $P(0)$ is a constant term found through the normalization equation

- Refer for textbook for derivation details.

