King Fahd University of Petroleum & Minerals Computer Engineering Dept

COE 341 – Data and Computer Communications Term 082 Dr. Ashraf S. Hasan Mahmoud Rm 22-148-3 Ext. 1724

Email: ashraf@kfupm.edu.sa

2/28/2009

Dr. Ashraf S. Hasan Mahmoud

Lecture Contents

- 1. Fourier Analysis
 - a. Fourier Series Expansion
 - b. Fourier Transform
 - c. Ideal Low/band/high pass filters

2/28/2009

Dr. Ashraf S. Hasan Mahmoud

Signals

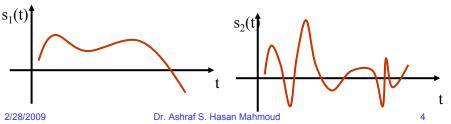
- A signal is a function representing information
 - **Voice signal microphone output**
 - Video signal camera output
 - Etc.
- **Types of Signals**
 - **Analog continuous-value continuous-time**
 - Discrete discrete-value continuous-time
 - Digital predetermined discrete levels much easier to reproduce at receiver with no errors
 - Binary only two predetermined levels: e.g. 0 and 1

2/28/2009

Dr. Ashraf S. Hasan Mahmoud

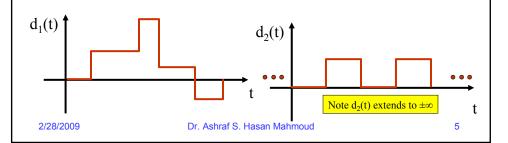
Example of Continuous-Value Continuous-time signal

 $s_1(t)$ and $s_2(t)$ are two example of analog signals



Example of Discrete-Value Continuous-time signal

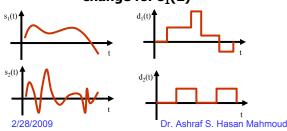
- d₁(t) and d₂(t) are two example of discrete signals
 - d₁(t) takes more than two levels
 - d₂(t) takes only two levels binary



Applies to BOTH analog and digital signals

Time Domain Representation

- <u>Time domain representation</u> we plot value (voltage, current, electric field intensity, etc.) versus time
 - Can infer rate of change (speed or frequency)
 information e.g. s₂(t) seems faster than s₁(t)
 - Using calculus terms: rate of change for s₂(t) > rate of change for s₁(2)



Applies to BOTH analog and digital signals

Frequency - Bandwidth

- s₂(t) faster than s₁(t) →
 - s₂(t) contains higher frequencies than those contained in s₁(t)
- s₁(t) and s₂(t) contain more than one frequency
 - Minimum frequency = f_{min}
 - Maximum frequency = f_{max}
- Bandwidth = Range of frequencies contained in signal

$$= \mathbf{f}_{\text{max}} - \mathbf{f}_{\text{min}}$$

2/28/2009

Dr. Ashraf S. Hasan Mahmoud

-

Applies to BOTH analog and digital signals

Frequency - Bandwidth (2)

- For our example signals, assume:
 - S1(t): fmin = 10 Hz, fmax = 500 Hz
 - S2(t): fmin = 5 Hz, fmax = 1000 Hz
- This means:
 - BW for $s_1(t) = 500 10 = 490 \text{ Hz}$
 - BW for $s_2(t) = 1000 5 = 995 \text{ Hz}$
- Note that: because s₂(t) is "faster than" s₁(t) it should contain frequencies higher than those in s₁(t)
 - E.g. s₂(t) contains frequencies (500,100] which do not exist in s₁(t)

2/28/2009

Dr. Ashraf S. Hasan Mahmoud

Applies to BOTH analog and digital signals

Frequency - Bandwidth (3)

- Consider the discrete signals d₁(t) and d₂(t)
- The function plots have points of infinite slope
 - rate of change = ∞ → frequency = ∞
- Therefore for signals that look like d₁(t) and d₂(t), fmax = ∞
- Furthermore, BW = ∞
- Example:
 - $d_2(t)$ contains frequencies from some minimum fmin Hz to fmax = ∞ Hz

2/28/2009

Dr. Ashraf S. Hasan Mahmoud

9

Example of Signal BW

- Consider the human speech
- Typically fmin ~ 100Hz
- fmax ~ 3500 Hz
- BW of the human speech signal = 3100 Hz

2/28/2009

Dr. Ashraf S. Hasan Mahmoud

Bandwidth for Systems

- For a system to respond (amplify, process, Tx, Rx, etc.) for a particular signal with all its details, the system should have an equal or greater bandwidth compared to that of the signal
- Example:
 - The system required to process s₂(t) should have a greater bandwidth than the system required to process s₁(t)

2/28/2009

Dr. Ashraf S. Hasan Mahmoud

11

Bandwidth for Systems (2)

- Example 2: consider the human ear system
 - Responds to a range of frequencies only
 - fmin = 20 Hz fmax = 20,000 Hz → BW = 19,980 Hz
 - It does not respond to sounds with frequencies outside this range
- Example 3: consider the copper wire
 - It passes (electric) signals only between a certain fmin and a certain fmax
 - The higher the quality of the wire the wider the BW
- More on Systems BW later!

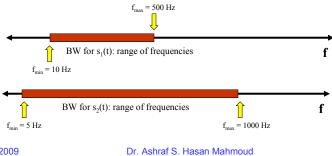
2/28/2009

Dr. Ashraf S. Hasan Mahmoud

Applies to BOTH analog and digital signals

Frequency Representation

- How to represent signals and indicate their frequency content?
- The X-axis: frequency (in Hertz or Hz)
- What is the Y-axis then? the answer will be postponed!



2/28/2009

13

Applies to BOTH analog and digital signals

Periodic Signals

- A periodic signal repeats itself every T seconds
 - Period → T seconds
- In calculus terms:
 - S(t) is periodic if s(t) = s(t+T) for any $-\infty < t < \infty$
- For previous examples: $s_1(t)$, $s_2(t)$, and $d_1(t)$ are not periodic – however, $d_2(t)$ is periodic

2/28/2009

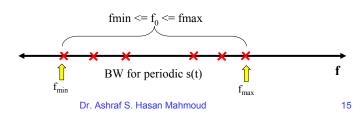
Dr. Ashraf S. Hasan Mahmoud

Applies to BOTH analog and digital signals

Periodic Signals (2)

2/28/2009

- A periodic signal has a FUNDAMENTAL FREQUENCY — f₀
 - f₀ = 1 / T where T is the period
- A periodic signal may also has frequencies other than the fundamental frequency f₀



Periodic Signals (3)

• Examples of other periodic signals:

s₃(t)

s₄(t)

