## King Fahd University of Petroleum \& Minerals Computer Engineering Dept

## COE 341 - Data and Computer

 CommunicationsTerm 092
Dr. Ashraf S. Hasan Mahmoud
Rm 22-148-3
Ext. 1724
Email: ashraf@kfupm.edu.sa
3/6/2010

## Lecture Contents

1. Fourier Analysis
a. Fourier Series Expansion
b. Fourier Transform
c. Ideal Low/band/high pass filters

Signals

- A signal is a function representing information
- Voice signal - microphone output
- Video signal - camera output
- Etc.
- Types of Signals
- Analog - continuous-value continuous-time
- Discrete - discrete-value continuous-time
- Digital - predetermined discrete levels - much easier to reproduce at receiver with no errors
- Binary - only two predetermined levels: e.g. 0 and 1


## Example of Continuous-Value Continuous-time signal

- $s_{1}(t)$ and $s_{2}(t)$ are two example of analog signals




## Example of Discrete-Value Continuous-time signal

- $d_{1}(t)$ and $d_{2}(t)$ are two example of discrete signals
- $d_{1}(t)$ - takes more than two levels
- $d_{2}(t)$ - takes only two levels - binary


Time domain representation - we plot value (voltage, current, electric field intensity, etc.) versus time

- Can infer rate of change (speed or frequency) information - e.g. $s_{2}(t)$ seems faster than $s_{1}(t)$
- Using calculus terms: rate of change for $s_{2}(t)>$ rate of change for $\mathrm{s}_{1}(2)$


(
3/6/2010

Dr. Ashraf S. Hasan Mahmoud

Frequency - Bandwidth

- $s_{2}(t)$ faster than $s_{1}(t)$
- $s_{2}(t)$ contains higher frequencies than those contained in $\mathrm{s}_{1}(\mathrm{t})$
- $s_{1}(t)$ and $s_{2}(t)$ contain more than one frequency
- Minimum frequency $=f_{\text {min }}$
- Maximum frequency $=f_{\text {max }}$
- Bandwidth = Range of frequencies contained in signal

$$
=\mathbf{f}_{\max }-\mathbf{f}_{\min }
$$



- For our example signals, assume:
- S1(t): fmin = $\mathbf{1 0 ~ H z , ~ f m a x ~ = ~} 500 \mathrm{~Hz}$
- S2(t): fmin = $\mathbf{5} \mathbf{~ H z}$, fmax $=1000 \mathrm{~Hz}$
- This means:
- BW for $\mathbf{s}_{\mathbf{1}}(\mathbf{t})=\mathbf{5 0 0} \mathbf{- 1 0} \mathbf{= 4 9 0} \mathbf{~ H z}$
- BW for $\mathbf{s}_{\mathbf{2}}(\mathbf{t})=1000-5 \mathbf{~ = ~ 9 9 5 ~ H z ~}$
- Note that: because $s_{2}(t)$ is "faster than" $s_{1}(t)$ it should contain frequencies higher than those in $s_{1}(t)$
- E.g. $s_{2}(t)$ contains frequencies $(500,1000]$ which do not exist in $s_{1}(t)$


## Applies to BOTH analog and digital signals <br> Frequency - Bandwidth (3) <br> - Consider the discrete signals $d_{1}(t)$ and $\mathrm{d}_{2}(\mathrm{t})$

- The function plots have points of infinite slope
- rate of change $=\infty \rightarrow$ frequency $=\infty$
- Therefore for signals that look like $d_{1}(t)$ and $\mathbf{d}_{\mathbf{2}}(\mathrm{t})$, fmax $=\infty$
- Furthermore, BW = $\infty$
- Example:
- $d_{2}(t)$ contains frequencies from some minimum fmin Hz to fmax $=\infty \mathrm{Hz}$


## Example of Signal BW

- Consider the human speech
- Typically fmin $\boldsymbol{\sim} \mathbf{1 0 0 H z}$
- fmax ~ $\mathbf{3 5 0 0} \mathbf{~ H z}$
- BW of the human speech signal $\mathbf{=} \mathbf{3 1 0 0} \mathbf{~ H z}$


## Bandwidth for Systems

- For a system to respond (amplify, process, Tx, Rx, etc.) for a particular signal with all its details, the system should have an equal or greater bandwidth compared to that of the signal
- Example:
- The system required to process $\mathbf{s}_{\mathbf{2}}(\mathbf{t})$ should have a greater bandwidth than the system required to process $\mathbf{s}_{\mathbf{1}}(\mathbf{t})$


## Bandwidth for Systems (2)

- Example 2: consider the human ear system
- Responds to a range of frequencies only
- $\mathbf{f m i n}=20 \mathrm{~Hz}$ fmax $=\mathbf{2 0 , 0 0 0 ~ H z ~} \rightarrow \mathrm{BW}=19,980 \mathrm{~Hz}$
- It does not respond to sounds with frequencies outside this range
- Example 3: consider the copper wire
- It passes (electric) signals only between a certain fmin and a certain fmax
- The higher the quality of the wire - the wider the BW
- More on Systems BW later!


## Frequency Representation

- How to represent signals and indicate their frequency content?
- The X-axis: frequency (in Hertz or Hz)
- What is the $\mathbf{Y}$-axis then? - the answer will be postponed!



## Periodic Signals

- A periodic signal repeats itself every $\mathbf{T}$ seconds
- Period $\rightarrow \mathbf{T}$ seconds
- In calculus terms:
- $s(t)$ is periodic if $s(t)=s(t+T)$ for any $-\infty<t<\infty$
- For previous examples: $\mathbf{s}_{\mathbf{1}}(\mathbf{t}), \mathbf{s}_{\mathbf{2}}(\mathbf{t})$, and $d_{1}(t)$ are not periodic - however, $d_{2}(t)$ is periodic


## Periodic Signals (2)

- A periodic signal has a FUNDAMENTAL FREQUENCY - $\mathbf{f}_{0}$
- $f_{0}=1 / T$ - where $T$ is the period
- A periodic signal may also has frequencies other than the fundamental frequency $f_{0}$



## Periodic Signals (3)

Applies to BOTH analog and digital signals

- Examples of other periodic signals:


Energy/Power of Signals

- Energy for any signal is defined as

$$
E_{s}=\int|s(t)|^{2} d t
$$

where the integral is carried over ALL range of $t$

- In other words, Es is the area under the absolute squared of the signal
- The unit of energy is Joules


## Energy/Power of Signals (2)

- Note that for periodic signal $E_{s}$ is equal to infinity since it is defined on ( $-\infty, \infty$ )
- However power is FINITE for these type of signals
- Power is defined as the average of the absolute squared of the signal, i.e.

$$
P_{s}=\frac{1}{T} \int_{0}^{T}|s(t)|^{2} d t
$$

- The unit of power is Joules/sec or Watt


## A VERY SPECIAL Analog Signal

- A function of the form

$$
\mathbf{s}(\mathrm{t})=\mathrm{A} \cos (2 \pi \mathrm{ft}+\theta)
$$



## Characteristics of COSINE

- Completely specified by:
- Amplitude - A
- Phase- $\theta$
- Frequency - f
- $\mathbf{s}(\mathbf{t}=\mathbf{0})=\mathbf{A} \boldsymbol{\operatorname { c o s }}(\theta)$
- Periodic signal - repeats itself every T seconds
- $\mathbf{T}=1$ / $\mathbf{f}$
- Time to review your trigonometry !!
- E.g. $\boldsymbol{\operatorname { s i n }}(\mathbf{x})=\boldsymbol{\operatorname { c o s }}(\mathrm{x}-\pi / 2)$


