KFUPM - COMPUTER ENGINEERING DEPARTMENT

COE-202 – Fundamentals of Computer Engineering (section 02) Student Name: Student Number:

You MUST SHOW your work – correct results without showing leading work do not <u>count!</u>

- 1) (15 points) Analog versus Digital Systems:
 - a. What is the difference between analog and digital systems?
 - b. Which systems are easier to design?
 - c. What is meant by "Quantization"? and what is the device that performs quantization?

Solution:

1.a) Analog systems deal with continuous range of values while digital systems deal with a finite set of values.

1.b) Digital systems are easier to design

1.c) Quantization is the process of digitizing the analog signal and converting it to discrete/digital. The device is the "Analog to digital converter".

2) (40 points) Number systems:

- a. What is the octal equivalent of $(32.57)_{10}$?
- b. What is the binary equivalent of $(32.57)_{10}$?
- c. If a BINARY number A is represented by $A_1A_0A_{-1}$ (i.e. 2 digits for the integer part and 1 digit for the fraction part), what are the smallest nonzero and largest numbers that can be represented? specify the decimal value as well.
- d. What is 16^3 - 16^2 in hex and decimal systems? *Hint: Perform the subtraction in hex and then convert to decimal.*

Note: in your number conversions, include only the first four fraction digits

Solution: 2.a) 32_{10} \rightarrow 32/8 = 4 and remainder is $0 \rightarrow 0$ 4/8 = 0 and remainder is $4 \rightarrow 4$ \rightarrow hence, $32_{10} = 40_8$ $(0.57)_{10}$ \rightarrow $0.57 \times 8 = 4.56 \rightarrow 4$ $0.56 \times 8 = 4.48 \rightarrow 4$ $0.48 \times 8 = 3.84 \rightarrow 3$ $0.84 \times 8 = 6.72 \rightarrow 6$ \rightarrow hence, $(0.57)_{10} = (0.4436)_8$

Therefore, $(32.57)_{10} = (40.4436)_8$

2.b) We can perform the procedure in (2.a) but replacing base 8 with base 2. Alternatively, we can convert the result of (2.a) directly to binary by replacing every Octal digit by its 3-bit binary equivalent. Therefore $(32.57)_{10} = (40.4436)_8 = (100\ 000.\ 100\ 001\ 110)_2$.

2.c) Smallest nonzero number is (00.1)2 = (0.5)10. The largest is (11.1)2 = (3.5)10.

Dr. Ashraf S. Hasan Mahmoud October 26^{th} , 2008 2.d) $(16^3)_{16}$ - $(16^2)_{16}$ = $(1000)_{16}$ - $(100)_{16}$ = $(F00)_{16}$. The value of $(F00)_{16}$ is 15×16^2 = $(3840)_{10}$.