T

Dr. Ashraf S. Hasan Mahmoud

Applies to BOTH analog and digital signals

s₅(t)

t

T

16

Applies to BOTH analog and digital signals

Energy/Power of Signals

Energy for any signal is defined as

$$E_s = \int \left| s(t) \right|^2 dt$$

where the integral is carried over ALL range of t

- In other words, Es is the area under the absolute squared of the signal
- The unit of energy is Joules

2/28/2009

Dr. Ashraf S. Hasan Mahmoud

17

Applies to BOTH analog and digital signals

Energy/Power of Signals (2)

- Note that for periodic signal E_s is equal to infinity since it is defined on $(-\infty, \infty)$
 - However power is FINITE for these type of signals
- Power is defined as the average of the absolute squared of the signal, i.e.

$$P_s = \frac{1}{T} \int\limits_0^T \left| s(t) \right|^2 dt$$
Note the integral can be performed on [0,T], [-T/2, T/2], or any continuous interval of length

The unit of power is Joules/sec or Watt

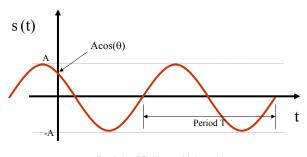
2/28/2009

Dr. Ashraf S. Hasan Mahmoud

A VERY SPECIAL Analog Signal

A function of the form

$$s(t) = A COS(2\pi ft + \theta)$$



2/28/2009

Dr. Ashraf S. Hasan Mahmoud

10

Characteristics of COSINE

- Completely specified by:
 - Amplitude A
 - Phase θ
 - Frequency f
- $s(t = 0) = A cos(\theta)$
- Periodic signal repeats itself every T seconds
 - T = 1 / f
- Time to review your trigonometry !!
 - E.g. $sin(x) = cos(x-\pi/2)$

2/28/2009

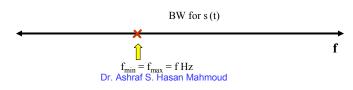
Dr. Ashraf S. Hasan Mahmoud

Characteristics of COSINE (2)

- Energy for this signal, E_s = infinity
- Power for this signal, P_q = A²/2
 - Note P_q is dependent only on the amplitude A
 - Exercise: Verify the above results using the power formula
- It contains ONLY ONE frequency f
 - The "purest" form of analog signals
- Frequency representation:

2/28/2009

2/28/2009



21

22

Characteristics of COSINE (3)

Very Useful Properties (f = 1/T)

$$\int_{0}^{T} \cos(2\pi f t + \theta) dt = 0$$

$$\frac{1}{T} \int_{0}^{T} \cos^{2}(2\pi f t + \theta) dt = 1/2$$

$$\int_{0}^{T} \cos(2\pi n f t + \theta) dt = 0$$

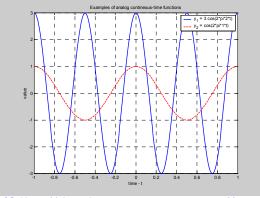
$$\frac{1}{T} \int_{0}^{T} \cos^{2}(2\pi n f t + \theta) dt = 1/2$$

$$\frac{1}{T} \int_{0}^{T} \cos(2\pi n f t) \cos(2\pi n f t) dt = \begin{cases} 0 & n \neq m \\ 1/2 & n = m \end{cases}$$

Dr. Ashraf S. Hasan Mahmoud

Example of Cosine Functions

- Y₁(t) has
 - a frequency f of 2
 Hz (T = ½ sec)
 - An amplitude of 3
 - $P_{Y1} = 3^2/2 = 4.5$ Watts
- Y₂(t) has
 - a frequency f of 1
 Hz (T = 1/1 = 1
 sec)
 - An amplitude of 1
 - P_{Y2} = 1²/2 = 0.5
 Watts



2/28/2009

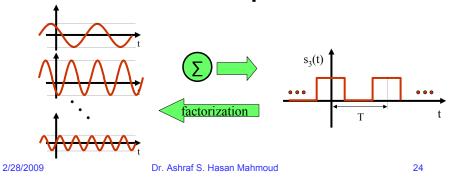
Dr. Ashraf S. Hasan Mahmoud

23

ONLY FOR PERIODIC SIGNALS

Fourier Series Expansion

- Can we use the basic cosine functions to represent periodic signals?
- YES Fourier Series Expansion



Fourier Series Expansion (2)

For a periodic signal s(t) can be represented as a sum of sinusoidal signals as in

$$s(t) = \frac{A_0}{2} + \sum_{n=1}^{\infty} \left[A_n \cos(2\pi n f_0 t) + B_n \sin(2\pi n f_0 t) \right]$$

where the coefficients are computed using:

$$A_0 = \frac{2}{T} \int_0^T s(t) dt$$

 f_0 is the fundamental frequency of s(t) and is equal to 1/T

$$A_n = \frac{2}{T} \int_0^T s(t) \cos(2\pi n f_0 t) dt \qquad B_n = \frac{2}{T} \int_0^T s(t) \sin(2\pi n f_0 t) dt$$

2/28/2009

Fourier Series Expansion (3)

Another form for the series:

$$s(t) = \frac{C_0}{2} + \sum_{n=1}^{\infty} C_n \cos(2\pi n f_0 t + \theta_n)$$

where the coefficients are computed using:

$$C_0 = A_0$$

$$C_n = \sqrt{{A_n}^2 + {B_n}^2}$$

$$\theta_n = \tan^{-1} \left(\frac{-B_n}{A_n}\right)$$

 B_n

2/28/2009

Dr. Ashraf S. Hasan Mahmoud

Notes on Fourier Series Expansion

- The representation (the sum of sinusoids) is completely identical and equivalent to the original specification of s(t)
- It is applies to any periodic signal analog or digital!

Very powerful tool - it reveals all frequencies contained in the original periodic signal s(t)

2/28/2009

Dr. Ashraf S. Hasan Mahmoud

27

Notes on Fourier Series Expansion (2)

- In general, s(t) contains
 - DC term the zero frequency term = $A_0/2$
 - A (possibly infinite) number of harmonics (or sinusoids) at multiples of the fundamental frequency, f₀
- The contribution of a harmonic with frequency nf₀ is proportional to |A_n²+B_n²| or C_n²
 - E.g. if C_n² ~ 0, then we say the harmonic at nf₀ (or higher does not contribute significantly towards building s(t) – more on this when we discuss total power!