## Characteristics of COSINE (2)

- Energy for this signal, $E_{s}=$ infinity
- Power for this signal, $P_{g}=A^{2} / 2$
- Note $P_{g}$ is dependent only on the amplitude $A$

Exercise: Verify the above results using the power
formula

- It contains ONLY ONE frequency $f$
- The "purest" form of analog signals
- Frequency representation:



## Characteristics of COSINE (3)

- Very Useful Properties ( $\mathrm{f}=\mathbf{1 / T \text { ) }}$

$$
\begin{array}{ll}
\int_{0}^{T} \cos (2 \pi f t+\theta) d t=0 & \frac{1}{T} \int_{0}^{T} \cos ^{2}(2 \pi f t+\theta) d t=1 / 2 \\
\int_{0}^{T} \cos (2 \pi n f t+\theta) d t=0 & \frac{1}{T} \int_{0}^{T} \cos ^{2}(2 \pi n f t+\theta) d t=1 / 2
\end{array}
$$

$$
\frac{1}{T} \int_{0}^{T} \cos (2 \pi n f t) \cos (2 \pi m f t) d t=\left\{\begin{array}{cc}
0 & n \neq m \\
1 / 2 & n=m
\end{array}\right.
$$

## Example of Cosine Functions

- $\mathbf{Y}_{1}(\mathbf{t})$ - has
- a frequency $\mathbf{f}$ of $\mathbf{2}$ Hz ( $\mathrm{T}=1 / 2 \mathrm{sec}$ )
- An amplitude of 3
- $P_{Y 1}=3^{2} / 2=4.5$ Watts
- $Y_{2}(t)$ - has
- a frequency $f$ of 1 $\mathrm{Hz}(\mathrm{T}=1 / 1=1$ sec)
- An amplitude of 1
- $\quad P_{Y 2}=12 / 2=0.5$ Watts


## ONLY FOR PERIODIC SIGNALS

Fourier Series Expansion

- Can we use the basic cosine functions to represent periodic signals?
- YES - Fourier Series Expansion





## Fourier Series Expansion (2)

- For a periodic signal $\mathbf{s}(\mathbf{t})$ can be represented as a sum of sinusoidal signals as in

$$
s(t)=\frac{A_{0}}{2}+\sum_{n=1}^{\infty}\left[A_{n} \cos \left(2 \pi n f_{0} t\right)+B_{n} \sin \left(2 \pi n f_{0} t\right)\right]
$$

## where the coefficients are computed using:

$$
\begin{array}{ll}
A_{0}=\frac{2}{T} \int_{0}^{T} s(t) d t & \begin{array}{l}
f_{0} \text { is the fundamental frequency } \\
\text { of } s(t) \text { and is equal to } 1 / T
\end{array} \\
A_{n}=\frac{2}{T} \int_{0}^{T} s(t) \cos \left(2 \pi n f_{0} t\right) d t & B_{n}=\frac{2}{T} \int_{0}^{T} s(t) \sin \left(2 \pi n f_{0} t\right) d t
\end{array}
$$

## Fourier Series Expansion (3)

- Another form for the series:

$$
s(t)=\frac{C_{0}}{2}+\sum_{n=1}^{\infty} C_{n} \cos \left(2 \pi n f_{0} t+\theta_{n}\right)
$$

where the coefficients are computed using:

$$
\begin{gathered}
C_{0}=A_{0} \\
C_{n}=\sqrt{A_{n}^{2}+B_{n}{ }^{2}} \\
\theta_{n}=\tan ^{-1}\left(\frac{-B_{n}}{A_{n}}\right)
\end{gathered}
$$



## Notes on Fourier Series Expansion

- The representation (the sum of sinusoids) is completely identical and equivalent to the original specification of s(t)
- It is applies to any periodic signal analog or digital!

Very powerful tool - it reveals all frequencies contained in the original periodic signal $s(t)$

## Notes on Fourier Series Expansion (2)

- In general, $\mathbf{s}(\mathbf{t})$ contains
- DC term - the zero frequency term $=A_{0} / 2$
- A (possibly infinite) number of harmonics (or sinusoids) at multiples of the fundamental frequency, $\mathbf{f}_{\mathbf{0}}$
- The contribution of a harmonic with frequency $\mathbf{n f}_{0}$ is proportional to $\left|A_{n}{ }^{2}+B_{n}{ }^{2}\right|$ or $C_{n}{ }^{2}$
- E.g. if $\mathbf{C}_{\mathrm{n}}{ }^{2} \sim \mathbf{0}$, then we say the harmonic at $\mathrm{nf}_{\mathrm{o}}$ (or higher does not contribute significantly towards building $s(t)$ - more on this when we discuss total power!

Notes on Fourier Series Expansion (3)

- A harmonic with frequency equal to $\mathbf{n f}_{\mathbf{0}}$ ( $n>0$ ), has a period of $\mathbf{1 / ( n T )}$
- In general the series expansion of $\mathbf{s}(\mathbf{t})$ contains INFINITE number of terms (harmonics)
- However for less than $\mathbf{1 0 0 \%}$ accurate representation one can ignore higher terms - terms with frequencies greater than certain $\mathbf{n}^{\boldsymbol{*} \mathbf{f}_{\mathbf{0}}}$


## Notes on Fourier Series Expansion (4)

- Lets define the following function:
s_e(n=k)

To be the series expansion of $\boldsymbol{s}(\mathrm{t})$ up to and including the $\mathbf{n}=$ k term
It should be noted that s_e( $n=k$ ) is periodic with period $T$

- Examples:

$$
\begin{aligned}
s_{-} e(n=0) & =A_{0} / 2 \\
s_{-} e(n=1) & =A_{0} / 2+A_{1} \cos \left(2 \pi f_{0} t\right)+B_{1} \sin \left(2 \pi f_{0} t\right) \\
& =A_{0} / 2+C_{1} \cos \left(2 \pi f_{0} t+\theta_{1}\right)
\end{aligned}
$$

## Notes on Fourier Series Expansion

 (5)- Examples - cont'd:

$$
\begin{aligned}
s_{-} e(n=2) & =A_{0} / 2+A_{1} \cos \left(2 \pi f_{0} t\right)+B_{1} \sin \left(2 \pi f_{0} t\right) \\
& +A_{2} \cos \left(2 \pi \times 2 f_{0} t\right)+B_{2} \sin \left(2 \pi \times 2 f_{0} t\right) \\
& =A_{0} / 2+C_{1} \cos \left(2 \pi f_{0} t+\theta_{1}\right)+C_{2} \cos \left(2 \pi \times 2 f_{0} t+\theta_{2}\right) \\
& \bullet .
\end{aligned}
$$

$$
\begin{aligned}
s_{-} e(n=\infty) & =\frac{A_{0}}{2}+\sum_{n=1}^{\infty}\left[A_{n} \cos \left(2 \pi n f_{0} t\right)+B_{n} \sin \left(2 \pi n f_{0} t\right)\right] \\
& =A_{0} / 2+\sum_{n=1}^{\infty} C_{n} \cos \left(2 \pi n f_{0} t+\theta_{n}\right)
\end{aligned}
$$

