

Term	Units	Definition	
Data element	Bits	A single binary one or zero	
Data rate	Bits per second (bps)	The rate at which data elements are transmitted	
Signal element	Digital: a voltage pulse of constant amplitude.	That part of a signal that occupies the shortest interval of a signaling code	
	Analog: a pulse of constant frequency, phase, and amplitude.		
Signaling rate or	Signal elements per second	The rate at which signal	

• The more transitions per bit time, the greater is the required bandwidth of the encoding scheme				
Encoding	Minimum	10101010	Maximum	
NRZ-L	0 (all 0s or 1s)	1.0	1.0	
NRZI	0 (all 0s)	0.5	1.0 (all 1s)	
Bipolar-AMI	0 (all 0s)	1.0	1.0	
Pseudoternary	0 (all 1s)	1.0	1.0	
Manchester	1.0 (10101)	1.0	2.0 (all 0s or 1s)	
Differential Manchester	1.0 (all 1s)	1.5	2.0 (all 0s)	

Performance – Bandwidth Efficiency

Bandwidth Efficiency for various digital-toanalog encoding schemes.

	r = 0	r = 0.5	r = 1.0
ASK	1.0	0.67	0.5
FSK			
Wideband ($\Delta F \gg R$)	~0	~0	~0
Narrowband ($\Delta F \approx f_c$)	1.0	0.67	0.5
PSK			
Multilevel signaling			
M=4, L=2	2.00	1.33	1.00
M=8, L=3	3.00	2.00	1.5
M=16, L=4	4.00	2.67	2.00

Example: Problem 5-11 -Solution

Solution: $s(t) = d1(t)cos(\omega_c t) + d2(t)sin(\omega_c t)$ Use the following identities: $\cos(2\alpha) = 2\cos^2(\alpha) - 1; \sin^2(\alpha) = 2\sin(\alpha)\cos(\alpha)$ For upper branch: $s(t) X \cos(\omega_c t) = d1(t)\cos(2\omega_c t) + d2(t)\sin(\omega_c t) \cos(\omega_c t)$ $= (1/2)d1(t) + (1/2)d1(t)\cos(2\omega_c t) + (1/2)d2(t)\sin(2\omega_c t)$ Use the following identities: $\cos(2\alpha) = 1 - 2\sin^2(\alpha); \sin^2(\alpha) = 2\sin(\alpha)\cos(\alpha)$ For lower branch: $s(t) X sin(\omega_c t) = d1(t) cos(\omega_c t) sin(\omega_c t) + d2(t)sin(2\omega_c t)$ $= (1/2)d1(t) \sin(2\omega_c t) + (1/2)d2(t) - (1/2)d2(t) \cos(2\omega_c t)$ All terms at $2\omega_c$ are filtered out by the low-pass filter, yielding: y1(t) = (1/2)d1(t); y2(t) = (1/2)d2(t)4/20/2009 Dr. Ashraf S. Hasan Mahmoud 62

