

Rej	peati		t'd e calculations for owing table	N = 7 and $N =$	= 12, we can
	N	q	Voice Channels per Cell	Calls per Cell per Hour	Mean SIR (dB)
	4	3.5	99	∫ 2610	14.0
	7	4.6	56 ^{redu}	uction 1376	$18.7 \int increas$
	12	6.0	33	739	23.3
You ca	in not		by increasing N, the state of the second s	-	

	Idil	g-B	Iak	лез		amp	ne)		
P(B)= Trunks	0.01	0.015	0.02	0.03	0.05	0.07	0.1	0.2	0.5
1	0.010	0.015	0.020	0.031	0.053	0.075	0.111	0.250	1.000
2	0.153	0.190	0.223	0.282	0.381	0.471	0.595	1.000	2.732
3	0.455	0.536	0.603	0.715	0.899	1.057	1.271	1.930	4.591
4	0.870	0.992	1.092	1.259	1.526	1.748	2.045	2.944	6.501
5	1.361	1.524	1.657	1.877	2.219	2.504	2.881	4.010	8.437
6	1.913	2.114	2.277	2.544	2.961	3.305	3.758	5.108	10.38
7	2.503	2.743	2.936	3.250	3.738	4.139	4.666	6.229	12.35
8	3.129	3.405	3.627	3.987	4.543	4.999	5.597	7.369	14.31
9	3.783	4.095	4.345	4.748	5.370	5.879	6.546	8.521	16.29
10	4.462	4.808	5.084	5.529	6.216	6.776	7.511	9.684	18.27
11	5.160	5.539	5.842	6.328	7.076	7.687	8.487	10.857	20.25
12	5.876	6.287	6.615	7.141	7.950	8.610	9.477	12.036	22.23
13	6.607	7.049	7.402	7.967	8.835	9.543	10.472	13.222	24.22
14	7.352	7.824	8.200	8.803	9.730	10.485	11.475	14.412	26.21
15	8.108	8.610	9.010	9.650	10.633	11.437	12.485	15.608	28.20
16	8.875	9.406	9.828	10.505	11.544	12.393	13.501	16.807	30.19
17	9.652	10.211	10.656	11.368	12.465	13.355	14.523	18.010	32.18
18	10.450	11.024	11.491	12.245	13.389	14.323	15.549	19.215	34.17
19	11.241	11.854	12.341	13.120	14.318	15.296	16.580	20.424	36.16
20	12.041	12.680	13.188	14.002	15.252	16.273	17.614	21.635	38.15

3/20/2010

Dr. Ashraf S. Hasan Mahmoud

25

Erlang-B Tables (Sample)

P(B)= Trunks	0.005	0.01	0.015	0.02	0.03	0.05	0.07	0.1
20	11.092	12.041	12.680	13.188	14.002	15.252	16.273	17.614
21	11.860	12.848	13.514	14.042	14.890	16.191	17.255	18.652
22	12.635	13.660	14.352	14.902	15.782	17.134	18.240	19.693
23	13.429	14.479	15.196	15.766	16.679	18.082	19.229	20.737
24	14.214	15.303	16.046	16.636	17.581	19.033	20.221	21.784
25	15.007	16.132	16.900	17.509	18.486	19.987	21.216	22.834
26	15.804	16.966	17.758	18.387	19.395	20.945	22.214	23.885
27	16.607	17.804	18.621	19.269	20.308	21.905	23.214	24.939
28	17.414	18.646	19.487	20.154	21.224	22.869	24.217	25.995
29	18.226	19.493	20.357	21.043	22.143	23.835	25.222	27.053
30	19.041	20.343	21.230	21.935	23.065	24.803	26.229	28.113
31	19.861	21.196	22.107	22.830	23.989	25.774	27.239	29.174
32	20.685	22.053	22.987	23.728	24.917	26.747	28.250	30.237
33	21.512	22.913	23.869	24.629	25.846	27.722	29.263	31.302
34	22.342	23.776	24.755	25.532	26.778	28.699	30.277	32.367
35	23.175	24.642	25.643	26.438	27.712	29.678	31.294	33.435
36	24.012	25.511	26.534	27.346	28.649	30.658	32.312	34.503
37	24.852	26.382	27.427	28.256	29.587	31.641	33.331	35.572
38	25.694	27.256	28.322	29.168	30.527	32.624	34.351	36.643
39	26.539	28.132	29.219	30.083	31.469	33.610	35.373	37.715

Example 3:

- Compare the spectral efficiency of the digital system (IS-54) with that of the analog system (AMPS) using the following data:
 - The total # of channels is 416
 - The # of control channels = 21 (i.e. 395 channels for voice)
 - The channel bandwidth is 30 kHz
 - The reuse factor, N = 7
 - The total available bandwidth for each direction = 12.5 MHz
 - Coverage area = 10,000 km2
 - The required SIR for AMPS = 18 dB (or 63.1)
 - The required SIR for IS-54 = 14 dB (or 25.1)
 - Call blocking = 2.5%

3/20/2010

Dr. Ashraf S. Hasan Mahmoud

27

Example 3: cont'd Solution: Analog System: # of voice channels per cell site = 395/7 = 56The offered traffic load (using Erlang-B tables @ 2% blocking) = 45.6 Erlangs per cell site The carried load = (1-2%)X45.6 = 44.98 Erlangs / cell site Carried Load X No of cell sites Spectral Efficiency = -Total BW X Total Area 44.98 X (10,000/(2.6R²)) ----- = 1.384/R² Erlangs/Km²/MHz 12.5 X 10,000 Digital System. # of channels per 30 kHz = 3 \rightarrow # of voice channels per cell site = 56X3 = 168 Offered traffic load = 154.5 Erlangs per cell site Carried traffic load = (1-2%)X154.5 = 151.4 Erlangs per cell site 151.4 X (10,000 /(2.6R²)) Spectral Efficiency = -------- = 4.659/R² Erlangs/Km²/MHz 12.5 X 10,000 → Relative (Digital to Analog) Efficiency = 7.386/1.384 = 3.37 3/20/2010 Dr. Ashraf S. Hasan Mahmoud 28

Example 4: cont'd	
Solution:	
Considering the first tier of interferers – SIR is given by	
Mean SIR = $1/\Sigma$ ($q_i^{-\alpha}$) for all interfering ith co-channel, or	
Mean SIR = q^{α}/m , assuming m co-channels all at distance D	
In decibels,	
Mean SIR = $\alpha 10 \log (\text{sqrt}(3N)) - 10 \log m$	
where α is the path loss component, and	
m is the number of interferers (m = 6, for omni- directional, m 2 for 120° , and m = 1 for 60°)	=
The traffic per cell site = V X t X Ac	
where $V = no of mobile per km^2$	
t = traffic in Erlangs per mobile	
$Ac = area of cell = 2.6R^2$	
→ Therefore traffic per cell site = 10X0.02X2.6R ² = 0.52 R ² Dr. Ashraf S. Hasan Mahmoud 30	C

- DCA algorithm should respond to temporal and spatial variations of traffic
- DCA: ALL available channels/carriers are placed in one pool and they are assigned to calls according to the overall SIR pattern in all cells
 - Any channel can be used in any cell as long as the SIR condition is met
 - A selection policy and cost function are defined
 - The channel is returned to the pool after the completion of the call
 - Capacity is maximized when the received signal of every set of cochannel users is balanced around some level that is no larger than strictly necessary
- Performance: ?
- Downsides:
 - Extremely complex
 - Inefficient under high-traffic conditions

3/20/2010

Dr. Ashraf S. Hasan Mahmoud

Dynamic Channel Allocation – Centralized vs. Distributed Centralized DCA: Central pool of channels • Cell-based Distributed DCA: BS maintains a table of available channels in its vicinity • Efficient Expensive inter-BS communication Interference-based Distributed DCA: BS makes the channel assignment based on the received • signal strength (RSS) of the mobiles in the vicinity Decision made based on local info at the BS - no inter-BS communication needed Self-organizing – efficient – fast Not optimal in terms of reducing co-channel interference -• network instability - call drops

48

47

Cellular Concept

References:

- MacDonald, V.H., "The Cellular Concept," Bell System Technical Journal 58, no. 1, January 1979, pp. 15-41
- Chen, G. K., "Effects of Sectorization on the Spectrum Efficiency of Cellular Radio Systems," IEEE transactions on vehicular technology 41, no. 3, August 1992, pp. 217-25
- French, R. C., "The Effects of Fading and Shadowing on Channel Reuse in Mobile Radio," IEEE transactions on vehicular technology 28, August 1979, pp. ? -?
- Lee, Y. C. Y., "Spectrum Efficiency and Digital Cellular," 38th IEEE vehicular technology conference, Philadelphia, June 1988
- Katazela, I. and Naghshineh, M., "Channel Assignment Schemes for Cellular Mobile Telecommunication Systems: A Comparison Survay," IEEE Personal Wireless Communications, June 1996, pp. 10-31.

3/20/2010

Dr. Ashraf S. Hasan Mahmoud

49