2/28/2009

Dr. Ashraf S. Hasan Mahmoud

Notes on Fourier Series Expansion (3)

- A harmonic with frequency equal to nf₀ (n>0), has a period of 1/(nT)
- In general the series expansion of s(t) contains INFINITE number of terms (harmonics)
- However for less than 100% accurate representation one can ignore higher terms – terms with frequencies greater than certain n*f₀

2/28/2009

Dr. Ashraf S. Hasan Mahmoud

29

Notes on Fourier Series Expansion (4)

Lets define the following function:

To be the series expansion of s(t) up to and including the n=k term

It should be noted that s_e(n=k) is periodic with period T

Examples:

$$s_{e}(n = 0) = A_{0} / 2$$

$$s_{e}(n = 1) = A_{0} / 2 + A_{1} \cos(2\pi f_{0}t) + B_{1} \sin(2\pi f_{0}t)$$

$$= A_{0} / 2 + C_{1} \cos(2\pi f_{0}t + \theta_{1})$$

2/28/2009

Dr. Ashraf S. Hasan Mahmoud

Notes on Fourier Series Expansion (5)

Examples – cont'd:

$$s_{e}(n = 2) = A_{0} / 2 + A_{1} \cos(2\pi f_{0}t) + B_{1} \sin(2\pi f_{0}t)$$

$$+ A_{2} \cos(2\pi \times 2f_{0}t) + B_{2} \sin(2\pi \times 2f_{0}t)$$

$$= A_{0} / 2 + C_{1} \cos(2\pi f_{0}t + \theta_{1}) + C_{2} \cos(2\pi \times 2f_{0}t + \theta_{2})$$

$$\bullet \bullet \bullet$$

$$s_{-}e(n=\infty) = \frac{A_{0}}{2} + \sum_{n=1}^{\infty} \left[A_{n} \cos(2\pi n f_{0}t) + B_{n} \sin(2\pi n f_{0}t) \right]$$
$$= A_{0} / 2 + \sum_{n=1}^{\infty} C_{n} \cos(2\pi n f_{0}t + \theta_{n})$$

2/28/2009

Dr. Ashraf S. Hasan Mahmoud

31

Notes on Fourier Series Expansion (6)

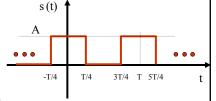
- It is obvious that s(t) is 100% represented by s_e(n=∞)
- s_e(n = n* < ∞) produces a less than 100% accurate representation of the original s(t)
- For most practical periodic signals s_e(n=10) provides a more than enough accuracy in representing s(t)
 - No need for infinite number of terms

2/28/2009

Dr. Ashraf S. Hasan Mahmoud

Example 1:

- Consider the following s(t)
- Over one period, the signal is defined as



$$s(t) = A -T/4 < t <= T/4$$

= 0 T/4 < t <= 3T/4

- **Finding the Series Expansion:**
 - The DC term A₀

$$A_0 = \frac{2}{T} \int_{-T/4}^{T/4} s(t)dt = \frac{2}{T} \times \frac{T}{2} \times A$$
$$= A$$

2/28/2009

Dr. Ashraf S. Hasan Mahmoud

Example 1: cont'd

The term A_n :

$$A_{n} = \frac{2}{T} \int_{-T/4}^{T/4} s(t) \cos(2\pi n f_{0} t) dt = \frac{2A}{T} \int_{-T/4}^{T/4} \cos(2\pi n f_{0} t) dt$$

$$= \frac{2A}{2\pi n f_{0} T} \sin(2\pi n f_{0} t) \Big|_{t=-T/4}^{t=T/4} = \frac{A}{\pi n} \times 2 \times \sin(\frac{n\pi}{2})$$

$$= \begin{cases} 0 & n = 2,4,6,... \\ \frac{2A}{\pi n} & n = 1,5,9,... \\ -\frac{2A}{\pi n} & n = 3,7,11,... \end{cases}$$
Remember
1. $f_0 = 1/T$
2. Int $(\cos(ax)) = 1/a \sin(ax)$
3. $\sin(n\pi) = 0$ for integer n
4. $\sin(n\pi/2) = 1$ for $n = 1,5,9,...$
5. $\sin(n\pi/2) = -1$ for $n = 3,7,11$

2/28/2009

Dr. Ashraf S. Hasan Mat 5. $\sin(n\pi/2) = -1$ for n=3,7,11,...

Therefore A_n is given by:

$$= \begin{cases} 0 & n = 2,4,6,... \\ (-1)^{(n-1)/2} \times \frac{2A}{\pi n} & n = 1,3,5,7,... \end{cases}$$

Remember

$$(-1)^{(n-1)/2} = 1$$
 for $n = 1,5,9,...$
 $= -1$ for $n = 3,7,11,...$

2/28/2009

Dr. Ashraf S. Hasan Mahmoud

35

Example 1: cont'd

• The term B_n :

$$B_{n} = \frac{2}{T} \int_{-T/4}^{T/4} s(t) \sin(2\pi n f_{0}t) dt = \frac{2A}{T} \int_{-T/4}^{T/4} \sin(2\pi n f_{0}t) dt$$

$$= \frac{-2A}{2\pi n f_{0}T} \cos(2\pi n f_{0}t) \Big|_{t=-T/4}^{t=T/4} = \frac{-2A}{\pi n} \times \left\{ \cos(\frac{n\pi}{2}) - \cos(-\frac{n\pi}{2}) \right\}$$

$$= 0$$

Remember

1.
$$\int \cos(ax) dx = -1/a \sin(ax)$$

 $2. \cos(x) = \cos(-x)$

2/28/2009

Dr. Ashraf S. Hasan Mahmoud

Therefore, the overall series expansion is given by

$$s(t) = \frac{A}{2} + \frac{2A}{\pi} \sum_{n=1,3,5}^{\infty} \frac{(-1)^{(n-1)/2}}{n} \times \cos(2\pi n f_0 t)$$

$$\begin{split} s(t) &= \frac{A}{2} + \frac{2A}{\pi} \times \cos(2\pi f_0 t) - \frac{2A}{3\pi} \cos(2\pi \times 3f_0 t) \\ &+ \frac{2A}{5\pi} \times \cos(2\pi \times 5f_0 t) - \frac{2A}{7\pi} \cos(2\pi \times 7f_0 t) + \dots \end{split}$$

2/28/2009

Dr. Ashraf S. Hasan Mahmoud

37

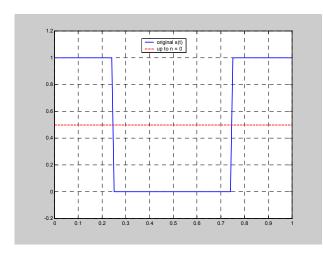
Example 1: cont'd

- Original s(t) and the series up to and including n = 0
- i.e. Comparing:

s(t)

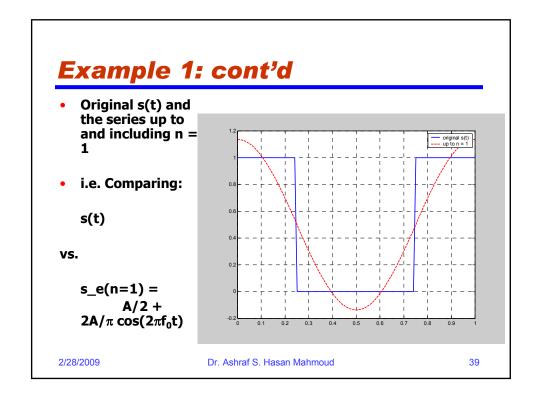
vs.

