King Fahd University of Petroleum \& Minerals
 Computer Engineering Dept

COE 202 - Fundamentals of Computer Engineering
Term 062
Dr. Ashraf S. Hasan Mahmoud
Rm 22-148-3
Ext. 1724
Email: ashraf@ccse.kfupm.edu.sa

Karnaugh Map (K-Map)

- A tabular method to simplify function expressions - an alternative to algebraic manipulation
- Produces 2-level (sum of products or product of sums) implementation

1-variable K-map

- Consider the function $F(X)$

$F(X)=X$
$F(X)=X^{\prime}$

2-variable K-map

- Consider the function $F(X, Y)$
- The general 2-variable K-map is as shown
- The map is formed by putting two 1-variable K-maps side by side

$F(X, Y)=X Y$

$$
F(X, Y)=X Y+X Y^{\prime}+X Y
$$

4/3/2007
$=X+Y$

2-variable K-map - cont'd

- Neighbors sharing one literal:
- $X Y^{\prime}\left(\right.$ or $\left.m_{0}\right)$ and $X^{\prime} Y\left(\right.$ or $\left.m_{1}\right) \rightarrow$ sharing the literal X^{\prime}
- $X Y^{\prime}\left(\right.$ or $\left.m_{0}\right)$ and $X Y^{\prime}\left(\right.$ or $\left.m_{2}\right) \rightarrow$ sharing the literal Y^{\prime}
- $X Y\left(\right.$ or $\left.m_{1}\right)$ and $X Y\left(\right.$ or $\left.m_{3}\right) \rightarrow$ sharing the literal Y
- $X Y^{\prime}$ (or m_{2}) and $X Y\left(\right.$ or $\left.m_{3}\right) \rightarrow$ sharing the literal X
- If for example

$$
F(X, Y)=m 0+m 1=X^{\prime} Y^{\prime}+X^{\prime} Y
$$

Then once can simplify F as follows:
$F(X, Y)=X^{\prime}\left(Y^{\prime}+Y\right)$
$=X^{\prime} \rightarrow$ the shared literal

2-variable K-map - cont'd

- Example2: $F(X, Y)=\Sigma m(1,2,3)$
F can be simplified as in

$$
\begin{aligned}
F & =X Y+X Y^{\prime}+X Y \\
& =X Y+X Y+X Y^{\prime}+X Y \\
& =\left(X^{\prime}+X\right) Y+X\left(Y^{\prime}+Y\right) \\
& =Y+X
\end{aligned}
$$

X - the common literal for Y - the common literal for

2-variable K-map - All Possible Squares

- 4 Groups each of one minterm
- 4 groups each of two minterms
- 1 group of 4 minterms

3-variable K-map

- Consider the function $F(X, Y, Z)$
- The general 3 -variable K -map is as shown
- The map is formed by putting two 2-variable K-maps side by side
- Note:
- The minterms are ordered such that any two neighboring minterm differ only in one literal
- The K-Map (the numbering of the minterms) assumes X is the most significant variable and Z is the least significant variable

3-variable K-map - cont'd

- Example $F(X, Y, Z)=m_{5}+m_{7}$

Once can simplify as in

$$
\begin{aligned}
F & =m_{5}+m_{7} \\
& =X Y^{\prime} Z+X Y Z \\
& =X Z\left(Y^{\prime}+Y\right) \\
& =X Z
\end{aligned}
$$

Or once can use the K-map as shown

The common literals for this
group is $X Z$ (they differ in Y)

Therefore: $F(X, Y)=X Z$

3-variable K-map - cont'd

- Example $F(X, Y, Z)=\Sigma m(2,3,4,5)$

Once can simplify as in
$F=m_{2}+m_{3}+m_{4}+m_{5}$
$=X Y Z^{\prime}+X^{\prime} Y Z+X Y^{\prime} Z^{\prime}+X Y^{\prime} Z$
$=X Y\left(Z^{\prime}+Y\right)+X Y^{\prime}\left(Z^{\prime}+Z\right)$
$=X Y+X Y^{\prime}$
Or one can use the K-map as shown
The common literals for the $1^{\text {st }}$

$$
\text { group is } X^{\prime} Y \text { (they differ in } Z \text {), }
$$ while the common literals for the

$2^{\text {nd }}$ group is $X Y^{\prime}$ (they differ in Z)
Therefore: $F(X, Y)=X Y+X Y^{\prime}$

