KING FAHD UNIVERSITY OF PETROLEUM \& MINERALS COLLEGE OF COMPUTER SCIENCES \& ENGINEERING

COMPUTER ENGINEERING DEPARTMENT
 CSE 642 - Computer Systems Performance
 Assignment 1

Problem 1:

Let the number of message transmissions by a computer in 1 hour be a binomial random variable with parameters n and p . Suppose that the probability of a message transmission error is ε. Let S be the number of transmissions errors in a 1 hour period.
a) Find the mean and variance of S .
b) Find $N_{S}(z)=E\left[z^{S}\right]$.

Problem 2:

Calculate the expected value for a bounded Pareto distribution in terms of α (the shape parameter), β (the scale parameter), and Smax, the maximum packet size in bytes.

Problem 3:

Let $\mathrm{Z}=\mathrm{X}+\mathrm{Y}$ where X and Y are two independent continuous uniform random number distributions defined on the interval $[-\mathrm{a}, \mathrm{a}]$. Find the PDF for the Z and its characteristic function.

Problem 4:

Compare the Chebyshev bound and the exact probability for the event $\{|\mathrm{X}-\mathrm{m}| \geq \mathrm{c}\}$ as a function of c for
a) X is a uniform random variable in the interval $[-b, b]$.
b) X is a Laplacian random variable with parameter a .
c) X is a zero-mean Gaussian random variable.

Problem 5:

Prove that for a Poisson arrival process of mean $\lambda \mathrm{t}$, the interarrival time is an exponential random variable of mean $1 / \lambda$.

Problem 6:

Let $X_{1}, X_{2}, \ldots, X_{N}$ be a sequence of independent integer-values random variables, let N be an integer-valued random variable independent of the Xj 's, and let $S=\sum_{k=1}^{N} X_{k}$:
a) Find the mean and variance of S.
b) Show that $\mathrm{N}_{\mathrm{S}}(z)=\mathrm{N}_{N}\left(\mathrm{~N}_{X}(z)\right)$ - where $\mathrm{N}_{\beta}(z)$ is the probability generating function of β.