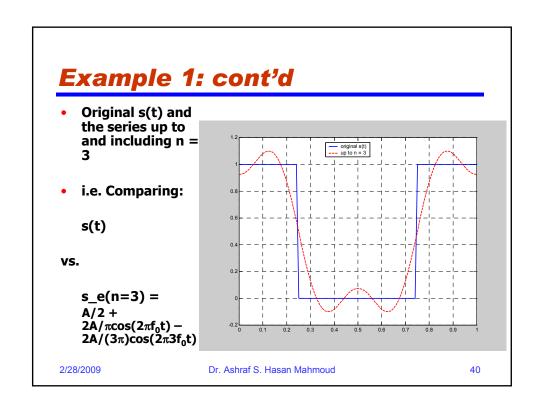
$$s_e(n=0) = A/2$$



2/28/2009

Dr. Ashraf S. Hasan Mahmoud





• Original s(t) and the series up to and including n = 11 • i.e. Comparing: s(t) vs. s_e(n=11) = A/2 + 2A/πcos(2πf₀t) - 2A/(3π)cos(2π3f₀t) + 2A/(5π)cos(2π3f₀t) - 2A/(5π)cos(2π3f₀t) + 2A/(5π)cos(2π3f₀t) + 2A/(11π)cos(2π1f₀t) 2/28/2009 Dr. Ashraf S. Hasan Mahmoud 41

Example: cont'd clear all T = 1;A = 1;•The matlab code for plotting and t = -1:0.01:1;evaluating the Fourier Series Expansion •This code builds the series incrementally s = (A*square(2*pi/T*(t+T/4))+A)/2;using the "for" loop figure(1) plot(t, s); grid Make sure you study this code!! axis([0 1 -0.2 1.2]); $s_e = A/2*ones(size(t));$ $s_e = s_e + (-1)^((n-1)/2) * 2*A/(n*pi) * cos(2*pi*n/T*t);$ end figure(2) plot(t, s,'b-', t, s_e,'r--'); axis([0 1 -0.2 1.2]); legend('original s(t)', 'up to n = 11'); 2/28/2009 Dr. Ashraf S. Hasan Mahmoud 42

Notes Previous Example

- The more terms included in the series expansion → the closer the representation to the original s(t)
 - i.e. comparing s(t) with s_e(n=n*), the greater the n* the closer the representation is
- How to measure "closeness"?
- Answer: Let's use power!!

2/28/2009

Dr. Ashraf S. Hasan Mahmoud

43

Power Calculation Using Fourier Series Expansion

 Rule: if s(t) is represented using Fourier Series expansion, then its power can be calculated using:

$$P_{s} = \frac{1}{T} \int_{0}^{T} |s(t)|^{2} dt = \frac{A_{0}^{2}}{4} + \frac{1}{2} \sum_{n=1}^{\infty} \left[A_{n}^{2} + B_{n}^{2} \right]$$
$$= \frac{A_{0}^{2}}{4} + \frac{1}{2} \sum_{n=1}^{\infty} C_{n}^{2}$$

2/28/2009

Dr. Ashraf S. Hasan Mahmoud

Power Calculation Using Fourier Series Expansion (2)

- The previous result is based on the following two facts:
 - (1) For f(t) = constant
 → power of f(t) = constant²

Proof:

power =
$$1/T \times \int_0^T constant^2 dt$$

= $1/T \times constant^2 \times T$
= $constant^2 \times T$

2/28/2009

Dr. Ashraf S. Hasan Mahmoud

45

Power Calculation Using Fourier Series Expansion (3)

- The previous result is based on the following facts (continued):
 - (2) For $f(t) = A \cos(2\pi n f_0 t + \theta)$ \Rightarrow power of $f(t) = A^2/2$

Proof:

$$P_{f} = \frac{1}{T} \int_{0}^{T} |f(t)|^{2} dt = \frac{A^{2}}{T} \int_{0}^{T} \cos^{2}(2\pi n f_{0} t + \theta) dt$$

$$= \frac{A^{2}}{T} \int_{0}^{T} \left[\frac{1}{2} + \frac{1}{2} \cos(4\pi n f_{0} t + 2\theta) \right] dt$$

$$= \frac{A^{2}}{T} \left[\frac{T}{2} + 0 \right] = \frac{A^{2}}{2}$$

2/28/2009

Dr. Ashraf S. Hasan Mahmoud

Example 2:

- Problem: What is the power of the signal s(t) used in previous example? And find n* such that the power contained in s_e(n=n*) is 95% of that existing in s(t)?
- Solution:

Let the power of s(t) be given by P_s

$$P_{s} = \frac{1}{T} \int_{0}^{T} |s(t)|^{2} dt = \frac{1}{T} \times A^{2} \times \frac{T}{2} = \frac{A^{2}}{2} = 0.5A^{2}$$

2/28/2009

Dr. Ashraf S. Hasan Mahmoud

47

Example 2: cont'd

- Now it is desired to compute the power using the Fourier Series Expansion
- What is the power in s_e(n=0) = A/2?
- Ans: we apply the power formula:

$$P_{s_{-}e(n=0)} = \frac{1}{T} \int_{0}^{T} |s_{-}e(n=0)|^{2} dt$$
$$= \frac{1}{T} \times \frac{A^{2}}{4} \times T = \frac{A^{2}}{4} = 0.25A^{2}$$

2/28/2009

Dr. Ashraf S. Hasan Mahmoud

- What is the power in $s_e(n=1) = A/2 + 2A/\pi \cos(2\pi f_0 t)$
- Ans: we can use the result on slide <u>Power</u> <u>Calculation Using Fourier Series</u> <u>Expansion:</u>

$$P_{s_{-}e(n=1)} = \frac{1}{T} \int_{0}^{T} |s_{-}e(n=1)|^{2} dt = \frac{A^{2}}{4} + \frac{2A^{2}}{\pi^{2}}$$
$$= \left(\frac{1}{4} + \frac{2}{\pi^{2}}\right) A^{2} = 0.4526A^{2}$$

2/28/2009

Dr. Ashraf S. Hasan Mahmoud

49

Example 2: cont'd

What is the power in

$$s_e(n=3) = A/2 + 2A/\pi \cos(2\pi f_0 t) - 2A/(3\pi) \cos(2\pi 3 f_0 t)$$

 Ans: we can use the result on slide <u>Power</u> <u>Calculation Using Fourier Series</u> <u>Expansion</u>:

$$P_{s_{-}e(n=3)} = \frac{1}{T} \int_{0}^{T} |s_{-}e(n=3)|^{2} dt = \frac{A^{2}}{4} + \frac{2A^{2}}{\pi^{2}} + \frac{2A^{2}}{9\pi^{2}}$$
$$= \left(\frac{1}{4} + \frac{2}{\pi^{2}} + \frac{2}{9\pi^{2}}\right) A^{2} = 0.4752A^{2}$$