3-variable K-map - cont'd

- Example $F(X, Y, Z)=\Sigma m(0,2,4,5,6)$

Once can simplify as in

$$
\begin{aligned}
\mathrm{F} & =\mathrm{m}_{0}+\mathrm{m}_{2}+\mathrm{m}_{4}+\mathrm{m}_{5}+\mathrm{m}_{6} \\
& =X^{\prime} Y^{\prime} Z^{\prime}+X^{\prime} Y Z^{\prime}+X Y^{\prime} Z^{\prime}+X Y^{\prime} Z+X Y Z^{\prime} \\
& =X^{\prime} Y^{\prime} Z^{\prime}+X^{\prime} Y Z^{\prime}+X Y^{\prime} Z^{\prime}+X Y^{\prime} Z^{\prime}+X Y^{\prime} Z \\
& +X Y Z^{\prime} \\
& =Y^{\prime} Z^{\prime}\left(X^{\prime}+X\right)+Y Z^{\prime}\left(X^{\prime}+X\right)+ \\
& X Y^{\prime}\left(Z^{\prime}+Z^{\prime}\right) \\
& =Z^{\prime}\left(Y^{\prime}+Y\right)+X Y^{\prime} \\
& =Z^{\prime}+X Y^{\prime}
\end{aligned}
$$

Or one can use the K-map as shown
The common literals for the $1^{\text {st }}$ group is
 $X Y^{\prime}$ (they differ in Z), while the common literal for the $2^{\text {nd }}$ group is Z^{\prime} (they differ in $X Y$)
Therefore: $F(X, Y)=Z^{\prime}+X Y^{\prime}$

3-variable K-map - All Possible Groups

- 8 groups each of 1 minterms
- 12 groups each of 2 minterms
- 4 groups each of 4 minterms
- 1 group of 8 minterms

Rules for Choosing Groups

- The groups SHOULD cover all minterms
- The groups SHOULD have minimum overlap
- The groups SHOULD be maximized in size (to reduce their number or product terms)

Example

- Consider $F(X, Y, Z)=\Sigma m(1,3,4,5,6)$

Following the groups selection rules:

- there is no group of 8 or 4 that can be selected
- there are only groups of 2 that can be selected

- once can select the groups as shown (minimum no of groups)
Therefore $F(X, Y, Z)=X^{\prime} Z+Y^{\prime} Z+X Z^{\prime}$
OR (See second K-Map)
$F(X, Y, Z)=X^{\prime} Z+X Z^{\prime}+X Y^{\prime}$

The simplest expression is NOT unique!

Definitions

- Map manipulation: to minimize number of terms (i.e. simplify function and avoid redundant terms)
- Implicant:
- A product term
- Any valid square or group
- Prime Implicant: If you list all implicants, the removal of any literal does not lead to an implicant - the orignal implicant is a prime implicant
- i.e. largest possible square
- Essential Prime Implicant: A prime implicant covering a minterm no other prime implicant does

Example

- Consider $F(X, Y, Z)=$ $\mathrm{Lm}(1,3,4,5,6)$

List all implicants, prime implicants and essential prime implicants

- Solution:
- Implicants: $X Y^{\prime} Z^{\prime}, X Z^{\prime}, X Y^{\prime}$, $X Y^{\prime} Z, X^{\prime} Y^{\prime} Z, Y^{\prime} Z, \ldots$
- P.Is: $X Y^{\prime}, X Z^{\prime}, Y^{\prime} Z, X^{\prime} Z$
- EPIs: X'Z, XZ'

The simplest expression is NOT unique!

4-variable K-map

- Consider the function $F(W, X, Y, Z)$
- The general 4 -variable K-map is as shown
- The map is formed by putting two 3-variable K-maps on top of each other
- Note:
- The minterms are ordered such that any two neighboring minterm differ only in one literal
- The K-Map (the numbering of the minterms) assumes W is the most significant variable and Z is the least significant

4-variable K-map - All Possible Groups

- 16 groups of one minterm
- 32 groups of two minterms
- ? groups of four minterms
- 8 groups of 8 minterms
- 1 group of 16 minterms

4-variable K-map - Example

- Consider $F(W, X, Y, Z)=$ $\Sigma \mathrm{m}(0,1,2,4,5,6,8,9,12,13,14)$

$$
F(W, X, Y, Z)=Y^{\prime}+W^{\prime} Z^{\prime}+X Z^{\prime}
$$

Example

- Consider $F(A, B, C, D)=$
$\Sigma \mathrm{m}(1,3,4,5,6,7,12,13,14,15)$
Find essential prime implicants?
- Solution:
$B, A^{\prime} D$ are EPI

What is $F(A, B, C, D)$?