## Notes on Fourier Series Expansion (6)

- It is obvious that $s(t)$ is $\mathbf{1 0 0 \%}$ represented by s_e( $\mathrm{n}=\infty$ )
- s_e( $\left.\mathbf{n}=\mathbf{n}^{*}<\infty\right)$ produces a less than $100 \%$ accurate representation of the original s(t)
- For most practical periodic signals s_e( $\mathrm{n}=10$ ) provides a more than enough accuracy in representing $\mathbf{s}(\mathbf{t})$
- No need for infinite number of terms


## Example 1:

- Consider the following $\mathbf{s}(\mathbf{t})$
- Over one period, the signal is defined as
$\begin{array}{rlrl}s(t) & =A & -T / 4<t<=T / 4 \\ & =0 & T / 4<t<=3 T / 4\end{array}$

- Finding the Series Expansion:
- The DC term $\mathbf{A}_{\mathbf{0}}$

$$
\begin{aligned}
A_{0} & =\frac{2}{T} \int_{-T / 4}^{T / 4} s(t) d t=\frac{2}{T} \times \frac{T}{2} \times A \\
& =A_{\text {Dr. Ashraf } 5 . \text { Hasan Mahmoud }}
\end{aligned}
$$

## Example 1: cont'd

- The term $\mathbf{A}_{\mathbf{n}}$ :

$$
\begin{aligned}
& A_{n}=\frac{2}{T} \int_{-T / 4}^{T / 4} s(t) \cos \left(2 \pi n f_{0} t\right) d t=\frac{2 A}{T} \int_{-T / 4}^{T / 4} \cos \left(2 \pi n f_{0} t\right) d t \\
& =\left.\frac{2 A}{2 \pi n f_{0} T} \sin \left(2 \pi n f_{0} t\right)\right|_{t=-T / 4} ^{t=T / 4}=\frac{A}{\pi n} \times 2 \times \sin \left(\frac{n \pi}{2}\right) \\
& =\left\{\begin{array}{cc}
0 & n=2,4,6, \ldots \\
\frac{2 A}{\pi n} & n=1,5,9, \ldots \\
-\frac{2 A}{\pi n} & n=3,7,11, \ldots
\end{array}\right. \\
& \text { Remember } \\
& \text { 1. } \mathrm{f}_{0}=1 / \mathrm{T} \\
& \text { 2. } \int \cos (a x) d x=-1 / a \sin (a x) \\
& \text { 3. } \sin (n \pi)=0 \text { for integer } n \\
& \text { 4. } \sin (n \pi / 2)=1 \text { for } n=1,5,9, \ldots \\
& \text { 5. } \quad \sin (n \pi / 2)=-1 \text { for } n=3,7,11, \ldots
\end{aligned}
$$

## Example 1: cont'd

- Therefore $A_{\mathbf{n}}$ is given by:

$$
= \begin{cases}0 & n=2,4,6, \ldots \\ (-1)^{(n-1) / 2} \times \frac{2 A}{\pi n} & n=1,3,5,7, \ldots\end{cases}
$$

## Remember

$(-1)^{(\mathrm{n}-1) / 2}=1$ for $\mathrm{n}=1,5,9, \ldots$

$$
=-1 \text { for } n=3,7,11, \ldots
$$

## Example 1: cont'd

- The term $B_{\mathbf{n}}$ :

$$
\begin{aligned}
B_{n} & =\frac{2}{T} \int_{-T / 4}^{T / 4} s(t) \sin \left(2 \pi n f_{0} t\right) d t=\frac{2 A}{T} \int_{-T / 4}^{T / 4} \sin \left(2 \pi n f_{0} t\right) d t \\
& =\left.\frac{-2 A}{2 \pi n f_{0} T} \cos \left(2 \pi n f_{0} t\right)\right|_{t=-T / 4} ^{t=T / 4}=\frac{-2 A}{\pi n} \times\left\{\cos \left(\frac{n \pi}{2}\right)-\cos \left(-\frac{n \pi}{2}\right)\right\} \\
& =0
\end{aligned}
$$

> Remember
> 1. $\int \cos (a x) d x=-1 / a \sin (a x)$
> 2. $\quad \cos (x)=\cos (-x)$

## Example 1: cont'd

- Therefore, the overall series expansion is given by

$$
\begin{aligned}
s(t)= & \frac{A}{2}+\frac{2 A}{\pi} \sum_{n=1,3,5}^{\infty} \frac{(-1)^{(n-1) / 2}}{n} \times \cos \left(2 \pi n f_{0} t\right) \\
s(t)= & \frac{A}{2}+\frac{2 A}{\pi} \times \cos \left(2 \pi f_{0} t\right)-\frac{2 A}{3 \pi} \cos \left(2 \pi \times 3 f_{0} t\right) \\
& +\frac{2 A}{5 \pi} \times \cos \left(2 \pi \times 5 f_{0} t\right)-\frac{2 A}{7 \pi} \cos \left(2 \pi \times 7 f_{0} t\right)+\ldots
\end{aligned}
$$

## Example 1: cont'd

- Original $s(t)$ and the series up to and including $n$ $=0$
- i.e. Comparing:
$s(t)$
vs.
s_e( $n=0)=A / 2$



## Example 1: cont'd

- Original $s(t)$ and the series up to and including $\mathbf{n}=$ 1
- i.e. Comparing:
$s(t)$
vs.

$$
\begin{gathered}
s \_e(n=1)= \\
A / 2+ \\
2 A / \pi \cos \left(2 \pi f_{0} t\right)
\end{gathered}
$$



## Example 1: cont'd

- Original $s(t)$ and the series up to and including $\mathbf{n}=$ 3
- i.e. Comparing:
$s(t)$
vs.
s_e( $n=3$ ) =
A/2
$2 A / \pi \cos \left(2 \pi f_{0} t\right)-$
$2 \mathrm{~A} /(3 \pi) \cos \left(2 \pi 3 \mathrm{f}_{0} \mathrm{t}\right)$



## Example 1: cont'd

- Original $s(t)$ and the series up to and including $\mathrm{n}=$
11
- i.e. Comparing:
$s(t)$
vs.
s_e $(\mathrm{n}=11)=$
$A / 2+2 A / \pi \cos \left(2 \pi f_{0} t\right)$
$-2 A /(3 \pi) \cos \left(2 \pi 3 f_{f} t\right)$
$+2 A /(5 \pi) \cos (2 \pi 5 f)$
$+2 A /(5 \pi) \cos \left(2 \pi 5 f_{0} t\right)$
$-2 A /(7 \pi) \cos \left(2 \pi 7 f_{0} t\right)$
$+2 A /(11 \pi) \cos \left(2 \pi 11 f_{0} t\right)$



