King Fahd University of Petroleum \& Minerals Computer Engineering Dept

COE 543 - Mobile and Wireless
Networks
Term 092
Dr. Ashraf S. Hasan Mahmoud
Rm 22-148-3
Ext. 1724
Email: ashraf@kfupm.edu.sa
3/20/2010
Dr. Ashraf S. Hasan Mahmoud

Lecture Contents

1.

Cellular Concept

- Optimize the operation of low-power radios spread out over the geographical area
- Cell: service area where a group of mobiles or terminals (referred to as users) are served primarily ${ }^{1}$ by one basestation - usually located at the centre of the cell
- Cell radius depends on the propagation conditions and the network design - ranges from few meters for indoor or microcellular networks to 10s of kilometers of rural service areas

1. As we will see, there can be situations where a mobile is served by more than one basestation

Cellular Concept

- A basestation/network provides service for users by coordinating access (time slots, frequency channels, or codes) to channels
- Bandwidth (channels) is (are) split amongst a group of cells - called cluster
- Cluster is repeated to cover a wider geographical area
- Radio coverage is irregular - depending on terrain - first order approximation is the use of hexagonal cells

Cell Shape

- Radio coverage is irregular - depending on terrain - first order approximation is the use of hexagonal cells
- Other shapes (circular, squares) may be used depending on the intended purpose
- E.g. indoor networks may assume squares/rectangular

ideal coverage for omnidirectional antenna at the BTS

Cellular Design - Frequency Reuse

- If service area is divided into cells as shown, then it is desirable to use one set channels in more than one cell \rightarrow Reuse Concept
- This would increase utilization and overall capacity

Network design should also take into consideration "co-channel" interference
Too much reuse may lead to unacceptable signal quality \rightarrow deteriorating capacity
Function of distance or "Reuse Factor" and communication technology

Frequency Reuse Factor of 1

- One set of channel is used in every cell
- Interference is expected to be

cluster made of 1 cell high
- Distance between co-channel cells equal to

$$
D=\sqrt{3} R
$$

Frequency Reuse Factor of 3

- One set of channel is used in every cell
- Interference is expected to be high
- Distance between co-channel cells equal to

$$
D=3 R
$$

Frequency Reuse Factor of 7

Example:

- Distance between co-channel cells equal to

$$
D=\sqrt{21} R
$$

F1
 F2
 F3
 F4
 F5
 F6

Cluster Size and Reuse Distance

- The reuse distance D is given by

$$
D=\sqrt{3 N} R \quad N=i^{2}+j^{2}+i j \quad i, j=0,1,2,3, \ldots
$$

N is the cluster size

\mathbf{i}	\mathbf{j}	\mathbf{N}	\mathbf{D} / \mathbf{R}
1	0	1	$\operatorname{sqrt}(3)=1.7$
	1	3	3
2	0	4	$2 \operatorname{Xsqrt}(3)=3.46$
	1	7	$\operatorname{sqrt}(21)=4.6$
3	0	9	$3 \operatorname{ssqrt}(3)=5.19$
	1	13	$\operatorname{sqrt}(39)=6.25$

Co-channel Interference Ratio

- Distance between co-channel cells
- For example for a reuse factor of 7 (in figure):
- $\quad \mathrm{N}=7$
- $D=\operatorname{sqrt}(3 X N) R=\operatorname{sqrt}(21) \mathrm{R}$
- $\mathrm{q}=\operatorname{sqrt}(21)=4.58$

Co-channel Interference Ratio cont'd

- The signal quality is measure as the ratio of the desired signal power to the total interference power
- Referred to SIR (or SNR)

$$
\frac{S}{I}=\frac{S}{\sum_{\forall k} I_{k}}
$$

where S is the desired signal power (power received from the
home basestation), and I is the total interference power