Example

- Consider $F(W, X, Y, Z)=$ $\Sigma \mathrm{m}(0,1,5,10,11,12,13,15)$
Find all essential prime implicants? Write all possible expressions for F ?
- Solution:

$E P I=A^{\prime} B^{\prime} C^{\prime} D^{\prime}, B C^{\prime} D, A B C^{\prime}, A B^{\prime} C$
$F(A, B, C, D)=$
$A^{\prime} B^{\prime} C^{\prime} D^{\prime}+B C^{\prime} D+A B C^{\prime}+A B^{\prime} C+$
ACD (or ABD)

Problem 2-19(a)

- Consider $F(W, X, Y, Z)=$
$\Sigma \mathrm{m}(0,2,5,7,8,10,12,13,14,15)$
Find all implicants, prime implicants, and essential prime implicants? Write all possible expressions for F ?
- Solution:

Implicants: $W^{\prime} X^{\prime} Y^{\prime} Z^{\prime}, W^{\prime} X^{\prime} Z^{\prime}, W X^{\prime} Y^{\prime} Z^{\prime}$, WX'YZ', WX'Z', $X^{\prime} Z^{\prime}, \ldots$
PIs: WZ', XZ, X'Z', WX
EPIs: $X^{\prime} Z^{\prime}$ (only PI covering $W^{\prime} X^{\prime} Y^{\prime} Z^{\prime}$),

XZ (only PI covering W'XY'Z or W'XYZ)
$F(W, X, Y, Z)=X^{\prime} Z^{\prime}+X Z+W X, O R$

$$
=X^{\prime} Z^{\prime}+X Z+W Z^{\prime}
$$

Product of Sums Simplification Example

- Consider $F(A, B, C, D)=$ $\Sigma \mathrm{m}(0,1,2,5,8,9,10)$
Write F in the simplified product of sums
- Solution:

Follow same rule as before but for the ZEROs

$$
F^{\prime}=A B+C D+B D^{\prime}
$$

Therefore,

$$
F^{\prime \prime}=F=\left(A^{\prime}+B^{\prime}\right)\left(C^{\prime}+D^{\prime}\right)\left(B^{\prime}+D\right)
$$

Don't Care Conditions - Example

More Gates: NAND - NOR

NAND

X	Y	$\mathrm{Z}=(\mathrm{X}+\mathrm{Y})^{\prime}$
0	0	1
0	1	0
1	0	0
1	1	0

- Sometimes it is desirable to build circuits using NAND gates only or NOR gates only

More Gates: XOR - XNOR

Exclusive OR
(XOR)

$$
\begin{aligned}
\mathrm{F} & =\mathrm{X}^{\prime} \mathrm{Y}+\mathrm{XY}^{\prime} \\
& =\mathrm{X} \oplus \mathrm{Y}
\end{aligned}
$$

$$
\begin{array}{ccc}
\hline X & Y & Z=X \oplus Y \\
\hline 0 & 0 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
\hline
\end{array}
$$

Exclusive NOR (XNOR)

$$
\begin{aligned}
\mathrm{F} & =\mathrm{XY}+\mathrm{X}^{\prime} \mathrm{Y}^{\prime} \\
& =(\mathrm{X} \oplus \mathrm{Y})^{\prime}
\end{aligned}
$$

X	Y	$\mathrm{Z}=(\mathrm{X} \oplus \mathrm{Y})^{\prime}$
0	0	1
0	1	0
1	0	0
1	1	1

NAND Circuits

We have learned how to
 build any function using

- Therefore, we can build all functions we learned so far using NAND gates ONLY
- NAND is a UNIVERSAL gate

Graphic Symbols for NAND Gate

- Two equivalent graphic symbols or shapes for the
 SAME function

NOT-OR

Two Level Implementation

- We use the sum of products form
- This results from K-map simplification or algebraic manipulation
- The AND gates - $1^{\text {st }}$ level
- The OR gate - $2^{\text {nd }}$ level
- Inverters to inputs of ANDs or output of OR are not counted as levels

Two Level Implementation - cont'd

- Example: Consider $F=A B+C D$

Proof:
$F=\left((A B)^{\prime} .(C D)^{\prime}\right)^{\prime}$
$=\left((A B)^{\prime}\right)^{\prime}+\left((C D)^{\prime}\right)^{\prime}$
$=A B+C D$

Example

- Consider F $=\Sigma \mathrm{m}(1,2,3,4,5,7)$ - Implement using NAND gates

$F(X, Y)=Z+X Y^{\prime}+X^{\prime} Y$

Rules for 2-Level NAND Implementations

- Simplify the function and express it in sum-ofproducts form
- Draw a NAND gate for each product term (with 2 literals or more)
- Draw a single NAND gate at the $2^{\text {nd }}$ level (in place of the OR gate)
- A term with single literal requires a NOT

