King Fahd University of Petroleum \& Minerals Computer Engineering Dept

COE 202 - Fundamentals of Computer Engineering

Term 062
Dr. Ashraf S. Hasan Mahmoud
Rm 22-148-3
Ext. 1724
Email: ashraf@kfupm.edu.sa
3/4/2007
Dr. Ashraf S. Hasan Mahmoud

Binary Logic

- Deals with binary variables that take one of two discrete values
- Values of variables are called by a variety of very different names
- high or low based on voltage representations in electronic circuits
- true or false based on their usage to represent logic states
- one (1) or zero (0) based on their values in Boolean algebra
- open or closed based on its operation in gate logic
- on or off based on its operation in switching logic
- asserted or de-asserted based on its effect in digital systems

Basic Operations - AND

- Another Symbol is ".", e.g.

$$
\begin{gathered}
Z=X \text { AND } Y \text { or } \\
Z=X . Y \text { or even } \\
Z=X Y
\end{gathered}
$$

- X and Y are inputs, Z is an output
- Z is equal to 1 if and only if $X=1$ and $Y=1 ; Z=0$ otherwise (similar to the multiplication operation)
- Truth Table:
- Graphical symbol:

X	Y	$\mathrm{Z}=\mathrm{XY}$
0	0	0
0	1	0
1	0	0
1	1	1

Basic Operations - OR

- Another Symbol is " + ", e.g.

$$
\begin{gathered}
Z=X \text { OR } Y \text { or } \\
Z=X+Y
\end{gathered}
$$

- X and Y are inputs, Z is an output
- Z is equal to 0 if and only if $X=0$ and $Y=0 ; Z$
$=1$ otherwise (similar to the addition operation)
- Truth Table:
- Graphical symbol:

X	Y	$\mathrm{Z}=\mathrm{X}+\mathrm{Y}$
0	0	0
0	1	1
1	0	1
1	1	1
		4

Basic Operations - NOT

- Another Symbol is "-", e.g.

$$
\mathrm{Z}=\bar{X} \text { or } \quad \mathrm{Z}=\mathrm{X}^{\prime}
$$

- X is the input, Z is an output
- Z is equal to 0 if $X=1 ; Z=1$ otherwise
- Sometimes referred to as the complement or invert operation
- Truth Table:

X	$\mathrm{Z}=\mathrm{X}^{\prime}$
0	1
1	0

- Graphical symbol:

Time Diagrams

Multiple Input Gates

(a) Three-input AND gate

Boolean Algebra

- Consider the following function, F

$$
F=X+Y^{\prime} Z
$$

- The function F is referred to as a BOOLEAN FUNCTION
- F has two terms: X and $Y^{\prime} Z$
- The circuit diagram for F is as shown below

Boolean Algebra - cont'd

- The truth table for F is as follows
- Note:
- In general, a truth table for an n-variable function, has 2^{n} rows to cover all possible input combinations
- The table covers all possible combinations of the inputs
- To arrive at the F's column one could use an $Y^{\prime} Z$ column as follows

The $\mathrm{Y}^{\prime} \mathrm{Z}$ column is computed using the Y and Z columns and then using the columns X and $\mathrm{Y}^{\prime} \mathrm{Z}$, the column F is computed
The column Y'Z is not an essential part of truth table

Basic Identities

- For the AND operation
X. $1=\mathrm{X}$
$X .0=0$
$X . X=X$
$X . X^{\prime}=0$

- For the OR operation
$X+0=X$
$X+1=1$
$X+X=X$
$X+X^{\prime}=1$

- For the NOT operation

$$
X^{\prime \prime}=X
$$

Basic Identities (2)

- For the AND operation

Commutative: $X . Y=Y . X$
Associative: $\mathrm{X}(\mathrm{YZ})=(\mathrm{XY}) \mathrm{Z}$
Distributive: $X+Y Z=(X+Y)(X+Z)$
DeMorgan's: $(X . Y)^{\prime}=X^{\prime}+Y^{\prime}$

OR Operation

$X+Y=Y+X$
$X+(Y+Z)=(X+Y)+Z$
$X(Y+Z)=(X Y)+(X Z)$
$(X+Y)^{\prime}=X^{\prime} \cdot Y^{\prime}$

- All above properties can be generalized to $n>$ 2 variables: e.g:
- $\left(X_{1}+X_{2}+\ldots+X_{n}\right)^{\prime}=X_{1}{ }^{\prime} \cdot X_{2}^{\prime} . \ldots . X_{n}^{\prime}$, or

Verifying Basic Identities

- Any identity (not only the basic ones) can be verified using the truth table
- Example: verify that $(X+Y)^{\prime}=X^{\prime} Y^{\prime}$