$1^{\text {st }}$ Tier of Co-channel Interferers

- 6 interferers (downlink analysis)
- Each at distance of $\mathrm{D} / \mathrm{R}=\operatorname{sqrt}(3 \mathrm{~N})$
- SIR is given by

$$
\frac{S}{I}=\frac{S}{\sum_{k=1}^{6} I_{k}}
$$

But the power, P_{r}, received at a distance d is given by
where α is the path-loss exponent

$$
P_{r}=\frac{P_{0}}{d^{\alpha}}
$$

Therefore the SIR is given by

$$
\frac{S}{I}=\frac{1}{\sum_{k=1}^{6}\left(\frac{D_{k}}{R}\right)^{-\alpha}}
$$

$1^{\text {st }}$ Tier of Co-channel Interferers cont'd

- If we make the assumption that $D_{k} \approx D$ for all k, then SIR can be written as

Or

$$
\frac{S}{I}=\frac{1}{\sum_{k=1}^{6}(q)^{-\alpha}}=\frac{q^{\alpha}}{6}
$$

$$
q=(6 \times S I R)^{\frac{1}{\alpha}}
$$

Example 1:

- For AMPS (using analog FM) uses an SIR level of 18 dB . Calculate the reuse frequency factor - Assume a path-loss exponent of 4
- Solution: SIR = 18 dB or 63.1 (on the linear scale) Using the previous equation, the reuse ratio is given by

$$
q=\left(6 \frac{S}{I}\right)^{1 / \alpha}
$$

Or q = 4.41 and the reuse frequency factor N is given by

Or $6.49 \approx 7$

$$
N=\frac{q^{2}}{3}=\frac{1}{3} \times[6 \times(S I R)]^{2 / \alpha}
$$

Example 2:

- Consider a cellular system with 395 total allocated voice channel frequencies. If the traffic is uniform with an average call holding time of 120 seconds and the call blocking during the system busy hour is 2%, calculate
a) The number of calls per cell site per hour
b) The mean SIR for cell reuse factors equal to 4, 7, and 12
Assume omni-directional antennas with six interferers in the first tier and a slope for the path-loss of $40 \mathrm{~dB} /$ decade

Example 2: cont’d

- Solution:

For a reuse factor of $\mathrm{N}=4$, the number of channels per cell is equal to $395 / 4 \approx 99$ channels

Using Erlang's B formula (tables) for 99 channels and 2\% blocking \rightarrow traffic load $=87$ Erlangs

No of calls per cell site per hour X 120
Since \qquad
3,600
therefore, the no of calls per cell site per hour $=87 \times 30=2,610$
$\mathrm{q}=\operatorname{sqrt}(3 X \mathrm{~N})=3.5$ and $\operatorname{SIR}=\mathrm{q}^{\alpha} / 6=25$ or 14 dB

Example 2: cont'd

- Solution: cont'd

Repeating the calculations for $\mathrm{N}=7$ and $\mathrm{N}=12$, we can write the following table
\(\left.$$
\begin{array}{ccccc}\hline \mathrm{N} & \mathrm{q} & \begin{array}{c}\text { Voice Channels } \\
\text { per Cell }\end{array} & \begin{array}{c}\text { Calls per Cell } \\
\text { per Hour }\end{array} & \begin{array}{c}\text { Mean SIR } \\
(\mathrm{dB})\end{array} \\
\hline 4 & 3.5 & 99 & 72 \% & \left\{\begin{array}{l}2610 \\
7\end{array}\right. \\
7.6 & 56 & \begin{array}{c}\text { reduction }\end{array}
$$

13.0

12 \& 6.0 \& 33 \& 739 \& 18.7\end{array}\right\}\)| 66.4% |
| :--- |
| increase |

You can note that by increasing N, the SIR is improving, however, the call capacity of the cell site is reduced!!

