KFUPM - COMPUTER ENGINEERING DEPARTMENT
 COE-543 - Mobile Computing and Wireless Networks
 Quiz \# 2 - Due Sat March 27 ${ }^{\text {th }}, 2010$ - class time.

Student Name:

Student Number:

1) ($\mathbf{4 0}$ points) On the subject of normal RV variables.

Consider a normal random variable $X \sim N(\mu, \sigma)$.
a) Specify the PDF for the $\operatorname{RV} X, f_{X}(x)$.
b) Calculate the mean and variance of the RV X. You are to write the definitions of the mean and variance and then show the calculations leading to the result.
c) Specify the CDF for the RV, $F_{X}(x)$. Write the CDF $F_{X}(x)$ in terms of the CDF for the standard normal RV, $\psi(y)=\frac{1}{2 \pi} \int_{-\infty}^{y} e^{-r^{2} / 2} d r$.
d) For $\mu=1$ and $\sigma=1$, calculate the probability that X is less or equal to 2 , and the probability that X is greater than -1 .
e) Plot the CDF of the RV X defined in part (d) using normal probability paper and use the plot to provide answers for part (d) highlighting on the plot the points needed.
2) (60 points) On the subject lognormal RV:

Consider the normal $\mathrm{RV} X \sim N(\mu, \sigma)$. Let Z be the RV defined as $Z=e^{X}$. Z is referred as the lognormal RV with parameters μ and σ. Note μ and σ are NOT the mean and standard deviation, respectively, for the RV Z. Finally, note that Z now ranges from 0^{+}to ∞ whereas the original range for X is from $-\infty$ to ∞.
a) Specify the PDF for the RV Z.
b) Write expressions for the mean and variance of the RV Z.
c) Specify the CDF for the RV $Z, F_{Z}(z)$, in terms of the CDF for the standard normal RV, $\psi(y)=\frac{1}{2 \pi} \int_{-\infty}^{y} e^{-r^{2} / 2} d r$ as given in class noted.
d) For $\mu=1$ and $\sigma=1$, calculate the probability that Z is less or equal to 2 , the probability that Z is greater than 3 , and the probability that Z is greater than 3 but less than 10 .
e) Plot the CDF of Z defined in part (d) using normal probability paper and use the plot to provide answers for part (d) highlighting on the plot the points needed.
f) If the $\mathrm{RV} W$ is defined as $W=10^{X / 10}$, then W is also a lognormal RV. What is the relation between W and Z. What are the parameters of the lognormal RV W ?