Algebraic Manipulation Example

- Consider the following function, F

$$
F=X^{\prime} Y Z+X^{\prime} Y Z^{\prime}+X Z
$$

- The function can be implemented using above expressions as in

We need: -2 inverters
-3 AND gates -1 OR gate

Algebraic Manipulation Example - cont'd

- The function

$$
F=X Y Z+X Y Z^{\prime}+X Z
$$

can be simplified "ALGEBRAICALLY" as follows:
$F=X^{\prime} Y Z+X^{\prime} Z^{\prime}+X Z$
$=X^{\prime} Y\left(Z+Z^{\prime}\right)+X Z \quad \rightarrow$ by the distributive property
$=X Y(1)+X Z \quad \rightarrow$ by the properties of the OR operation
$=X Y+X Z \quad \rightarrow$ by the properties of the AND operation

- Therefore F can be written as

$$
F=X Y+X Z
$$

- Using this simpler form, one can implement the function as

Algebraic Manipulation Example - cont'd

- Therefore F can be written as

$$
F=X ' Y+X Z
$$

- Using this simpler form, one can implement the function as

- One can use the truth table method to show that F $=X^{\prime} Y Z+X^{\prime} Y Z^{\prime}+X Z$ is indeed equal to $X^{\prime} Y+X Z$

We need:
-1 inverters
-2 AND gates
-1 OR gate

Reduced hardware cost

More Notes on Function

- The function

$$
F=X Y+X Z
$$

Can be written as

These are referred to as literals

These are referred to as terms

This is to emphasize the fact that the function has three inputs or variables

More Identities

- Page ?? in the text \rightarrow VERY IMPORTANT make sure you can prove/verify all of these identities
- Listing

1. $X+X Y=X$
2. $X Y+X Y^{\prime}=X$
3. $X+X^{\prime} Y=X+Y$

The proof/verification of these is in the textbook
4. $X(X+Y)=X$
5. $(X+Y)\left(X+Y^{\prime}\right)=X$
6. $X\left(X^{\prime}+Y\right)=X Y$
7. $X Y+X^{\prime} Z+Y Z=X Y+X ' Z$ (the consensus theorem)

More Identities - continued

- Using the duality principle (refer to slide XX) there are other equivalent 7 identities
- Example: The proof of the consensus theorem is as follows
The RHS

$$
\begin{aligned}
& =X Y+X^{\prime} Z+Y Z \\
& =X Y+X^{\prime} Z+Y Z\left(X+X^{\prime}\right) \\
& =X Y+X^{\prime} Z+X Y Z+X^{\prime} Y Z \\
& =X Y+X Y Z+X^{\prime} Z+X Z^{\prime} Z \\
& =X Y(1+Z)+X^{\prime} Z(1+Y) \\
& =X Y+X^{\prime} Z \\
& =L H S
\end{aligned}
$$

- The dual of the consensus theorem is given by

$$
(X+Y)\left(X^{\prime}+Z\right)(Y+Z)=(X+Y)\left(X^{\prime}+Z\right)
$$

Complement of a Function

- Using the truth table - complementing F means replacing every 0 with 1 and every 1 with 0 in the F column
- Algebraically, complementing F one can use DeMorgan's rule or the duality principle
- To use the duality principle
- Replace Each AND with an OR and each OR with an AND
- Complement each variable and constant

Example

- Problem: Find the complement of each of the following two functions $F_{1}=X^{\prime} Y Z^{\prime}+X^{\prime} Y^{\prime} Z$, and $F_{2}=$ $X\left(Y^{\prime} Z^{\prime}+Y Z\right)$
- Solution:

For F_{1}, applying DeMorgan's rule as many times as necessary

$$
\begin{aligned}
\mathrm{F}_{1}^{\prime} & =\left(\mathrm{X}^{\prime} Z^{\prime}+\mathrm{X}^{\prime} Y^{\prime} Z\right)^{\prime} \\
& =\left(\mathrm{X}^{\prime} Y Z^{\prime}\right)^{\prime} \cdot\left(\mathrm{X}^{\prime} Z\right)^{\prime} \\
& =\left(X+Y^{\prime}+\mathrm{Z}\right) \cdot\left(\mathrm{X}+\mathrm{Y}+\mathrm{Z}^{\prime}\right)
\end{aligned}
$$

Similarly for F_{2} :

$$
\begin{aligned}
& F_{2}^{\prime}=\left(X\left(Y^{\prime} Z^{\prime}+Y Z\right)\right)^{\prime} \\
& =X^{\prime}+\left(Y^{\prime} Z^{\prime}+Y Z\right)^{\prime} \\
& =X^{\prime}+\left(Y^{\prime} Z^{\prime}\right)^{\prime} .(Y Z)^{\prime}
\end{aligned}
$$