## Example: cont'd

clear all
$\mathrm{T}=1$;
A = 1;
$\mathrm{t}=-1: 0.01: 1$;
n_max = 11;
$s=\left(A^{*} \operatorname{square}\left(2 * p i / T^{*}(t+T / 4)\right)+A\right) / 2 ;$
figure(1)
plot(t, s);
grid
axis([0 $\left.\begin{array}{llll}0 & 1 & -0.2 & 1.2\end{array}\right]$ );
-The matlab code for plotting and evaluating the Fourier Series Expansion
-This code builds the series incrementally
using the "for" loop

- Make sure you study this code!!
s_e = A/2*ones(size(t));
for $n=1: 2: n \_m a x$
$s^{\prime} e=s_{-} e+(-1)^{\wedge}((n-1) / 2)$ * $2 * A /(n * p i) * \cos \left(2^{*} p i * n / T^{*} t\right)$;
end
figure(2)
plot(t, s,'b-', t, s_e,'r--')
axis([0 1 - 0.2 1.2]);
legend('original $s(t) '$, 'up to $n=11 ')$;
grid


## Notes Previous Example

- The more terms included in the series expansion $\rightarrow$ the closer the representation to the original $s(t)$
- i.e. comparing $s(t)$ with s_e( $n=n *)$, the greater the $n *$ the closer the representation is
- How to measure "closeness"?
- Answer: Let's use power!!


## Power Calculation Using Fourier Series Expansion

- Rule: if $\mathbf{s}(\mathbf{t})$ is represented using Fourier Series expansion, then its power can be calculated using:

$$
\begin{aligned}
P_{s}=\frac{1}{T} \int_{0}^{T}|s(t)|^{2} d t & =\frac{A_{0}{ }^{2}}{4}+\frac{1}{2} \sum_{n=1}^{\infty}\left[A_{n}{ }^{2}+B_{n}{ }^{2}\right] \\
& =\frac{A_{0}{ }^{2}}{4}+\frac{1}{2} \sum_{n=1}^{\infty} C_{n}{ }^{2}
\end{aligned}
$$

## Power Calculation Using Fourier Series Expansion (2) <br> - The previous result is based on the following two facts:

- (1) For $f(t)=$ constant
$\rightarrow$ power of $f(t)=$ constant $^{2}$

Proof:

$$
\begin{aligned}
\text { power } & =1 / \mathrm{T} \times \int_{0}{ }^{\mathrm{T}} \text { constant }{ }^{2} \mathrm{dt} \\
& =1 / \mathrm{T} \times \text { constant }^{2} \times \mathrm{T} \\
& =\text { constant }^{2} \text { Watts }
\end{aligned}
$$

## Power Calculation Using Fourier Series Expansion (3)

- The previous result is based on the following facts (continued):
- (2) For $f(t)=A \cos \left(2 \pi n f_{0} t+\theta\right)$
$\rightarrow$ power of $f(t)=A^{2} / 2$

Proof:

$$
\begin{aligned}
& P_{f}=\frac{1}{T} \int_{0}^{T}|f(t)|^{2} d t=\frac{A^{2}}{T} \int_{0}^{T} \cos ^{2}\left(2 \pi n f_{0} t+\theta\right) d t \\
&=\frac{A^{2}}{T} \int_{0}^{T}\left[\frac{1}{2}+\frac{1}{2} \cos \left(4 \pi n f_{0} t+2 \theta\right)\right] d t \\
&=\frac{A^{2}}{T}\left[\frac{T}{2}+0\right]=\frac{A^{2}}{2} \\
& \text { Dr. Ashraf S. Hasan Mahmoud }
\end{aligned}
$$

## Example 2:

- Problem: What is the power of the signal $\mathbf{s}(\mathrm{t})$ used in previous example? And find $n *$ such that the power contained in s_e( $n=n^{*}$ ) is $\mathbf{9 5 \%}$ of that existing in $\mathbf{s}(\mathrm{t})$ ?
- Solution:

Let the power of $\mathbf{s}(\mathbf{t})$ be given by $\mathbf{P}_{\mathbf{s}}$

$$
P_{s}=\frac{1}{T} \int_{0}^{T}|S(t)|^{2} d t=\frac{1}{T} \times A^{2} \times \frac{T}{2}=\frac{A^{2}}{2}=0.5 A^{2}
$$

## Example 2: cont'd

- Now it is desired to compute the power using the Fourier Series Expansion
- What is the power in s_e( $n=0)=A / 2$ ?
- Ans: we apply the power formula:

$$
\begin{aligned}
P_{s_{-} e(n=0)} & =\frac{1}{T} \int_{0}^{T}\left|S_{-} e(n=0)\right|^{2} d t \\
& =\frac{1}{T} \times \frac{A^{2}}{4} \times T=\frac{A^{2}}{4}=0.25 A^{2}
\end{aligned}
$$

Example 2: cont'd

- What is the power in

$$
\text { s_e(n=1) }=A / 2+2 A / \pi \cos \left(2 \pi f_{0} t\right)
$$

- Ans: we can use the result on slide Power


## Calculation Using Fourier Series

## Expansion:

$$
\begin{aligned}
P_{s_{-} e(n=1)} & =\frac{1}{T} \int_{0}^{T}\left|s_{-} e(n=1)\right|^{2} d t=\frac{A^{2}}{4}+\frac{2 A^{2}}{\pi^{2}} \\
& =\left(\frac{1}{4}+\frac{2}{\pi^{2}}\right) A^{2}=0.4526 A^{2}
\end{aligned}
$$

Example 2: cont'd

- What is the power in

$$
\begin{gathered}
s \_e(n=3)=A / 2+2 A / \pi \cos \left(2 \pi f_{0} t\right)- \\
2 A /(3 \pi) \cos \left(2 \pi 3 f_{0} t\right)
\end{gathered}
$$

- Ans: we can use the result on slide Power Calculation Using Fourier Series Expansion:

$$
\begin{aligned}
P_{s_{-}(n=3)} & =\frac{1}{T} \int_{0}^{T}\left|s_{-} e(n=3)\right|^{2} d t=\frac{A^{2}}{4}+\frac{2 A^{2}}{\pi^{2}}+\frac{2 A^{2}}{9 \pi^{2}} \\
& =\left(\frac{1}{4}+\frac{2}{\pi^{2}}+\frac{2}{9 \pi^{2}}\right) A^{2}=0.4752 A^{2}
\end{aligned}
$$

Example 2: cont'd

- What is the power in

$$
\begin{gathered}
s_{-} \mathrm{e}(\mathrm{n}=5)=A / 2+2 A / \pi \cos \left(2 \pi f_{0} t\right)- \\
2 A /(3 \pi) \cos \left(2 \pi 3 f_{0} t\right)+ \\
2 A /(5 \pi) \cos \left(2 \pi 5 f_{0} t\right)
\end{gathered}
$$

- Ans: we can use the result on slide Power Calculation Using Fourier Series Expansion:

$$
\begin{aligned}
P_{s_{-}(n=5)} & =\frac{1}{T} \int_{0}^{T}\left|s_{-} e(n=5)\right|^{2} d t=\frac{A^{2}}{4}+\frac{2 A^{2}}{\pi^{2}}+\frac{2 A^{2}}{9 \pi^{2}}+\frac{2 A^{2}}{25 \pi^{2}} \\
& =\left(\frac{1}{4}+\frac{2}{\pi^{2}}+\frac{2}{9 \pi^{2}}+\frac{2}{25 \pi^{2}}\right) A^{2}=0.4833 A^{2}
\end{aligned}
$$