2/28/2009

Dr. Ashraf S. Hasan Mahmoud

What is the power in

$$s_e(n=5) = A/2 + 2A/\pi \cos(2\pi f_0 t) - 2A/(3\pi) \cos(2\pi 3 f_0 t) + 2A/(5\pi) \cos(2\pi 5 f_0 t)$$

Ans: we can use the result on slide <u>Power</u>
 <u>Calculation Using Fourier Series Expansion</u>:

$$P_{s_{-}e(n=5)} = \frac{1}{T} \int_{0}^{T} |s_{-}e(n=5)|^{2} dt = \frac{A^{2}}{4} + \frac{2A^{2}}{\pi^{2}} + \frac{2A^{2}}{9\pi^{2}} + \frac{2A^{2}}{25\pi^{2}}$$
$$= \left(\frac{1}{4} + \frac{2}{\pi^{2}} + \frac{2}{9\pi^{2}} + \frac{2}{25\pi^{2}}\right) A^{2} = 0.4833A^{2}$$

2/28/2009

Dr. Ashraf S. Hasan Mahmoud

51

Example 2: cont'd

What is the power in

$$s_{-}e(n=\infty) = \frac{A}{2} + \frac{2A}{\pi} \sum_{n=1,3,5}^{\infty} \frac{(-1)^{(n-1)/2}}{n} \times \cos(2\pi n f_0 t)$$

Ans: we can use the result on slide <u>Power</u>
 <u>Calculation Using Fourier Series Expansion</u>:

$$P_{s_{-}e(n=\infty)} = \frac{1}{T} \int_{0}^{T} |s_{-}e(n=\infty)|^{2} dt = \frac{A^{2}}{4} + \frac{2A^{2}}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{n^{2}}$$
$$= \left(\frac{1}{4} + \frac{2}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{n^{2}}\right) A^{2} = 0.5A^{2}$$

This the EXACT SAME power contained in s(t) - This is expected since s(t) is 100% represented by $s_e(n=\infty)$

s_e(n=k)	Expression	Power	% Power+
k = 0	A/2	0.25 A ²	$(0.25A^2)/(0.5A^2)$ = 50%
k = 1	$A/2 + 2A/\pi\cos(2\pi f_0 t)$	0.4526 A ²	= 90.5%
k = 2*	$A/2 + 2A/\pi\cos(2\pi f_0 t)$	0.4526 A ²	90.5%
k = 3	$A/2 + 2A/\pi\cos(2\pi f_0 t) - 2A/(3\pi)\cos(2\pi 3f_0 t)$	0.4752 A ²	95.0%
k = 5	$A/2 + 2A/\pi\cos(2\pi f_0 t) - 2A/(3\pi)\cos(2\pi 3f_0 t) + 2A/(5\pi)\cos(2\pi 5f_0 t)$	0.4833 A ²	96.7%

** % power = power of s_e(n=k) relative to original power in s(t) which is equal to $0.5A^2$ * For k = 2, the expression s_e(n=k) is the same as that for s_e(k=1). Why?

53

Example 2: cont'd

 Therefore, s_e(n=n*) such that 95% of power is contained → n* = 3

2/28/2009

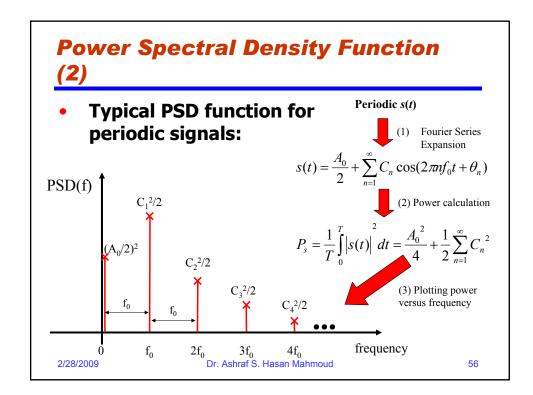
Dr. Ashraf S. Hasan Mahmoud

Power Spectral Density Function

- Fourier Series Expansion:
 - Specifies all the basic harmonics contained in the original function s(t)
 - $C_n^2/2 = (A_n^2 + B_n^2)/2$ determines the power contribution of the nth harmonic with frequency nf_0
- The power Spectral Density function is a function specifying: how much power is contributed by a given frequency

2/28/2009

Dr. Ashraf S. Hasan Mahmoud



Power Spectral Density Function

A mathematical expression for PSD(f) can be written as

$$PSD(f) = \begin{cases} A_0^2/4 & f = 0\\ {C_n}^2/2 & f = n \times f_0\\ 0 & otherwise \end{cases}$$

Another way (more compact) of writing PSD(f) is as follows:

$$PSD(f) = \frac{A_0^2}{4} \times \delta(f) + \frac{1}{2} \sum_{n=1}^{\infty} C_n^2 \times \delta(f - nf_0)$$

where $\delta(t)$ is defined by

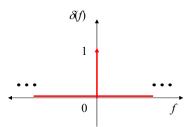
$$\mathcal{S}(f) = \begin{cases} 1 & f = 0 \\ 0 & f \neq 0 \end{cases}$$
 Dr. Ashraf S. Hasan Mahmoud

2/28/2009

57

Power Spectral Density Function

 $\delta(f)$ is referred to as the dirac function or unit impulse function



2/28/2009

Dr. Ashraf S. Hasan Mahmoud

Note on the PSD Function

- PSD function has units of Watts/Hz
- For periodic signals → PSD is a discrete function - defined for integer multiples of the fundamental frequency
 - Specifies the power contribution of every harmonic component $C_n^2/2 \leftrightarrow nf_0$
- The separation between the discrete components is at least f₀
 - It is exactly f₀ if all C_n's are not zeros
 - E.g. for the previous s(t) example, C_n=0 for even n → separation = 2f₀

2/28/2009

Dr. Ashraf S. Hasan Mahmoud

59

Note on the PSD Function (2)

- To calculate the total power of signal →
 Integrate PSD over all contained
 frequencies
 - For discrete PSD: integration = summation
- Therefore total power of s(t),

$$P_s = (A_n/2)^2 + \sum C_n^2/2$$
 in Watts

2/28/2009

Dr. Ashraf S. Hasan Mahmoud

Example 3:

- Find the PSD function of the periodic signal s(t) considered in Example 1.
- From Example 1, s(t) is given by

$$s(t) = \frac{A}{2} + \frac{2A}{\pi} \sum_{n=1,3,5}^{\infty} \frac{(-1)^{(n-1)/2}}{n} \times \cos(2\pi n f_0 t)$$

- Using Example 2:
 - Power at the zero frequency = $(A/2)^2 = A^2/4$
 - Power at the nth harmonic (n odd) is equal to $2A^2/(n\pi)^2$
 - Power at the nth harmonic (n even) is zero
 - Therefore the PSD function is given by

$$PSD(f) = \frac{A^{2}}{4} \times \delta(f) + \frac{2A^{2}}{\pi^{2}} \sum_{n=1,3,5}^{\infty} \frac{1}{n^{2}} \times \delta(f - nf_{0})$$

2/28/2009

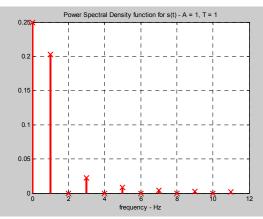
Dr. Ashraf S. Hasan Mahmoud

61

Example 3: cont'd

The PSD is plotted as shown (A = 1, T = 1)

$$PSD(f) = \frac{A^{2}}{4} \times \delta(f) + \frac{2A^{2}}{\pi^{2}} \sum_{n=1,3,5}^{\infty} \frac{1}{n^{2}} \times \delta(f - \eta f_{0})$$



2/28/2009

Dr. Ashraf S. Hasan Mahmoud

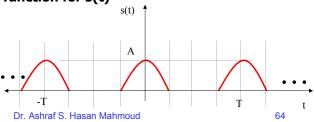
Matlab Code to plot PSD

```
clear all
T = 1:
A = 1;
t = -1:0.01:1;
n_max = 11;
Frequency
           = [0:1:n_max];
PwrSepctralD = zeros(size(Frequency));
% Record the DC term power at f = 0
PwrSepctralD(1) = (A/2)^2;
% Record the nth harmonic power at f = nf0
for n=1:2:n max
                                               The "stem" function is typically
  PwrSepctralD(n+1) = (2*A/(n*pi))^2 / 2;
                                               used to plot discrete functions
figure(1)
stem(Frequency, PwrSepctralD,'rx');
title('Power Spectral Density function for s(t) - A = 1, T = 1');
xlabel('frequency - Hz');
2/28/2009
                             Dr. Ashraf S. Hasan Mahmoud
                                                                                  63
```

Example 4:

This is a typical exam question

- Problem: Consider the periodic half-wave rectified signal s(t) depicted in figure.
 - Write a mathematical expression for s(t)
 - Calculate the Fourier Series Expansion for s(t)
 - Calculate the total power for s(t)
 - Find n* such that s_e(n*) has 95% of the total power
 - Determine the PSD function for s(t)
 - Plot the PSD function for s(t)



2/28/2009

- Answer:
- (a) To write a mathematical expression for s(t), remember that the general form of a sinusoidal function is given by

A $cos(2\pi \times Freq \times t)$, or A $cos(2\pi / Period \times t)$

Therefore s(t) is given by

$$s(t) = A cos(2\pi/T t)$$
 $-T/4 < t \le T/4$
= 0 $T/4 < t \le 3T/4$

2/28/2009

Dr. Ashraf S. Hasan Mahmoud

65

Example 4: cont'd

- Answer:
- **(b)** The F.S.E of s(t): $s(t) = \frac{A_0}{2} + \sum_{n=1}^{\infty} [A_n \cos(2\pi n f_0 t) + B_n \sin(2\pi n f_0 t)]$ The DC term is given by

$$A_{0} = \frac{2}{T} \int_{-T/4}^{T/4} s(t)dt = \frac{2A}{T} \times \int_{-T/4}^{T/4} \cos(2\pi t/T)dt$$

$$= \frac{A}{\pi} \times \sin(2\pi t/T)\Big|_{t=-T/4}^{t=T/4} = \frac{A}{\pi} \left[\sin(\pi/2) - \sin(-\pi/2)\right]$$

$$= \frac{2A}{\pi}$$

2/28/2009

Dr. Ashraf S. Hasan Mahmoud

Remember:

 $\int [\cos(ax)\cos(bx)] dx = \frac{\sin(ax+bx)}{2(a+b)} + \frac{\sin(ax-bx)}{2(a-b)}$ for $a \neq b$ $\sin(a+/b) = \sin(a)\cos(b) + \cos(a)\sin(b)$

Answer:

The An term is given by (remember $1/T = f_0$)

$$A_n = \frac{2}{T} \int_{-T/4}^{T/4} s(t) \cos(2\pi n f_0 t) dt = \frac{2A}{T} \times \int_{-T/4}^{T/4} \cos(2\pi t / T) \cos(2\pi n f_0 t) dt$$

$$= \frac{2A}{T} \times \left[\frac{\sin(2\pi(n+1)f_0t)}{4\pi(n+1)f_0} + \frac{\sin(2\pi(n-1)f_0t)}{4\pi(n-1)f_0} \right]_{t=-T/4}^{t=T/4}$$
 For $\mathbf{n} \neq \mathbf{1}$

$$= \frac{A}{\pi} \times \left\lceil \frac{\cos(n\pi/2)}{(n+1)} + \frac{-\cos(n\pi/2)}{(n-1)} \right\rceil$$

For $n \neq 1$

2/28/2009

Dr. Ashraf S. Hasan Mahmoud

This means: the n=1 should be special!

Example 4: cont'd

But

Therefore

$$A_n = \frac{A}{\pi} \times \left[\frac{(-1)^{(1+n/2)}}{(n+1)} + \frac{(-1)(-1)^{(1+n/2)}}{(n-1)} \right]$$
 For n even
$$= 0$$
 For n odd, n≠1

2/28/2009

Dr. Ashraf S. Hasan Mahmoud

The expression for A_n (for even n) can be further simplified to

$$A_{n} = \frac{A}{\pi} \times \left[\frac{(-1)^{(1+n/2)}}{(n+1)} + \frac{(-1)(-1)^{(1+n/2)}}{(n-1)} \right]$$

$$= \frac{A}{\pi} \times \left[\frac{(-1)^{(1+n/2)}(n-1) + (-1)(-1)^{(1+n/2)}(n+1)}{(n+1)(n-1)} \right]$$

$$= \frac{A}{\pi(n^{2}-1)} \times \left[(-1)^{(1+n/2)}(n-1) - (-1)^{(1+n/2)}(n+1) \right]$$

$$= \frac{2A(-1)^{(1+n/2)}}{\pi(n^{2}-1)}$$
For n even

2/28/2009

Dr. Ashraf S. Hasan Mahmoud

69

Example 4: cont'd

An is still not completely specified – we still need to calculate it for n=1; in other words we need to calculate A1:

$$A_{n=1} = \frac{2}{T} \int_{-T/4}^{T/4} s(t) \cos(2\pi \times 1 \times f_0 t) dt = \frac{2A}{T} \times \int_{-T/4}^{T/4} \cos(2\pi t/T) \cos(2\pi f_0 t) dt$$