Examples

- Problem 2-2: Prove the identity of each of the following Boolean equations, using algebraic manipulations.
a) $X^{\prime} Y^{\prime}+X^{\prime} Y+X Y=X^{\prime}+Y$
b) $A^{\prime} B+B^{\prime} C^{\prime}+A B+B^{\prime} C=1$
- Solution:
a) LHS $=X Y^{\prime}+X Y+X Y$

$$
=X Y^{\prime}+X Y+X Y+X Y
$$

$$
=X^{\prime}\left(Y^{\prime}+Y\right)+Y\left(X+X^{\prime}\right)
$$

$$
=X^{\prime}+Y
$$

= RHS
b) LHS $\quad=A^{\prime} B+B^{\prime} C^{\prime}+A B+B^{\prime} C$

$$
=\left(A^{\prime}+A\right) B+B^{\prime}\left(C^{\prime}+C\right)
$$

$$
=B+B^{\prime}
$$

$$
=1
$$

Examples

- Problem 2-6: Simplify the following Boolean expressions to a minimum number of literals:
a) $A B C+A B C^{\prime}+A^{\prime} B$
e) $\left(A+B^{\prime}+A B^{\prime}\right)\left(A B+A^{\prime} C+B C\right)$
- Solution:
a) Expression $\quad=A B C+A B C^{\prime}+A^{\prime} B$

$$
=A B\left(C+C^{\prime}\right)+A^{\prime} B
$$

$$
=\left(A+A^{\prime}\right) B
$$

$$
=B
$$

e) Expression

$$
=\left(A+B^{\prime}+A B^{\prime}\right)\left(A B+A^{\prime} C+B C\right)
$$

$$
=\left(A+(1+A) B^{\prime}\right)\left(A B+A^{\prime} C\right)
$$

$$
=\left(A+B^{\prime}\right)\left(A B+A^{\prime} C\right)
$$

$$
=A\left(A B+A^{\prime} C\right)+B^{\prime}\left(A B+A^{\prime} C\right)
$$

$$
=A B+A^{\prime} B^{\prime} C
$$

Standard Forms of a Boolean Function

- A Boolean function can be written algebraically in a variety of ways
- Standard form: is an algebraic expression of the function that facilitates simplification procedures and frequently results in more desirable logic circuits (e.g. less number of gates)
- Standard form: contains product terms and sum terms
- Product term: $X^{\prime} Y^{\prime} Z$
- Sum term: X + Y + Z'

Standard Forms of a Boolean Function - cont'd

- A minterm: a product term in which all variables (or literals) of the function appear exactly once
- A maxterm: a sum term in which all the variables (or literals) of the function appear exactly once
- Example: for the function $F(X, Y, Z)$,
- the term $X^{\prime} Y$ is not a minterm, but $X Y Z^{\prime}$ is a minterm
- The term $X^{\prime}+Z$ is not a maxterm, but $X+Y^{\prime}+Z^{\prime}$ is maxterm
- A function of n variables - have 2^{n} possible minterms and 2^{n} possible maxterms
-

Naming Convention for Minterms

- Consider a function $F(X, Y)$

X	Y	Product Terms	Symbol	m_{0}	m_{1}	m_{2}		
0	0	$X^{\prime} Y^{\prime}$	m_{0}	1	0	0	0	
0	1	XY	m_{1}	0	1	0	0	
1	0	$X Y^{\prime}$	m_{2}	0	0	1	0	
1	1	XY	m_{3}	0	0	0	1	
B			$\begin{aligned} & \mathrm{m}_{i} \text { indicated the ith minterm } \\ & \text { Fore each binary combination of } \mathrm{X} \text { and } \mathrm{Y} \text { there is a minterm } \\ & \text { The index of the minterm is specified by the binary combination } \\ & \mathrm{m}_{\mathrm{i}} \text { is equal to } 1 \text { for ONLY THAT combination } \end{aligned}$					

Naming Convention for Maxterms

- Consider a function $F(X, Y)$

X	Y	Sum Terms	Symbol	M_{0}	M_{1}	M_{2}	M_{3}
0	0	$X+Y$	M_{0}	0	1	1	1
0	1	$X+Y^{\prime}$	M_{1}	1	0	1	1
1	0	$X^{\prime}+Y$	M_{2}	1	1	0	1
1	1	$X^{\prime}+Y^{\prime}$	M_{3}	1	1	1	0