2nd/3rd Tiers of Co-channel Interferers

- $2^{\text {nd }}$ tier of interferers:
- 12 interferers
- Each at distance $2 \mathrm{Xsqrt}(3 \mathrm{~N})$
- $3^{\text {rd }}$ tier of interferers:
- 18 interferers
- Each at distance 3 X sqrt(3N)

Exercises

- Derive an expression for SIR taking into account the $2^{\text {nd }}$ tier of co-channel interferers - Quantify the effect on SIR value of adding the $2^{\text {nd }}$ tier to the formula
- Derive an expression for SIR taking into effect the interferences contributed by the first T ($\mathrm{T}=1,2,3$, and 4) tiers. - plot the SIR curves versus the path-loss exponent (let α range from 2 to 6 in steps of 0.2)
- The exercise should be done of omni directional antennas, 3-sectored antennas, and 6 sectored antennas
- State your conclusions in terms of the effect or the lack of effect on SIR in relation to the path loss exponent and the antenna sectorization

Worst Case Scenario

- Mobile of interest is at the edge of the cell
- Distance of R from cell centre
- Distances from other interfering cells is as shown

$$
\frac{S}{I}=\frac{R^{-\alpha}}{2(D-R)^{-\alpha}+2 D^{-\alpha}+2(D+R)^{-\alpha}}
$$

- Writing this in terms of the reuse ratio

$$
\frac{S}{I}=\frac{1}{2\left[(q-1)^{-\alpha}+q^{-\alpha}+(q+1)^{-\alpha}\right]}
$$

- Example: For AMPS: $\mathrm{N}=7, \mathrm{a}=4$, SIR using the above formula is 17.3 dB (lower than previously estimated)

Directional Antennas

- 3 Sectors case
- Each sector is assigned a set of channels
- No of interferers $=2$ per sector
- SIR is given by $\frac{S}{I}=\frac{1}{q^{-\alpha}+(q+0.7)^{-\alpha}}$

Example: For AMPS: $\mathrm{N}=7, \alpha=4$
With 3 sectors per cell, SIR is equal to 24.5 dB (about 7 dBs higher the omni-directional case)

Directional Antennas - cont'd

- 6 Sectors case
- Each sector is assigned a set of channels
- No of interferers = 1 per sector
- SIR is given by $\frac{S}{I}=\frac{1}{(q+0.7)^{-\alpha}}$

Example: For AMPS: $\mathrm{N}=7, \alpha=4$ With 6 sectors per cell, SIR is equal to 29 dB (about 11 dBs higher the omni-directional case)

Erlang-B Model: Revisited

- Erlang-B formula (refer to notes given earlier)

Erlang-B Tables (Sample)

$\mathbf{P (B)}=$ Trunks	$\mathbf{0 . 0 1}$	$\mathbf{0 . 0 1 5}$	$\mathbf{0 . 0 2}$	$\mathbf{0 . 0 3}$	$\mathbf{0 . 0 5}$	$\mathbf{0 . 0 7}$	$\mathbf{0 . 1}$	$\mathbf{0 . 2}$	$\mathbf{0 . 5}$
1	0.010	0.015	0.020	0.031	0.053	0.075	0.111	0.250	1.000
2	0.153	0.190	0.223	0.282	0.381	0.471	0.595	1.000	2.732
3	0.455	0.536	0.603	0.715	0.899	1.057	1.271	1.930	4.591
4	0.870	0.992	1.092	1.259	1.526	1.748	2.045	2.944	6.501
5	1.361	1.524	1.657	1.877	2.219	2.504	2.881	4.010	8.437
6	1.913	2.114	2.277	2.544	2.961	3.305	3.758	5.108	10.389
7	2.503	2.743	2.936	3.250	3.738	4.139	4.666	6.229	12.351
8	3.129	3.405	3.627	3.987	4.543	4.999	5.597	7.369	14.318
9	3.783	4.095	4.345	4.748	5.370	5.879	6.546	8.521	16.293
10	4.462	4.808	5.084	5.529	6.216	6.776	7.511	9.684	18.271
11	5.160	5.539	5.842	6.328	7.076	7.687	8.487	10.857	20.253
12	5.876	6.287	6.615	7.141	7.950	8.610	9.477	12.036	22.237
13	6.607	7.049	7.402	7.967	8.835	9.543	10.472	13.222	24.223
14	7.352	7.824	8.200	8.803	9.730	10.485	11.475	14.412	26.211
15	8.108	8.610	9.010	9.650	10.633	11.437	12.485	15.608	28.200
16	8.875	9.406	9.828	10.505	11.544	12.393	13.501	16.807	30.190
17	9.652	10.211	10.656	11.368	12.465	13.355	14.523	18.010	32.181
18	10.450	11.024	11.491	12.245	13.389	14.323	15.549	19.215	34.173
19	11.241	11.854	12.341	13.120	14.318	15.296	16.580	20.424	36.166
20	12.041	12.680	13.188	14.002	15.252	16.273	17.614	21.635	38.159