Therefore:

$$A_{1} = \frac{2A}{T} \times \int_{-T/4}^{T/4} \cos^{2}(2\pi f_{0}t)dt$$

$$= \frac{2A}{T} \times \left[\frac{t}{2} + \frac{1}{4 \times 2\pi f_{0}} \sin(4\pi f_{0}t) \right]_{t=-T/4}^{t=T/4} = \frac{2A}{T} \times \left[\frac{T}{4} + \frac{\sin(\pi) - \sin(-\pi)}{8\pi f_{0}} \right]$$

$$= \frac{A}{2/28/2009^{2}}$$
Dr. Ashraf S. Hasan Mahmoud

This mean A_n is equal to the following:

$$A_{n} = 2A/\pi \qquad n = 0$$

$$0 \qquad n \text{ odd, } n \neq 1$$

$$A/2 \qquad n = 1$$

$$2A(-1)^{(1+n/2)} \qquad n = 2, 4, 6, ...$$

$$\pi(n^{2}-1)$$

The above expression specifies \mathbf{A}_n for ALL POSSIBLE values of n \Rightarrow specification is complete

2/28/2009

Dr. Ashraf S. Hasan Mahmoud

71

Example 4: cont

Remember: $\int [\sin(ax)\cos(bx)] dx = \frac{-\cos(ax+bx)}{2(a+b)} \frac{\cos(ax-bx)}{2(a-b)}$ for a \neq b

We still need to compute B_n :

$$B_{n} = \frac{2}{T} \int_{-T/4}^{T/4} s(t) \sin(2\pi n f_{0}t) dt = \frac{2A}{T} \times \int_{-T/4}^{T/4} \cos(2\pi t/T) \sin(2\pi n f_{0}t) dt$$

$$= \frac{2A}{T} \times \left[\frac{\cos(2\pi (n+1)f_{0}t)}{4\pi (n+1)f_{0}} - \frac{\cos(2\pi (n-1)f_{0}t)}{4\pi (n-1)f_{0}} \right]_{t=-T/4}^{t=T/4}$$

$$= \frac{A}{2\pi} \times \left[\frac{-\cos(\pi/2(n+1)) + \cos(-\pi/2(n+1))}{(n+1)} - \frac{\cos(\pi/2(n-1)) - \cos(-\pi/2(n-1))}{(n-1)} \right]$$

=0

For $n \neq 1$

2/28/2009

Dr. Ashraf S. Hasan Mahmoud

This means: the n=1 should be special!

Remember: $\sin(2ax) = 2\cos(ax)\sin(ax)$

Example 4: cont'd

 B_n is still NOT completely specified — we still need to calculate it for n=1; in other words we need to calculate B_1 :

$$B_{n=1} = \frac{2}{T} \int_{-T/4}^{T/4} s(t) \sin(2\pi \times 1 \times f_0 t) dt = \frac{2A}{T} \times \int_{-T/4}^{T/4} \cos(2\pi t/T) \sin(2\pi f_0 t) dt$$

Therefore:

$$B_{1} = \frac{2A}{T} \times \int_{-T/4}^{T/4} \cos(2\pi f_{0}t) \sin(2\pi f_{0}t) dt = \frac{A}{T} \times \int_{-T/4}^{T/4} \sin(4\pi f_{0}t) dt$$
$$= \frac{-A}{4\pi} \times \cos(4\pi f_{0}t) \Big|_{t=-T/4}^{t=T/4} = \frac{-A}{4\pi} \times \left[\cos(\pi) - \cos(-\pi)\right]$$

=0

 \rightarrow This means $B_n = 0$ for all n

2/28/2009

Dr. Ashraf S. Hasan Mahmoud

73

Example 4: cont'd

To summarize:

$$A_n = \begin{cases} 2A/\pi & n = 0 \\ 0 & n \text{ odd, } n \neq 1 \end{cases}$$

$$\begin{cases} A/2 & n = 1 \\ 2A(-1)^{(1+n/2)} & n = 2, 4, 6, ... \end{cases}$$

And

 $B_n = 0$ for all n

• Having computed \mathbf{A}_n and \mathbf{B}_n we are now in a position to write the Fourier Series Expansion for s(t)

2/28/2009

Dr. Ashraf S. Hasan Mahmoud

 The Fourier Series Expansion for s(t) is given by

$$s(t) = \frac{A_0}{2} + \sum_{n=1}^{\infty} \left[A_n \cos(2\pi n f_0 t) + B_n \sin(2\pi n f_0 t) \right]$$
$$= \frac{A}{\pi} + \frac{A}{2} \cos(2\pi f_0 t) + \frac{2A}{\pi} \sum_{n=2,4,6}^{\infty} \frac{(-1)^{(1+n/2)}}{n^2 - 1} \cos(2\pi n f_0 t)$$

The C_n terms (<u>there is a typo in the textbook</u>) are as follows:

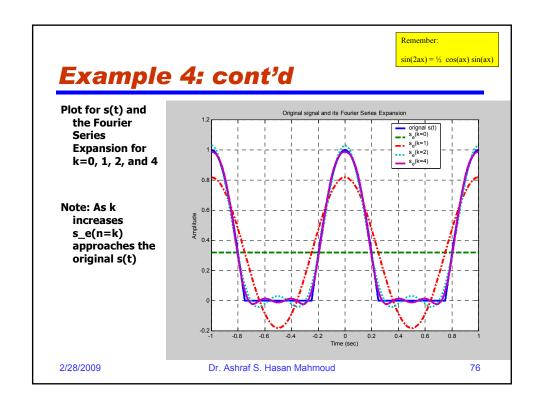
$$C_0 = A/\pi$$

 $C_1 = A/2$ $C_n = \frac{2A(-1)^{(1+n/2)}}{\pi(n^2 - 1)}, n = 2, 4, 6, ...$

2/28/2009

Dr.