Rules for Multi-Level NAND Implementations

- NOTE: the function is NOT in the standard form - WHY?
- Steps:
- Draw a NAND gate for each AND gate
- Draw a NAND gate (using the NOT-OR symbol) for each OR gate
- Check paths - add inverters to make even number of bubbles

Example (1): Rules for Multi-Level NAND Implementations

- Consider the function $F=A(C D+B)+C^{\prime}$

Note: an inverter is added

 to the path for the literal B
Example (2): Rules for Multi-Level NAND Implementations

- Consider the function $F=\left(A B^{\prime}+A^{\prime} B\right) E\left(C+D^{\prime}\right)$

Note: an inverter is added to three paths

NOR Circuits

We have learned how to
build any function using

OR

BUT

- Therefore, we can build all functions we learned so far using NOR gates ONLY
- NOR is a UNIVERSAL gate

Graphic Symbols for NOR Gate

- Two equivalent graphic symbols or shapes for the
 SAME function

Two Level Implementation - NOR

- Consider $\mathrm{F}=(\mathrm{A}+\mathrm{B})(\mathrm{C}+\mathrm{D}) \mathrm{E}$

Two Level Implementation - NOR

- We use the product of sums form
- This results from K-map simplification or algebraic manipulation
- Note to get product of sums we the zeros - simplify and then complement the expression
- The OR gates - $1^{\text {st }}$ level
- The AND gate - $2^{\text {nd }}$ level
- Inverters to inputs of ORs or output of AND are not counted as levels

Example

- Consider $\mathrm{F}=\Sigma \mathrm{m}(1,2,3,5,7)$ - Implement using NOR gates

$F^{\prime}(X, Y)=Y^{\prime} Z^{\prime}+X Z^{\prime}$, or
$F(X, Y)=(Y+Z)\left(X^{\prime}+Z\right)$

Rules for 2-Level NOR Implementations

- Simplify the function and express it in product of sums form
- Draw a NOR gate (using OR-NOT symbol) for each sum term (with 2 literals or more)
- Draw a single NOR gate (using NOT-AND symbol) the $2^{\text {nd }}$ level (in place of the AND gate)
- A term with single literal requires a NOT

What about multi-level circuits?

Rules for Multi-Level NOR Implementations

- NOTE: the function is NOT in the standard form - WHY?
- Steps:
- Draw a NOR (OR-NOT) gate for each OR gate
- Draw a NOR (NOT-AND) gate for each AND gate
- Check paths - add inverters to make even number of bubbles

Example: Rules for Multi-Level NOR Implementations

- Consider the function $F=\left(A B^{\prime}+A^{\prime} B\right) E\left(C+D^{\prime}\right)$

Note: an inverter is added to six paths

Example (2): Rules for Multi-Level NOR Implementations

- Consider the function $F=(A B)^{\prime}+C$

- Hence this bubble need not be complemented
-Only the ones added!!

$$
\begin{aligned}
\mathrm{F} 2 & =\left(\left(\mathrm{A}^{\prime} \mathrm{B}^{\prime \prime}\right)^{\prime}+\mathrm{C}\right)^{\prime \prime} \\
& =(\mathrm{AB})^{\prime}+\mathrm{C} \\
& =\mathrm{F} 1
\end{aligned}
$$

Example (3): Rules for Multi-Level NOR Implementations

- Consider the function $F=(A+B)^{\prime} C$

Hence this bubble need not be complemented
-Only the ones added!!

Example (4):

- Problem: Simplify the following expression and implement using 2-level circuit with NAND gates. Assume both true and complement version of the input variables are available.
$W X^{\prime}+W X Z+W^{\prime} Y^{\prime} Z+W^{\prime} X Z^{\prime}+W X Z '$

Example (4): cont'd

- Solution:

- Simplified 2-level implementation \rightarrow K-Map
$F(W, X, Y, Z)=W X^{\prime}+W X Z+W^{\prime} Y^{\prime} Z^{\prime}+W^{\prime} X Y^{\prime}+$ WXZ'
$F(W, X, Y, Z)=W+X Z^{\prime}+Y Z^{\prime}$

Example (4): cont'd

- Solution:

$$
F(W, X, Y, Z)=W+X Z^{\prime}+Y Z^{\prime}
$$

XOR-XNOR Gates and Parity Checking

- Required Material

- Refer to lesson2 7.pdf at:
http://www.ccse.kfupm.edu.sa/~elrabaa/coe202/Lessons/Lesson2 7.pdf