Erlang-B Tables (Sample)

$\mathbf{P (B)}=$ Trunks	0.005	0.01	0.015	0.02	0.03	0.05	0.07	0.1
20	11.092	12.041	12.680	13.188	14.002	15.252	16.273	17.614
21	11.860	12.848	13.514	14.042	14.890	16.191	17.255	18.652
22	12.635	13.660	14.352	14.902	15.782	17.134	18.240	19.693
23	13.429	14.479	15.196	15.766	16.679	18.082	19.229	20.737
24	14.214	15.303	16.046	16.636	17.581	19.033	20.221	21.784
25	15.007	16.132	16.900	17.509	18.486	19.987	21.216	22.834
26	15.804	16.966	17.758	18.387	19.395	20.945	22.214	23.885
27	16.607	17.804	18.621	19.269	20.308	21.905	23.214	24.939
28	17.414	18.646	19.487	20.154	21.224	22.869	24.217	25.995
29	18.226	19.493	20.357	21.043	22.143	23.835	25.222	27.053
30	19.041	20.343	21.230	21.935	23.065	24.803	26.229	28.113
31	19.861	21.196	22.107	22.830	23.989	25.774	27.239	29.174
32	20.685	22.053	22.987	23.728	24.917	26.747	28.250	30.237
33	21.512	22.913	23.869	24.629	25.846	27.722	29.263	31.302
34	22.342	23.776	24.755	25.532	26.778	28.699	30.277	32.367
35	23.175	24.642	25.643	26.438	27.712	29.678	31.294	33.435
36	24.012	25.511	26.534	27.346	28.649	30.658	32.312	34.503
37	24.852	26.382	27.427	28.256	29.587	31.641	33.331	35.572
38	25.694	27.256	28.322	29.168	30.527	32.624	34.351	36.643
39	26.539	28.132	29.219	30.083	31.469	33.610	35.373	37.715

Example 3:

- Compare the spectral efficiency of the digital system (IS54) with that of the analog system (AMPS) using the following data:
- The total \# of channels is 416
- The \# of control channels = 21 (i.e. 395 channels for voice)
- The channel bandwidth is 30 kHz
- The reuse factor, $\mathrm{N}=7$
- The total available bandwidth for each direction $=12.5 \mathrm{MHz}$
- Coverage area $=10,000 \mathrm{~km} 2$
- The required SIR for AMPS $=18 \mathrm{~dB}$ (or 63.1)
- The required SIR for IS-54 = 14 dB (or 25.1)
- Call blocking $=2.5 \%$

Example 3: cont'd

- Solution:
 Analog System:

\# of voice channels per cell site $=395 / 7=56$
The offered traffic load (using Erlang-B tables @ 2\% blocking) = 45.6 Erlangs per cell site
The carried load $=(1-2 \%) \times 45.6=44.98$ Erlangs $/$ cell site

