

Example		
• <u>Problem:</u> Find following two X(Y'Z' + YZ)	d the complement of each of the functions $F_1 = X'YZ' + X'Y'Z$, and $F_2 =$	
Solution:	Margan's rule as many times as	
roi r ₁ , applying L	emorgan's rule as many unles as	
F_1'	= (X'YZ' + X'Y'Z)' $= (X'YZ')' . (X'Y'Z)'$	
	$= (X + Y' + Z) \cdot (X + Y + Z')$	
Similarly for F ₂ :		
F ₂ ′	= (X(Y'Z' + YZ))'	
	= X' + (Y'Z' + YZ)'	
	= X' + (Y'Z')' . (YZ)'	
3/4/2007	= X' + (Y + Z) (Y' + Z') Dr. Ashraf S: Hasan Mahmoud	20

Examples		
 Problem 2-6 expressions to a) ABC + ABC' + e) (A+B'+AB')(A 	: Simplify the following Boolean a minimum number of literals: A'B B+A'C+BC)	
Solution:		
a) Expression	= ABC + ABC' + A'B = AB(C + C') + A'B = (A+A')B = B	
e) Expression	= $(A+B'+AB')(AB+A'C+BC)$ = $(A+(1+A)B')(AB + A'C)$ = $(A+B')(AB+A'C)$ = $A(AB+A'C) + B'(AB+A'C)$ = $AB + A'B'C$	
3/4/2007	Dr. Ashraf S. Hasan Mahmoud	22

• (Cons	ider a func	tion F(X, `	Y)				
Х	Y	Product Terms	Symbol	m ₀	m ₁	m ₂	m ₃	
0	0	X'Y'	m ₀	1	0	0	0	
0	1	ΧΎ	m_1	0	1	0	0	
1	0	XY′	m ₂	0	0	1	0	
1	1	XY	m ₃	0	0	0	1	

Example:							
 Write E = Y' - form of Σm_i a 	⊦ X′Z′ in the nd ∏M _i ?						
		Х	Y	Z	m	М	Е
• Solution: Moth	hod1	0	0	0	m ₀	M ₀	1
		0	0	1	m ₁	M_1	1
First construct t	he Truth Table	0	1	0	m ₂	M ₂	1
as shown		0	1	1	m ₃	M ₃	0
Casard	Second:		0	0	m ₄	M4	1
Second:			0	1	m ₅	M_5	1
$E = \Sigma m(0, 1, 2, 4, 5)$	5), and	1	1	0	m ₆	M_6	0
$E = \pi M(2 + C)$	$E = \pi M(2 + 7)$		1	1	m ₇	M_7	0
L = 11 M(3,0,7)							
3/4/2007	Dr. Ashraf S. Hasan Mahmoud				32		

Examples:				
 Problem 2-10b: Obtain the truth following function and express sum-of-minterms and product-of forms (A(+ R)(R(+C)) 	h tal each of-m	ole c 1 fur axin	of th nctic nter	ie on in ms
form: $(A^{+}B)(B^{+}C)$	А	В	С	F
Solution:	0	0	0	1
	0	0	1	1
Let $F(A,B,C) = (A'+B)(B'+C)$	0	1	0	0
The truth table is as shown in figure	0	1	1	1
5	1	0	0	0
$F(\Lambda B C) = \Lambda'B'C' + \Lambda'B'C + \Lambda'BC + \Lambda BC$	1	0	1	0
$-\Sigma m(0.1.3.7)$	1	1	0	0
F(A B C) = (A+B'+C)(A'+B+C)(A'+B+C')(A'+B'+C)	1	1	1	1
$= \Pi M(2,4,5,6)$				
3/4/2007 Dr. Ashraf S. Hasan Mahmoud				38