## Example 2: cont'd

- What is the power in
$s_{-} e(n=\infty)=\frac{A}{2}+\frac{2 A}{\pi} \sum_{n=1,3,5}^{\infty} \frac{(-1)^{(n-1) / 2}}{n} \times \cos \left(2 \pi n f_{0} t\right)$
- Ans: we can use the result on slide Power Calculation Using Fourier Series Expansion:

$$
\begin{aligned}
P_{s_{-} e(n=\infty)} & =\frac{1}{T} \int_{0}^{T}\left|s_{-} e(n=\infty)\right|^{2} d t=\frac{A^{2}}{4}+\frac{2 A^{2}}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{n^{2}} \\
& =\left(\frac{1}{4}+\frac{2}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{n^{2}}\right) A^{2}=0.5 A^{2}
\end{aligned}
$$

This the EXACT SAME power contained in $s(t)$ This is expected since $s(t)$ is $100 \%$ represented by s_e $(n=\infty)$

Example 2: cont'd

| s_e( $\mathrm{n}=\mathrm{k}$ ) | Expression | Power | \% Power ${ }^{+}$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{k}=0$ | A/2 | $0.25 \mathrm{~A}^{2}$ | $\begin{gathered} \hline\left(0.25 a^{2}\right) /\left(0.55^{2}\right) \\ =50 \% \end{gathered}$ |
| $\mathrm{k}=1$ | $\mathrm{A} / 2+2 \mathrm{~A} / \pi \cos \left(2 \pi \mathrm{f}_{0} \mathrm{t}\right)$ | $0.4526 \mathrm{~A}^{2}$ | $\begin{aligned} & \left(0.4526 A^{2}\right) /\left(0.5 A^{2}\right) \\ & =90.5 \% \end{aligned}$ |
| $k=2^{*}$ | $\mathrm{A} / 2+2 \mathrm{~A} / \pi \cos \left(2 \pi \mathrm{f}_{0} \mathrm{t}\right)$ | $0.4526 \mathrm{~A}^{2}$ | 90.5\% |
| $k=3$ | $\begin{aligned} & \mathrm{A} / 2+2 \mathrm{~A} / \pi \cos \left(2 \pi \mathrm{f}_{0} \mathrm{t}\right)- \\ & 2 \mathrm{~A} /(3 \pi) \cos \left(2 \pi 3 \mathrm{f}_{0} \mathrm{t}\right) \end{aligned}$ | $0.4752 \mathrm{~A}^{2}$ | 95.0\% |
| $k=5$ | $\mathrm{A} / 2+2 \mathrm{~A} / \pi \cos \left(2 \pi \mathrm{f}_{0} \mathrm{t}\right)-$ <br> $2 \mathrm{~A} /(3 \pi) \cos \left(2 \pi 3 \mathrm{f}_{0} \mathrm{t}\right)+$ <br> $2 \mathrm{~A} /(5 \pi) \cos \left(2 \pi 5 \mathrm{f}_{0} \mathrm{t}\right)$ | $0.4833 \mathrm{~A}^{2}$ | 96.7\% |

[^0]
## Example 2: cont'd

- Therefore, s_e( $\mathrm{n}=\mathrm{n}^{*}$ ) such that $95 \%$ of power is contained $\rightarrow n^{*}=3$


## Power Spectral Density Function

- Fourier Series Expansion:
- Specifies all the basic harmonics contained in the original function $s(t)$
- $\mathrm{C}_{\mathrm{n}}{ }^{2} / 2=\left(\mathrm{A}_{\mathrm{n}}{ }^{2}+\mathrm{B}_{\mathrm{n}}{ }^{2}\right) / 2$ determines the power contribution of the nth harmonic with frequency $\mathrm{nf}_{0}$
- The power Spectral Density function is a function specifying: how much power is contributed by a given frequency


## Power Spectral Density Function (2)

- Typical PSD function for periodic signals:

Periodic $s(t)$


## Power Spectral Density Function (3)

- A mathematical expression for PSD(f) can be written as

$$
\operatorname{PSD}(f)=\left\{\begin{array}{cc}
A_{0}{ }^{2} / 4 \quad f=0 \\
C_{n}^{2} / 2 \quad f=n \times f_{0} \\
0 \quad \text { otherwise }
\end{array}\right.
$$

- Another way (more compact) of writing PSD(f) is as follows:

$$
\operatorname{PSD}(f)=\frac{A_{0}{ }^{2}}{4} \times \delta(f)+\frac{1}{2} \sum_{n=1}^{\infty} C_{n}^{2} \times \delta\left(f-n f_{0}\right)
$$

where $\delta(t)$ is defined by

$$
\delta(f)= \begin{cases}1 & f=0 \\ 0 & f \neq 0\end{cases}
$$

## Power Spectral Density Function

(4)

- $\delta(f)$ is referred to as the dirac function or unit impulse function



## Note on the PSD Function

- PSD function has units of Watts/Hz
- For periodic signals $\rightarrow$ PSD is a discrete function - defined for integer multiples of the fundamental frequency
- Specifies the power contribution of every harmonic component $\mathbf{C}_{\mathbf{n}}{ }^{2} / \mathbf{2} \leftrightarrow \mathbf{n f}_{\mathbf{0}}$
- The separation between the discrete components is at least $f_{0}$
- It is exactly $f_{0}$ if all $C_{n}$ 's are not zeros
- E.g. for the previous $s(t)$ example, $\mathrm{C}_{\mathrm{n}}=0$ for even $\mathbf{n} \rightarrow$ separation $=\mathbf{2 f} \mathbf{f}_{\mathbf{0}}$


## Note on the PSD Function (2)

- To calculate the total power of signal $\rightarrow$

Integrate PSD over all contained frequencies

- For discrete PSD: integration = summation
- Therefore total power of $\mathbf{s}(\mathbf{t})$,

$$
P_{s}=\left(A_{n} / 2\right)^{2}+\Sigma C_{n}^{2} / 2 \text { in Watts }
$$

## Example 3:

- Find the PSD function of the periodic signal $s(t)$ considered in Example 1.
- From Example $\mathbf{1 , s} \mathbf{s}(\mathbf{t})$ is given by

$$
s(t)=\frac{A}{2}+\frac{2 A}{\pi} \sum_{n=1,3,5}^{\infty} \frac{(-1)^{(n-1) / 2}}{n} \times \cos \left(2 \pi n f_{0} t\right)
$$

- Using Example 2:
- $\quad$ Power at the zero frequency $=(A / 2)^{2}=A^{2} / 4$
- Power at the nth harmonic ( $n$ odd) is equal to $2 A^{2} /(n \pi)^{2}$
- Power at the nth harmonic ( $n$ even) is zero
- Therefore the PSD function is given by

$$
\operatorname{PSD}(f)=\frac{A^{2}}{4} \times \delta(f)+\frac{2 A^{2}}{\pi^{2}} \sum_{n=1,3,5}^{\infty} \frac{1}{n^{2}} \times \delta\left(f-n f_{0}\right)
$$

## Example 3: cont'd

- The PSD is plotted as shown ( $\mathrm{A}=1, \mathrm{~T}=1$ )