Digital System:
\# of channels per $30 \mathrm{kHz}=3 \rightarrow$ \# of voice channels per cell site $=56 \mathrm{X} 3=168$
Offered traffic load $=154.5$ Erlangs per cell site
Carried traffic load $=(1-2 \%) \mathrm{X} 154.5=151.4$ Erlangs per cell site
Spectral Efficiency $=\frac{151.4 \times\left(10,000 /\left(2.6 R^{2}\right)\right)}{12 .----------------------10,000}=4.659 / R^{2}$ Erlangs $/ \mathrm{Km}^{2} / \mathrm{MHz}$
\rightarrow Relative (Digital to Analog) Efficiency $=7.386 / 1.384=3.37$

Example 4:

- Consider a cellular system with 395 total allocated voice channels of 30 kHz each. The total available bandwidth in each direction is 12.5 MHz . The traffic is uniform with average call holding time of 120 seconds, and call blocking during the system busy hour is 2%. Calculate:
a) The calls per cell site per hour
b) The mean SIR
c) The spectral efficiency in Erlangs $/ \mathrm{km}^{2} / \mathrm{MHz}$

For a cell reuse factor of N equal to 4,7 , and 12 , respectively, and for omni-directional, 120°, and 60° systems, calculate the call capacity.
Plot spectral efficiency versus cell radius for $\mathrm{N}=7$ and comment on the results. Assume that there are 10 mobiles $/ \mathrm{km}^{2}$ with each mobile generating traffic of 0.02 Erlangs. The slope of path loss is $\alpha=40$ dB per decade

Example 4: cont'd

- Solution:

Considering the first tier of interferers - SIR is given by
Mean SIR $=1 / \Sigma\left(q_{i}^{-\alpha}\right)$ for all interfering ith co-channel, or
Mean SIR $=q^{\alpha} / \mathrm{m}$, assuming m co-channels all at distance D
In decibels,

$$
\text { Mean SIR }=\alpha 10 \log (\operatorname{sqrt}(3 \mathrm{~N}))-10 \log m
$$

where α is the path loss component, and
m is the number of interferers ($m=6$, for omni- directional, $m=$ 2 for 120°, and $m=1$ for 60°)
The traffic per cell site $=\mathrm{VXtXAc}$
where $V=$ no of mobile per km^{2}
$t=$ traffic in Erlangs per mobile
$\mathrm{Ac}=$ area of cell $=2.6 \mathrm{R}^{2}$
\rightarrow Therefore traffic per cell site $=10 \mathrm{X} 0.02 \mathrm{X} 2.6 \mathrm{R}^{2}=0.52 \mathrm{R}^{2}$
3/20/2010

Example 4: cont'd

- Solution:cont'd

Traffic carried per cell X Nc
The spectral efficiency $=$
Total BW X Total Area
Traffic carried per cell
= ------------------------------
Total BW X 2.6 R 2
For $\mathrm{N}=7$ and 120° sectorized cell site:
No of voice channels per sector $=395 /(7 \times 3)=19$
Offered traffic per sector $=$ 12.3 Erlangs or 36.9 Erlangs per cell site
Carried traffic per cell site $=(1-0.02)$ X36.9 $=36.2$ Erlangs
But carried traffic $=$ No of calls per cell site per hour X 3600/120
\rightarrow No of calls per cell site per hour $=1,086$
\rightarrow Cell radius $\mathrm{R}=\operatorname{sqrt}(36.2 / 0.52)=8.3 \mathrm{~km}$
Spectral efficiency $=36.2 /\left(2.6 \mathrm{R}^{2} \times 12.5\right)=0.0162$ Erlangs $/ \mathrm{km}^{2} / \mathrm{MHz}$
Mean SIR $=40 \log \operatorname{sqrt}(3 X 7)-10 \log 2=23.43 \mathrm{~dB}$

Example 4: cont'd

- Solution: cont'd

The previous calculations can be repeated for all other combinations (N , no of sectors)
Comments:

1. Sectorization reduces co-channel interference and improves mean SIR for a given N . However it reduces trunking efficiency since available channels per sector are fewer. As a result spectral efficiency is lower if N is kept fixed
2. Since a sectorized cellular system has fewer co-channel interferers it is possible to reduce cluster size (N) and hence improve the spectrum efficiency of the overall system
3. If an SIR of 18 dB is required for AMPS to work properly, this can be provided by (N , $S)=(7,1),(4,3)$, or $(3,6)$

3/20/2010

32

Capacity Expansion Techniques

- Use of Directional Antennas (refer to previous slides)
- Cell Splitting
- Lee's Mircocell Method
- Overlaid Cells
- Use of Smart Antennas

Cell Splitting

- Splitting cells into smaller cells and allowing additional channels in the smaller cells:
- A smaller cell "a" is introduced - quarter the area of the original cell
- Channels used in cells "A" are reused in "a" to minimize interference
- Problems \& solutions:
- If the transmit power of "a" is the same as other BSs
- "a" point of view: SIR is maintained
- "A" point of view: SIR is decreased (reuse distance is decreased by half)
- Solution1: reduce the power of " a " but SIR for " a "
 decreases!
- Solution2: channels used within "a" are used in " A " only at distances of less than $\mathrm{R} / 2 \boldsymbol{\rightarrow}$ Overlaid cell concept
- Downside of cell splitting:
- Reduced capacity of the bigger cell
- Increased handoffs

Lee's Microcell Method

- Use of direct sectorization leads to reduced trunking efficiency since channels are partitions between different sectors
- Leads to increased handoffs too
- Lee's microcell:
- One BS but three zone-sites located at the corners of the cells
All three zone-sites act as receivers
ONLY one zone-site transmits to the mobile (the BS chooses the one which has best reception from mobile) \rightarrow LOW interference
Cluster size can be reduced to 3 from
$7 \rightarrow$ Capacity increase of 2.33

Lee's Microcell Method - cont'd

Using Overlaid Cells

- Channels are divided among a larger macrocell that exists with a smaller microcell contained entirely within the macrocell
- Same BS serves both macro- and microcells
- R1 and D1 are the radius and reuse distance for the macrocells
- R2 and D2 are the radius and reuse distance for the microcells

By design: $\mathrm{D}_{2} / \mathrm{R}_{2}>\mathrm{D}_{1} / \mathrm{R}_{1} \rightarrow$
SIR $_{\text {microcells }}>$ SIR $_{\text {macrocells }}$
Use this increase in system SIR in gaining capacity (e.g. reducing BW requirement)

Applicable for FDMA systems

Using Overlaid Cells - Example

- AMPS - underlay network:
- Channel $=30 \mathrm{kHz}$, SIR requirement $=18 \mathrm{~dB}$
- AMPS - overlay network:
- Channel $=15 \mathrm{kHz}$, SIR requirement $=24 \mathrm{~dB}$
- From the layout:

$$
10 \log \frac{\left(D_{2} / R_{2}\right)^{4}}{\left(D_{1} / R_{1}\right)^{4}}=6 \mathrm{~dB}
$$

If $\mathrm{N}=7$ and $\mathrm{D}_{1}=\mathrm{D}_{2} \rightarrow \mathrm{R}_{2}=1 / \operatorname{sqrt}(2) \mathrm{R}_{1}$
Therefore, the area for the microcell, A_{2}, is half of the area for the macrocell, A_{1}
$\rightarrow \mathrm{A}_{2}$ and $\mathrm{A}_{1}-\mathrm{A}_{2}$ are equal
Let M be the no of channel available to the overlay and underlay cells, therefore $15 \mathrm{kHzXM}+30 \mathrm{kHzXM}=$ total traffic BW of AMPS $=$ $395 \times 30 \mathrm{kHz} \rightarrow \mathrm{M}=263$
Hence, for a full hexagonal cell, the number of available channels is equal to $2 X M / N=526 / \mathrm{N}$ or $526 / 395133 \%$ more channels compared to the non-overlaid network