More on Minterms and Maxterms

- In general, a function of n variables has
- 2^{n} minterms: $m_{0}, m_{1}, \ldots, m_{2}{ }^{n}-1$
- 2^{n} maxterms: $M_{0}, M_{1}, \ldots, M_{2}{ }^{n}-1$
- $m_{i}^{\prime}=M_{i}$ or $M_{i}^{\prime}=m_{i}$

Example: for $F(X, Y)$:
$m_{2}=X Y^{\prime} \rightarrow m_{2}^{\prime}=X^{\prime}+Y=M_{2}$

More on Minterms and Maxterms cont'd

- A Boolean function can be expressed algebraically from a give truth table by forming the logical sum of ALL the minterms that produce 1 in the function

- Example:

Consider the function defined by the
truth table
$F(X, Y, Z) \rightarrow 3$ variables $\rightarrow 8$ minterms
F can be written as
$F=X^{\prime} Y^{\prime} Z^{\prime}+X^{\prime} Y Z^{\prime}+X Y^{\prime} Z+X Y Z$, or
$=m_{0}+m_{2}+m_{5}+m_{7}$

X	Y	Z	m	F
0	0	0	$\mathrm{~m}_{0}$	1
0	0	1	$\mathrm{~m}_{1}$	0
0	1	0	$\mathrm{~m}_{2}$	1
0	1	1	$\mathrm{~m}_{3}$	0
1	0	0	$\mathrm{~m}_{4}$	0
1	0	1	$\mathrm{~m}_{5}$	1
1	1	0	$\mathrm{~m}_{6}$	0
1	1	1	$\mathrm{~m}_{7}$	1

$=\Sigma m(0,2,5,7)$

More on Minterms and Maxterms cont'd

- A Boolean function can be expressed algebraically from a give truth table by forming the logical product of ALL the maxterms that produce 0 in the function

- Example:

Consider the function defined by the truth table
$F(X, Y, Z) \rightarrow$ in a manner similar to the previous example, F^{\prime} can be written as
$F^{\prime}=m_{1}+m_{3}+m_{4}+m_{6}$ $=\Sigma \mathrm{m}(1,3,4,6)$
Now apply DeMorgan's rule
$F=F^{\prime \prime}=\left[m_{1}+m_{3}+m_{4}+m_{6}\right]^{\prime}$

$$
=m_{1}^{\prime} \cdot m_{3}^{\prime} \cdot m_{4}^{\prime} \cdot m_{6}^{\prime}
$$

$$
=M_{1} \cdot M_{3} \cdot M_{4} \cdot M_{6}
$$

X	Y	Z	M	F	F^{\prime}
0	0	0	M_{0}	1	0
0	0	1	M_{1}	0	1
0	1	0	M_{2}	1	0
0	1	1	M_{3}	0	1
1	0	0	M_{4}	0	1
1	0	1	M_{5}	1	0
1	1	0	M_{6}	0	1
1	1	1	M_{7}	1	0

$$
=\Pi M(1,3,4,6)
$$

Note the indices in this list are those that are
missing from the previous list in $\sum \mathrm{m}(0,2,5,7)$

Summary

- A Boolean function can be expressed algebraically as:
- The logical sum of minterms
- The logical product of maxterms
- Given the truth table, writing F as
- $\Sigma \mathrm{m}_{\mathrm{i}}$ - for all minterms that produce 1 in the table, or
- $\Pi \mathrm{M}_{\mathrm{i}}$ - for all maxterms that produce 0 in the table
- Another way to obtain the $\Sigma \mathrm{m}_{\mathrm{i}}$ or $\Pi \mathrm{M}_{\mathrm{i}}$ is to use ALGEBRA - see next example

Example:

- Write $E=Y^{\prime}+X^{\prime} Z^{\prime}$ in the form of Σm_{i} and ΠM_{i} ?
- Solution: Method1

First construct the Truth Table as shown
Second:
$E=\Sigma m(0,1,2,4,5)$, and

X	Y	Z	m	M	E
0	0	0	$\mathrm{~m}_{0}$	M_{0}	1
0	0	1	$\mathrm{~m}_{1}$	M_{1}	1
0	1	0	$\mathrm{~m}_{2}$	M_{2}	1
0	1	1	$\mathrm{~m}_{3}$	M_{3}	0
1	0	0	$\mathrm{~m}_{4}$	M_{4}	1
1	0	1	$\mathrm{~m}_{5}$	M_{5}	1
1	1	0	$\mathrm{~m}_{6}$	M_{6}	0
1	1	1	$\mathrm{~m}_{7}$	M_{7}	0