## Example 3: cont'd

- Matlab Code to plot PSD

```
clear all
T = 1
A=1
t = -1:0.01:1;
n_max = 11
Frequency = [0:1:n_max];
PwrSepctralD = zeros(size(Frequency));
% Record the DC term power at f = 0
PwrSepctralD(1) = (A/2)^2;
% Record the nth harmonic power at f = nf0
for n=1:2:n_max
    PwrSepctralD(n+1) = (2*A/(n*pi))^2 / 2;
end
figure(1)
```

The "stem" function is typically used to plot discrete functions

```
stem(Frequency, PwrSepctralD,'rx');
title('Power Spectral Density function for \(s(t)-A=1, T=1 ')\);
xlabel('frequency - Hz');
grid
3/6/2010

\section*{Example 4:}

This is a typical exam question
- Problem: Consider the periodic half-wave rectified signal \(s(t)\) depicted in figure.
- Write a mathematical expression for \(s(t)\)
- Calculate the Fourier Series Expansion for \(s(t)\)
- Calculate the total power for \(s(t)\)
- Find \(n^{*}\) such that s_e(n*) has 95\% of the total power
- Determine the PSD function for \(s(t)\)
- Plot the PSD function for \(s(t)\)


\section*{Example 4: cont'd}
- Answer:
(a) To write a mathematical expression for \(s(t)\), remember that the general form of a sinusoidal function is given by
\(A \cos (2 \pi X\) Freq \(X t)\), or \(A \cos (2 \pi /\) Period \(X t)\)

Therefore \(s(t)\) is given by
\[
\begin{array}{rlrl}
s(t) & =A \cos (2 \pi / T t) & -T / 4<t \leq T / 4 \\
& =0 & & T / 4<t \leq 3 T / 4
\end{array}
\]

\section*{Example 4: cont'd}
- Answer:
(b) The F.S.E of \(\mathbf{s}(\mathbf{t}): \quad s(t)=\frac{A_{0}}{2}+\sum_{n=1}^{\infty}\left[A_{n} \cos \left(2 \pi m f_{0} t\right)+B_{n} \sin \left(2 \pi f_{0} t\right)\right]\) The DC term is given by
\[
\begin{aligned}
A_{0} & =\frac{2}{T} \int_{-T / 4}^{T / 4} s(t) d t=\frac{2 A}{T} \times \int_{-T / 4}^{T / 4} \cos (2 \pi t / T) d t \\
& =\frac{A}{\pi} \times\left.\sin (2 \pi t / T)\right|_{t=-T / 4} ^{t=T / 4}=\frac{A}{\pi}[\sin (\pi / 2)-\sin (-\pi / 2)] \\
& =\frac{2 A}{\pi}
\end{aligned}
\]


The An term is given by (remember \(\mathbf{1 / T}=\mathbf{f}_{\mathbf{0}}\) )
\(A_{n}=\frac{2}{T} \int_{-T / 4}^{T / 4} s(t) \cos \left(2 \pi n f_{0} t\right) d t=\frac{2 A}{T} \times \int_{-T / 4}^{T / 4} \cos (2 \pi t / T) \cos \left(2 \pi n f_{0} t\right) d t\)
\(=\frac{2 A}{T} \times\left.\left[\frac{\sin \left(2 \pi(n+1) f_{0} t\right)}{4 \pi(n+1) f_{0}}+\frac{\sin \left(2 \pi(n-1) f_{0} t\right)}{4 \pi(n-1) f_{0}}\right]\right|_{t=-T / 4} ^{t=T / 4}\) For \(\mathbf{n} \neq \mathbf{1}\)
\(=\frac{A}{\pi} \times\left[\frac{\cos (n \pi / 2)}{(n+1)}+\frac{-\cos (n \pi / 2)}{(n-1)}\right]\)

\section*{Example 4: cont'd}

\section*{But}
\[
\begin{aligned}
\cos (n \pi / 2) & =0 & & n=\text { odd, } n \neq 1 \\
& =(-1)^{(1+n / 2)} & & n=\text { even }
\end{aligned}
\]

Therefore
\[
\begin{aligned}
A_{n} & =\frac{A}{\pi} \times\left[\frac{(-1)^{(1+n / 2)}}{(n+1)}+\frac{(-1)(-1)^{(1+n / 2)}}{(n-1)}\right] & & \text { For } \mathbf{n} \text { even } \\
& =0 & & \text { For } \mathbf{n} \text { odd, } \mathbf{n} \neq \mathbf{1}
\end{aligned}
\]

\section*{Example 4: cont'd}

The expression for \(A_{n}\) (for even \(n\) ) can be further simplified to
\[
\begin{aligned}
A_{n} & =\frac{A}{\pi} \times\left[\frac{(-1)^{(1+n / 2)}}{(n+1)}+\frac{(-1)(-1)^{(1+n / 2)}}{(n-1)}\right] \\
& =\frac{A}{\pi} \times\left[\frac{(-1)^{(1+n / 2)}(n-1)+(-1)(-1)^{(1+n / 2)}(n+1)}{(n+1)(n-1)}\right] \\
& =\frac{A}{\pi\left(n^{2}-1\right)^{(1+1)}} \times\left[(-1)^{(1+n / 2)}(n-1)-(-1)^{(1+n / 2)}(n+1)\right] \\
& =\frac{2 A(-1)^{(1+n / 2)}}{\pi\left(n^{2}-1\right)_{\text {br. Astraat } 5 \text {. Hasan Mahmoud }} \quad \text { For } \mathbf{n} \text { even }}
\end{aligned}
\]

\section*{Example 4: cont'd}

An is still not completely specified - we still need to calculate it for \(\mathrm{n}=1\); in other words we need to calculate A1:
\(A_{n=1}=\frac{2}{T} \int_{-T / 4}^{T / 4} s(t) \cos \left(2 \pi \times 1 \times f_{0} t\right) d t=\frac{2 A}{T} \times \int_{-T / 4}^{T / 4} \cos (2 \pi t / T) \cos \left(2 \pi f_{0} t\right) d t\)
Therefore:
\[
\begin{aligned}
A_{1} & =\frac{2 A}{T} \times \int_{-T / 4}^{T / 4} \cos ^{2}\left(2 \pi f_{0} t\right) d t \\
& =\frac{2 A}{T} \times\left[\frac{t}{2}+\frac{1}{4 \times 2 \pi f_{0}} \sin \left(4 \pi f_{0} t\right)\right]_{t=-T / 4}^{t=T / 4}=\frac{2 A}{T} \times\left[\frac{T}{4}+\frac{\sin (\pi)-\sin (-\pi)}{8 \pi f_{0}}\right] \\
& =\frac{A}{2} \quad \quad \text { Dr. Ashraf S. Hasan Mahmoud }
\end{aligned}
\]

\section*{Example 4: cont'd}

This mean \(A_{n}\) is equal to the following:
\(A_{n}=\left\{\begin{array}{l}2 A / \pi \\ 0 \\ A / 2 \\ 2 A(-1)^{(1+n / 2)}\end{array}\right.\)
\(\mathbf{n}=\mathbf{0}\)
n odd, \(\mathrm{n} \neq 1\)
----------- \(\quad n=2,4,6, \ldots\)
\(\pi\left(\mathbf{n}^{2}-1\right)\)