Reuse Partitioning

- Channels are divided among larger macrocells and smaller microcells
- BW in both cells remains the same
- Since R_{2} (radius for microcells) is less than R_{1} (radius for macrocells) \rightarrow Received signal is better (for the same tx cell site power) \rightarrow microcells has lower co-channel interference level
- Therefore microcells can employ a smaller frequency reuse factor
- Complexity of BS - handoffs

Reuse Partitioning - cont'd

- For the underlay network:
- $\mathrm{N} 1=7$
- $R 1$, D1 $=\operatorname{sqrt}(3 N 1)=4.6 \rightarrow$ SIR1 $\approx(4.6)^{\wedge} a / 6$
- For the overlay network:
- $\mathrm{N} 2=3$
- R2, D2 = 3R1 (from geometry) $\rightarrow \mathrm{q}=\mathrm{D} 2 / \mathrm{R} 2$ $=3 R 1 / R 2=3 \times 2 R 2 / R 2=$ 6 (if R2 = R1/2)
\rightarrow SIR2 $=(6)^{\wedge} a / 6$
- SIR2 is intentionally greater than SIR1 since R1 is smaller than R2 - the overlay system can use smaller reuse factor

Reuse Partitioning - Example

- Underlay-network: $\mathrm{N} 1=7 \rightarrow$ D1/R1 $=4.6$ (provides the required SIR $=18 \mathrm{~dB}$)
- For the overlay network, if we deploy $\mathrm{N} 2=3$, then D2 = 3 R1 (from geometry)
- But to maintain the required SIR, D2/R2 should equal to 4.6 , or $3 R 1 / R 2=4.6 \rightarrow \mathrm{R} 2=0.652 \mathrm{R} 1$
- Distributing the total channels, $\mathrm{Nc}=395$, according to area, then the L channels per cell site is given by $\mathrm{Nc}=7 \mathrm{X}\left(1-0.652^{2}\right) \mathrm{XL}+3 \mathrm{X0.652}{ }^{2} \mathrm{XL} \rightarrow \mathrm{L}=75$
- Overlay cell uses $=32$ channels while the underlay cell uses $=43$ channels
- Original AMPS provides Nc/7 = 56 channels per cell site \rightarrow New capacity $=75 / 56=134 \%$

Smart Antenna

- Users can use same physical channel as long as they are not located in the same region with respect to the BS - referred to as spacedivision multiple access (SDMA)
- A narrow antenna beam is directed towards the mobile of interest
- Co-channel interference is greatly reduced reduced frequency factor \rightarrow increased capacity
- Example:
- FH-GSM study reported new capacity $=300 \%$
- CDMA study reported new capacity = 500\%

Channel Allocation Techniques

- All previous analysis assumed cells or equal sizes have equal channels - stationary/uniform distribution of traffic
- Offered traffic load varies with the time of the day
- Operator's objective: reduced blocking probability (~ 2\%)
- Channel Allocation Algorithm: stabilize the blocking the probability as the offered traffic load varies
- Fixed Channel Allocation (FCA)
- Channel Borrowing Techniques
- Dynamic Channel Allocation (DCA)
- A major reference for this topic is: Katazela, I. and Naghshineh, M., "Channel Assignment Schemes for Cellular Mobile Telecommunication Systems: A Comparison Survey," IEEE Personal Wireless Communications, June 1996, pp. 1031.