0 n odd, n≠1



The total power of s(t) is given by:

$$P_{s} = \frac{1}{T} \int_{-T/4}^{3T/4} |s(t)|^{2} dt = \frac{A^{2}}{T} \times \int_{-T/4}^{T/4} \cos^{2}(2\pi t/T)$$

$$= \frac{A^{2}}{T} \times \left[\frac{t}{2} + \frac{\sin(4\pi t/T)}{8\pi t/T} \right]_{t=-T/4}^{t=T/4}$$

$$= \frac{A^{2}}{4}$$

Therefore total power of $s(t) = 0.25 A^2$

2/28/2009

Dr. Ashraf S. Hasan Mahmoud

77

Example 4: cont'd

 To find n* such that power of s_e(n=n*) = 95% of total power:

s_e(n=k)	Expression	Power	% Power+
k = 0	Α/π	0.1013 A ²	$(0.1013A^2)/(0.25)$ $A^2) =$ 40.5%
k = 1	$A/\pi + A/2 \cos(2\pi f_0 t)$	0.2263 A ²	$(0.2262A^2)/(0.25A^2)$ = 90.5%
k = 2	$A/\pi + A/2 \cos(2\pi f_0 t) + 2A/(3\pi) \cos(2\pi 2f_0 t)$	0.2488 A ²	(0.2488A²)/(0.25A²) 99.5%

Therefore $n^* = 2 \rightarrow power of s_e(n=2) = 0.2488 A^2$ which is 99.5% of total power of s(t)

2/28/2009

Dr. Ashraf S. Hasan Mahmoud

- The PSD function for s(t) is as follows:
 - Power for DC term = $(A/\pi)^2$
 - Power for harmonic at $f = f_0$: $(A/2)^2/2 = A^2/8$
 - Power for harmonic at $f = nf_0 (n=2,4,6, ...)$: $[2A/(\pi(n^2-1))]^2/2 = 2A^2/(\pi(n^2-1))^2$
- Therefore PSD function equals to

$$PSD(f) = \left(\frac{A}{\pi}\right)^{2} \delta(f) + \frac{A^{2}}{8} \delta(f - f_{0}) + \frac{2A^{2}}{\pi^{2}} \sum_{n=2,4,6}^{\infty} \frac{\delta(f - nf_{0})}{(n^{2} - 1)^{2}}$$

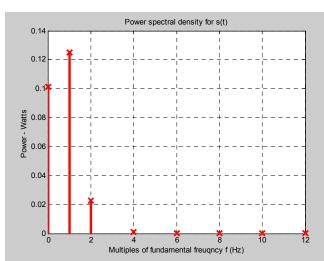
2/28/2009

Dr. Ashraf S. Hasan Mahmoud

70

Example 4: cont'd

 Plot of The PSD function for s(t)

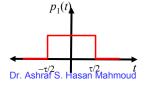


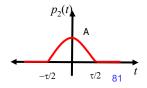
2/28/2009

Dr. Ashraf S. Hasan Mahmoud

Fourier Transform

- Fourier Series Expansion analysis is applicable for PERIODIC signals ONLY
- There are important signals that are not periodic such as
 - Your voice waveform
 - Pulse signal p(t) used for modulation and transmission
 - Examples: p₁(t) and p₂(t)





2/28/2009

Fourier Transform (2)

- How to find the frequency content of such signals?
- Use FOURIER TRANSFORM

$$X(f) = \int_{-\infty}^{\infty} x(t)e^{-2\pi i ft} dt$$

$$x(t) = \int_{-\infty}^{\infty} X(f)e^{2\pi i f t} df$$

2/28/2009

Dr. Ashraf S. Hasan Mahmoud

Notes on Fourier Transform

F.T describes a two-way transformation

$$x(t) \leftarrow \rightarrow X(f)$$

where x(t) is the time representation of the signal, while X(f) is the frequency representation of the signal

- X(f) is defined on a continuous range of frequencies
 - All frequencies within the range of X(f) where X(f) is not zero contribute towards building x(t)

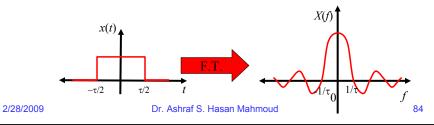
2/28/2009

Dr. Ashraf S. Hasan Mahmoud

83

Notes on Fourier Transform (2)

- The magnitude of the contribution of a particular frequency f* in x(t) is proportional to |X(f*)|²
- Example: Consider the F.T. pair shown below clearly frequencies belonging to $(-1/\tau, 1/\tau)$ contribute significantly more compared to frequencies belonging to $(1/\tau,\infty)$ or $(-\infty, -1/\tau)$



Properties of Fourier Transform

- If x(t) is time-limited → X(f) is not frequency-limited
 - i.e. the range of $X(f) = (-\infty, \infty)$
- If x(t) is a real-valued symmetric →
 X(f) is real-valued

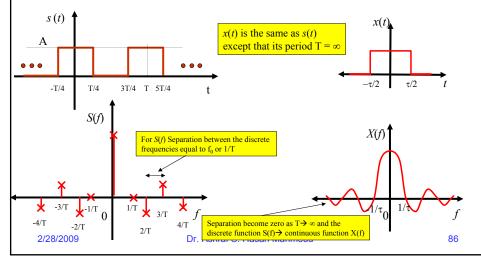
2/28/2009

Dr. Ashraf S. Hasan Mahmoud

85

Relation between Fourier Series Expansion and Fourier Transform

Consider the following two signals:



Relation between Fourier Series Expansion and Fourier Transform (2)

- The separation between spectral lines for a periodic signal is 1/T
- As T → infinity and s(t) becomes non periodic → the separation between spectral lines → zero (i.e. it becomes continuous)

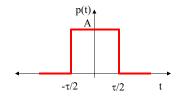
2/28/2009

Dr. Ashraf S. Hasan Mahmoud

87

Example 5:

- Problem: Consider the square pulse function shown in figure:
 - Write a mathematical expression for p(t)
 - Find the Fourier transform for p(t)
 - Plot P(f)



2/28/2009

Dr. Ashraf S. Hasan Mahmoud

Answer: p(t) can be expressed as

$$p(t) = A |t| \le \tau/2$$

= 0 otherwise

The F.T. for p(t), P(f) is given by

$$P(f) = \int_{-\infty}^{\infty} p(t)e^{-2\pi i ft} dt$$

2/28/2009

Dr. Ashraf S. Hasan Mahmoud

89

Example 5: cont'd

Which is equal to

$$P(f) = \int_{-\infty}^{\infty} p(t)e^{-2\pi ijft}dt = \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} Ae^{-2\pi ijft}dt$$

$$= \frac{A}{-2\pi ijf} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} e^{-2\pi ijft}dt = -\frac{A}{2\pi ijf} \times \left(e^{-\pi ijf\tau} - e^{\pi ijf\tau}\right)$$

$$= \frac{A}{\pi f} \times \frac{\left(e^{\pi ijf\tau} - e^{-\pi ijf\tau}\right)}{2j}$$
Remember: Euler identity:
$$e^{jx} = \cos(x) + j\sin(x), \text{ OR}$$

$$\cos(x) = (e^{jx} + e^{-jx})/2$$

$$\sin(x) = (e^{jx} - e^{-jx})/(2j)$$

2/28/2009

Dr. Ashraf S. Hasan Mahmoud