$\mathrm{E}=\Pi \mathrm{M}(3,6,7)$

Example: cont'd

- Solution: Method2 a
$\begin{aligned} E & =Y^{\prime}+X^{\prime} Z^{\prime} \\ & =Y^{\prime}\left(X+X^{\prime}\right)\left(Z+Z^{\prime}\right)+X Z^{\prime}\left(Y+Y^{\prime}\right)\end{aligned}$
$=\left(X Y^{\prime}+X^{\prime} Y^{\prime}\left(Z+Z^{\prime}\right)+X Y^{\prime} Z^{\prime}+X^{\prime} Z^{\prime} Y^{\prime}\right.$
$=X Y^{\prime} Z+X^{\prime} Y^{\prime} Z+X Y^{\prime} Z^{\prime}+X^{\prime} Y^{\prime} Z^{\prime}+$
- Solution: Method2_b
$X^{\prime} Y^{\prime}+X^{\prime} Z^{\prime} Y^{\prime}$
$E=Y^{\prime}+X^{\prime} Z^{\prime}$
$=m_{5}+m_{1}+m_{4}+m_{0}+m_{2}+m_{0}$
$E=\left(X^{\prime}+Y^{\prime}+Z^{\prime}\right)\left(X^{\prime}+Y^{\prime}+Z\right)\left(X+Y^{\prime}+Z^{\prime}\right)$
$=m_{0}+m_{1}+m_{2}+m_{4}+m_{5}$
$=\Sigma \mathrm{m}(0,1,2,4,5)$
$E^{\prime}=Y(X+Z)$
$=Y X+Y Z$
$=Y X\left(Z+Z^{\prime}\right)+Y Z\left(X+X^{\prime}\right)$
$=X Y Z+X Y Z^{\prime}+X^{\prime} Y Z$
$=M_{7} \cdot M_{6} \cdot M_{3}$
$=\Pi M(3,6,7)$
To find the form Σm_{i}, consider the remaining indices
To find the form ПМі, consider the remaining indices
$E=\Sigma m(0,1,2,4,5)$
$E=\Pi M(3,6,7)$

Exercise

- What is $G(X, Y)=\Sigma m(0,1,2,3)$ equal to?

Implementation - Sum of Products

- Consider $F=Y^{\prime}+X Z^{\prime}+X Y$
- Three products: Y^{\prime} (one literal), $X^{\prime} Y Z^{\prime}$ (three literals), and $X Y$ (two literals)
- The logic diagram
- Two-level implementation:
 - AND-OR
- Each product term requires an AND gate (except one literal terms)
- Logic diagram requires ONE OR gate

Implementation - Sum of Products - cont'd

- Consider $F=A B+C(D+E)$
- This expression is NOT in the sum-of-products form
- Use the identities/algebraic manipulation to convert to a standard form (sum of products), as in

$$
F=A B+C D+C E
$$

- Logic Diagrams:

Implementation - Product of Sums

- Consider $\mathrm{F}=\mathrm{X}\left(\mathrm{Y}^{\prime}+\mathrm{Z}\right)\left(\mathrm{X}+\mathrm{Y}+\mathrm{Z}^{\prime}\right)$
- This expression is in the product-of-sums form:
- Thee summation terms: X (one literal), $\mathrm{Y}^{\prime}+Z$ (two literals), and $\mathrm{X}+\mathrm{Y}+\mathrm{Z}^{\prime}$ (three literals)
- Logic Diagrams:
- Two-level implementation:
- OR-AND

- Each sum term requires an OR gate (except one literal terms)
- Logic diagram requires ONE AND gate

Examples:

- Problem 2-10b: Obtain the truth table of the following function and express each function in sum-of-minterms and product-of-maximterms form: $\left(A^{\prime}+B\right)\left(B^{\prime}+C\right)$
- Solution:

Let $F(A, B, C)=\left(A^{\prime}+B\right)\left(B^{\prime}+C\right)$
The truth table is as shown in figure

$$
\begin{aligned}
\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}) & =A^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}+\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}+\mathrm{A}^{\prime} \mathrm{BC}+\mathrm{ABC} \\
& =\Sigma \mathrm{m}(0,1,3,7) \\
\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}) & =\left(\mathrm{A}+\mathrm{B}^{\prime}+\mathrm{C}\right)\left(\mathrm{A}^{\prime}+\mathrm{B}+\mathrm{C}\right)\left(\mathrm{A}^{\prime}+\mathrm{B}^{\prime}+\mathrm{C}^{\prime}\right)\left(\mathrm{A}^{\prime}+\mathrm{B}^{\prime}+\mathrm{C}\right) \\
& =\Pi M(2,4,5,6)
\end{aligned}
$$

