KFUPM - COMPUTER ENGINEERING DEPARTMENT COE-341 - Data and Computer Communication
 Quiz 06 - Take home quiz - Due June 7 ${ }^{\text {th }}, 2009$ - in class.

Problem: Consider the two back-to-back links AB and BC shown in Figure. The following specifies the information for each of the links:

Link AB : distance $=4000 \mathrm{~km}$; propagation $=5 \mu \mathrm{sec} / \mathrm{km}$, protocol $=$ stop-and-wait, $\mathrm{R}_{\mathrm{AB}}=$ unknown.
Link BC : distance $=2000 \mathrm{~km}$; propagation $=5 \mu \mathrm{sec} / \mathrm{km}$, protocol $=$ sliding window protocol with $\mathrm{W}=7, \mathrm{R}_{\mathrm{BC}}$ $=200 \mathrm{~kb} / \mathrm{s}$.

Assume Tack and Tproc are negligible. Data frames are 1000 bits long.
a) ($\mathbf{3 0}$ points) For link BC, calculate the efficiency, the throughput in bits per second, and the throughput in frames per second?
b) (20 points) Calculate the minimum rate that link $A B$ should have so that it does not cause frames to overflow at node B.
c) (bonus 20 points) Plot the throughput of link AB in frames per second as a function of the link transmission rate $R _A B$ in bits/sec. Take $R _A B$ to be anywhere from 0 to $1 \mathrm{Mb} / \mathrm{s}$. Let the x-axis for the plot be R in kb / s.