The above expression specifies \(\mathrm{A}_{\mathbf{n}}\) for ALL POSSIBLE values of \(\mathbf{n} \rightarrow\) specification is complete

\section*{Example 4: cont \\ Remember: \\ 

We still need to compute \(\mathbf{B}_{\mathbf{n}}\) :
\[
\begin{aligned}
B_{n} & =\frac{2}{T} \int_{-T / 4}^{T / 4} s(t) \sin \left(2 \pi n f_{0} t\right) d t=\frac{2 A}{T} \times \int_{-T / 4}^{T / 4} \cos (2 \pi t / T) \sin \left(2 \pi n f_{0} t\right) d t \\
& =\frac{2 A}{T} \times\left.\left[\frac{\cos \left(2 \pi(n+1) f_{0} t\right)}{4 \pi(n+1) f_{0}}-\frac{\cos \left(2 \pi(n-1) f_{0} t\right)}{4 \pi(n-1) f_{0}}\right]\right|_{t=-T / 4} ^{t=T / 4} \quad \text { For } \mathbf{n} \neq \mathbf{1} \\
& =\frac{A}{2 \pi} \times\left[\frac{-\cos (\pi / 2(n+1))+\cos (-\pi / 2(n+1)))}{(n+1)}-\frac{\cos (\pi / 2(n-1))-\cos (-\pi / 2(n-1))}{(n-1)}\right] \\
& =0 \quad \text { For } \mathbf{n} \neq \mathbf{1}
\end{aligned}
\]

\section*{Example 4: cont'd}
\(B_{n}\) is still NOT completely specified - we still need to calculate it for \(\mathrm{n}=\mathbf{1}\); in other words we need to calculate \(\mathrm{B}_{1}\) :
\(B_{n=1}=\frac{2}{T} \int_{-T / 4}^{T / 4} s(t) \sin \left(2 \pi \times 1 \times f_{0} t\right) d t=\frac{2 A}{T} \times \int_{-T / 4}^{T / 4} \cos (2 \pi t / T) \sin \left(2 \pi f_{0} t\right) d t\)

\section*{Therefore:}
\[
\begin{aligned}
B_{1} & =\frac{2 A}{T} \times \int_{-T / 4}^{T / 4} \cos \left(2 \pi f_{0} t\right) \sin \left(2 \pi f_{0} t\right) d t=\frac{A}{T} \times \int_{-T / 4}^{T / 4} \sin \left(4 \pi f_{0} t\right) d t \\
& =\frac{-A}{4 \pi} \times\left.\cos \left(4 \pi f_{0} t\right)\right|_{t=-T / 4} ^{t=T / 4}=\frac{-A}{4 \pi} \times[\cos (\pi)-\cos (-\pi)] \\
& =0 \quad \rightarrow \quad \underset{\text { Dr. Ashraf S. Hasan Mahmoud }}{\text { This means } \mathbf{B}_{\mathbf{n}}=\mathbf{0} \text { for all } \mathbf{n}}
\end{aligned}
\]

\section*{Example 4: cont'd}
- To summarize:
\[
A_{n}= \begin{cases}2 A / \pi & n=0 \\ 0 & n \text { odd, } n \neq 1 \\ A / 2 & n=1 \\ 2 A(-1)^{(1+n / 2)} & \\ \hdashline \pi\left(n^{2}-1\right) & n=2,4,6, \ldots\end{cases}
\]

And
\[
B_{n}=0 \quad \text { for all } n
\]
- Having computed \(A_{n}\) and \(B_{n}\) we are now in a position to write the Fourier Series Expansion for \(\boldsymbol{s}(\mathrm{t})\)

\section*{Example 4: cont'd}
- The Fourier Series Expansion for \(s(t)\) is given by
\[
\begin{aligned}
& s(t)=\frac{A_{0}}{2}+\sum_{n=1}^{\infty}\left[A_{n} \cos \left(2 \pi n f_{0} t\right)+B_{n} \sin \left(2 \pi n f_{0} t\right)\right] \\
& =\frac{A}{\pi}+\frac{A}{2} \cos \left(2 \pi f_{0} t\right)+\frac{2 A}{\pi} \sum_{n=2,4,6}^{\infty} \frac{(-1)^{(1+n / 2)}}{n^{2}-1} \cos \left(2 \pi n f_{0} t\right) \\
& \text { The } \mathrm{C}_{\mathrm{n}} \text { terms (there is a typo in the textbook) are as follows: } \\
& \mathrm{C}_{0}=\mathrm{A} / \pi \\
& 2 \mathrm{~A}(-1)^{(1+\mathrm{n} / 2)} \\
& \mathrm{C}_{1}=\mathrm{A} / 2 \\
& C_{n}=-\cdots-\cdots\left(n^{2}-1\right), n=2,4,6 \text {, }
\end{aligned}
\]

\section*{Example 4: cont'd}


\section*{Example 4: cont'd}
- The total power of \(s(t)\) is given by:
\[
\begin{aligned}
P_{s} & =\frac{1}{T} \int_{-T / 4}^{3 T / 4}|s(t)|^{2} d t=\frac{A^{2}}{T} \times \int_{-T / 4}^{T / 4} \cos ^{2}(2 \pi t / T) \\
& =\frac{A^{2}}{T} \times\left.\left[\frac{t}{2}+\frac{\sin (4 \pi t / T)}{8 \pi t / T}\right]\right|_{t=-T / 4} ^{t=T / 4} \\
& =\frac{A^{2}}{4}
\end{aligned}
\]

Therefore total power of \(s(t)=0.25 A^{2}\)

\section*{Example 4: cont'd}
- To find \(n *\) such that power of s_e( \(n=n *\) ) \(=\mathbf{9 5 \%}\) of total power:
\begin{tabular}{|c|c|c|c|}
\hline s_e(n=k) & Expression & Power & \% Power \({ }^{+}\) \\
\hline \(\mathrm{k}=0\) & A/ \(\pi\) & \(0.1013 \mathrm{~A}^{2}\) & \[
\begin{gathered}
\left(0.1013 a^{2}\right) /(0.25 \\
\left.A^{2}\right)= \\
40.5 \%
\end{gathered}
\] \\
\hline \(\mathrm{k}=1\) & \(\mathrm{A} / \pi+\mathrm{A} / 2 \cos \left(2 \pi \mathrm{f}_{0} \mathrm{t}\right)\) & \(0.2263 \mathrm{~A}^{2}\) &  \\
\hline \(\mathrm{k}=2\) & \[
\begin{aligned}
& \mathrm{A} / \pi+\mathrm{A} / 2 \cos \left(2 \pi \mathrm{f}_{0} \mathrm{t}\right)+ \\
& 2 \mathrm{~A} /(3 \pi) \cos \left(2 \pi 2 \mathrm{f}_{0} \mathrm{t}\right) \\
& \hline
\end{aligned}
\] & \(0.2488 \mathrm{~A}^{2}\) & \[
\begin{array}{|c|}
\hline\left(0.2488 \alpha^{2 /\left(0.25 \alpha^{2}\right)}\right. \\
99.5 \% \\
\hline
\end{array}
\] \\
\hline
\end{tabular}

Therefore \(n^{*}=2 \rightarrow\) power of s_e \((n=2)=0.2488 A^{2}\) which is \(99.5 \%\) of total power of \(s(\dagger)\)

\section*{Example 4: cont'd}
- The PSD function for \(s(t)\) is as follows:
- Power for DC term \(=(A / \pi)^{2}\)
- Power for harmonic at \(f=f_{0}:(A / 2)^{2} / 2=A^{2} / 8\)
- Power for harmonic at \(\mathbf{f}=\mathbf{n f}_{\mathbf{0}}(\mathrm{n}=\mathbf{2 , 4 , 6}, \ldots)\) :