Fixed Channel Allocation

- The number of channels available per cell site, Cc , is fixed:

$$
\mathrm{Cc}=(\mathrm{W} / \mathrm{B}) / \mathrm{N}
$$

where W is the total bandwidth of the system,
B is the bandwidth per carrier or channel, and
N is the frequency reuse factor

- Example: GSM

Uplink BW = Downlink BW $=25 \mathrm{MHz}$
Carrier BW $=200 \mathrm{kHz} \rightarrow 125$ carriers
124 carriers are used for voice communication
employing an $N=4 \rightarrow 124 / 4=31$ carrier per cell
$[1,5, \ldots, 121]$ for $1^{\text {st }}$ set of cells
$[2,6, \ldots, 122]$ for $2^{\text {nd }}$ set of cells
$[3,7, \ldots, 123]$ for 3 rd set of cells
$[4,8, \ldots, 124]$ for $4^{\text {th }}$ set of cells
3/20/2010

Fixed Channel Allocation cont'd

- Simple to implement
- Optimal only if traffic is stationary and uniform across cells
- Channel assignment algorithm is straight forward
- Other non-uniform but fixed channel allocation algorithms exist
- Nonuniform compact channel allocation algorithm: based on traffic distribution, define set of patterns for nonuniform distribution of channels - algorithm selects the pattern that minimizes the call blocking probability across all cells
- Expected gains: reduction in blocking probability by 10% or 22% increase in offered traffic load without increasing the blocking probability compared to a pure FCA algorithm
- Details in: K. Zhang amd T-S.P. Yum, "The non-uniform compact pattern allocation for mobile indoor networks," IEEE Trans. Vehicular Technology, Vol.30, no. 2 1991, pp. 387-391.

Channel Borrowing Techniques

- High traffic cells borrow channels/carriers from low traffic cells
- Temporary Channel Borrowing: high traffic cells return the borrowed channels when the call is completed
- Static Channel Borrowing: borrowed channels are not returned upon the completion of the call
- Initially, channels are nonuniformly distributed according to available statistics regarding traffic distribution
- The above two schemes are referred to as simple borrowing schemes
- Hybrid borrowing Schemes: original set of channels is divided into borrow-able and non borrow-able channels
- Performance: simple borrowing schemes can support 35\% more traffic compared to uniform FCA
- Disadvantages: complex - frequent switching of channel complicate the handoff procedure

Dynamic Channel Allocation

- DCA algorithm should respond to temporal and spatial variations of traffic
- DCA: ALL available channels/carriers are placed in one pool and they are assigned to calls according to the overall SIR pattern in all cells
- Any channel can be used in any cell as long as the SIR condition is met
- A selection policy and cost function are defined
- The channel is returned to the pool after the completion of the call
- Capacity is maximized when the received signal of every set of cochannel users is balanced around some level that is no larger than strictly necessary
- Performance: ?
- Downsides:
- Extremely complex
- Inefficient under high-traffic conditions

Dynamic Channel Allocation Centralized vs. Distributed

- Centralized DCA:
- Central pool of channels
- Cell-based Distributed DCA:
- BS maintains a table of available channels in its vicinity
- Efficient
- Expensive inter-BS communication
- Interference-based Distributed DCA:
- BS makes the channel assignment based on the received signal strength (RSS) of the mobiles in the vicinity
- Decision made based on local info at the BS - no inter-BS communication needed
- Self-organizing - efficient - fast
- Not optimal in terms of reducing co-channel interference network instability - call drops

Cellular Concept

References:

- MacDonald, V.H., "The Cellular Concept," Bell System Technical Journal 58, no. 1, January 1979, pp. 15-41
- Chen, G. K., "Effects of Sectorization on the Spectrum Efficiency of Cellular Radio Systems," IEEE transactions on vehicular technology 41, no. 3, August 1992, pp. 217-25
- French, R. C., "The Effects of Fading and Shadowing on Channel Reuse in Mobile Radio," IEEE transactions on vehicular technology 28, August 1979, pp. ? -?
- Lee, Y. C. Y., "Spectrum Efficiency and Digital Cellular," 38*h IEEE vehicular technology conference, Philadelphia, June 1988
- Katazela, I. and Naghshineh, M., "Channel Assignment Schemes for Cellular Mobile Telecommunication Systems: A Comparison Survay," IEEE Personal Wireless Communications, June 1996, pp. 10-31.