\(\left[2 A /\left(\pi\left(n^{2}-1\right)\right)\right]^{2} / 2=2 A^{2} /\left(\pi\left(n^{2}-1\right)\right)^{2}\)
- Therefore PSD function equals to
\[
\operatorname{PSD}(f)=\left(\frac{A}{\pi}\right)^{2} \delta(f)+\frac{A^{2}}{8} \delta\left(f-f_{0}\right)+\frac{2 A^{2}}{\pi^{2}} \sum_{n=2,4,6}^{\infty} \frac{\delta\left(f-n f_{0}\right)}{\left(n^{2}-1\right)^{2}}
\]

\section*{Example 4: cont'd}

Plot of
The PSD function for \(s(t)\)

\section*{Fourier Transform}
- Fourier Series Expansion analysis is applicable for PERIODIC signals ONLY
- There are important signals that are not periodic such as
- Your voice waveform
- Pulse signal \(\mathbf{p ( t )}\) - used for modulation and transmission
- Examples: \(\mathbf{p}_{1}(\mathbf{t})\) and \(\mathbf{p}_{\mathbf{2}}(\mathbf{t})\)



\section*{Fourier Transform (2)}
- How to find the frequency content of such signals?
- Use FOURIER TRANSFORM
\[
\begin{aligned}
& X(f)=\int_{-\infty}^{\infty} x(t) e^{-2 \pi j f t} d t \\
& x(t)=\int_{-\infty}^{\infty} X(f) e^{2 \pi j f t} d f \\
& \text { Dr. Ashraf S. Hasan Mahmoud }
\end{aligned}
\]

\section*{Notes on Fourier Transform}
- F.T describes a two-way transformation
\[
x(t) \leftarrow \rightarrow X(f)
\]
where \(x(t)\) is the time representation of the signal, while \(X(f)\) is the frequency representation of the signal
- \(\mathbf{X}(f)\) is defined on a continuous range of frequencies
- All frequencies within the range of \(\mathbf{X}(\mathrm{f})\) where \(\mathbf{X}(\mathrm{f})\) is not zero contribute towards building \(\mathrm{x}(\mathrm{t})\)

\section*{Notes on Fourier Transform (2)}
- The magnitude of the contribution of a particular frequency \(f^{*}\) in \(x(t)\) is proportional to \(|X(f *)|^{2}\)
- Example: Consider the F.T. pair shown below -
 contribute significantly more compared to frequencies belonging to \((1 / \tau, \infty)\) or \((-\infty,-1 / \tau)\)

- If \(\mathbf{x}(\mathbf{t})\) is time-limited \(\rightarrow \mathbf{X}(\mathbf{f})\) is not frequency-limited
- i.e. the range of \(X(f)=(-\infty, \infty)\)
- If \(\mathbf{x}(\mathrm{t})\) is a real-valued symmetric \(\rightarrow\) \(X(f)\) is real-valued

\section*{Relation between Fourier Series Expansion and Fourier Transform}
- Consider the following two signals:


\section*{Relation between Fourier Series Expansion and Fourier Transform (2)}
- The separation between spectral lines for a periodic signal is 1/T
- As T \(\rightarrow\) infinity and \(s(t)\) becomes non periodic \(\rightarrow\) the separation between spectral lines \(\rightarrow\) zero (i.e. it becomes continuous)

Example 5:
- Problem: Consider the square pulse function shown in figure:
- Write a mathematical expression for \(p(t)\)
- Find the Fourier transform for \(p(t)\)
- Plot P(f)


\section*{Example 5: cont'd}
- Answer: p(t) can be expressed as
\[
\begin{aligned}
\mathbf{p}(\mathbf{t}) & =\mathbf{A} & & |\mathbf{t}| \leq \tau / 2 \\
& =\mathbf{0} & & \text { otherwise }
\end{aligned}
\]

The F.T. for \(p(t), P(f)\) is given by
\[
P(f)=\int_{-\infty}^{\infty} p(t) e^{-2 \pi j f t} d t
\]

Example 5: cont'd
- Which is equal to
\[
\begin{aligned}
P(f) & =\int_{-\infty}^{\infty} p(t) e^{-2 \pi j f t} d t=\int_{-\tau / 2}^{\tau / 2} A e^{-2 \pi j f t} d t \\
& =\frac{A}{-2 \pi j f} \int_{-\tau / 2}^{\tau / 2} e^{-2 \pi j f t} d t=-\frac{A}{2 \pi j f} \times\left(e^{-\pi j \tau \tau}-e^{\pi j f \tau}\right) \\
& =\frac{A}{\pi f} \times \frac{\left(e^{\pi j \tau}-e^{-\pi j f \tau}\right)}{2 j} \\
& =A \tau \frac{\sin (\pi f \tau)}{\pi f \tau} \quad \begin{array}{l}
\text { Remember: Euler identity }: \\
\mathrm{e}^{\mathrm{j} x=\cos (x)+\mathrm{j} \sin (x), \mathrm{OR}} \begin{array}{l}
\cos (x)=\left(\mathrm{e}^{\mathrm{j} x}+\mathrm{e}^{-j x}\right) / 2 \\
\sin (x)=\left(\mathrm{e}^{\mathrm{j} x}-\mathrm{e}^{-\mathrm{j} x}\right) /(2 \mathrm{j})
\end{array} \\
10
\end{array}
\end{aligned}
\]

\section*{Example 5: cont'd}
- \(\mathbf{P ( f )}\) plot for \(\mathbf{A}=1\) and \(\tau\) = 1
- Note:
- \(P(f)\) is define on \((-\infty, \infty)\)
- \(P(f)\) is continuous
- \(\mathbf{P}(\mathbf{f})=\) ZERO for \(\mathbf{f}=\mathbf{n} / \tau\)
- For practical pulses \(\mathbf{P ( f )}\) approaches zero as \(\mathbf{f} \rightarrow \pm \infty\)
- Most of the energy of \(p(t)\) is contained in the period of \((-1 / \tau, 1 / \tau)\)
```


[^0]:    $3 / 6 / 201{ }^{+}{ }^{+}$\% por $\mathrm{F}=2$ power of $\mathrm{s}=\mathrm{e}(\mathrm{n}=\mathrm{k})$ relative to original power in $\mathrm{s}(\mathrm{t})$ which is equal to $0.5 \mathrm{~A}^{2}$
    $3 / 6 / 201$ * For $\mathrm{k}=2$, the expression $\mathrm{s}_{-} \mathrm{e}(\mathrm{n}=\mathrm{k})$ is the same as that for $\mathrm{s}_{-} \mathrm{e}(\mathrm{k}=1)$. Why?

