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KFUPM - COMPUTER ENGINEERING DEPARTMENT 
COE-202 – Fundamentals of Computer Engineering 

Assignment # 2: Due Sunday January 4th, 2008 – in class.  

Problem 1) (20 points) Simplify the following Boolean functions to the form of sum-of-
products by finding all prime implicants and essential prime implicants and applying the 
selection rule:  
 

 a) F(W,X,Y,Z) = Σm(0,1,2,6,8,9,10,13) 
 b) F(A,B,C,D) = ΠM(1,3,5,6,7,9,10,11,14)  

 
 
Problem 2) (20 points) Simplify the following expressions in (1) sum-of-products and 
(2) product-of-sums forms. Use the K-map method for the simplification: 
 a) AC’ + B’D + A’CD + ABCD 
 b) (A’ + B’ + D) (A’ + D’) (A + B + D’) (A + B’ + C + D) 
 
 
Problem 3) (30 points) It is required to implement a 4-bit ripple carry adder using 
LogiSim: 
a) Implement the full adder circuit explained in class and shown in Figure P3a. Make this 
as an “FA” circuit added to your project. 
b) Add another circuit called “4-bit Ripple Carry Adder”. Use the FA block to construct 
the 4-bit carry adder. Test your new circuit with few examples and verify that it is 
performing the required function.  
Provide screenshots for part (a) and part (b). 
Hint: follow the instructions given in class and illustrated in 
http://ozark.hendrix.edu/~burch/logisim/docs/2.1.0/guide/subcirc/using.html 
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Figure P3a: Full adder circuit. Figure P3b: Full adder block 

diagram. 
 
 
Problem 4) (50 points) It is required to implement a 4-bit Carry Lookahead Adder 
(CLA) using LogiSim: 
a) Implement the partial adder circuit explained in class and shown in Figure P4a. Make 
this as a “PA” circuit added to your project. 
b) Add another circuit called “4-bit Carry Lookahead Adder”. Use the PA block to 
construct the 4-bit carry look ahead adder plus the required logic (AND and OR gates) to 
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generate the required carry signals. The construction procedure is as explained in class 
notes, and as shown in Figure P4c. Test your new circuit with few examples and verify 
that it is performing the required function.  
Provide screenshots for part (a) and part (b). 
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Figure 4a: Partial adder logic. Figure 4a: Partial adder block. 
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Figure 4c: Construction of 4-bit CLA.  
 
 
Problem 5) (50 points) It is required to design a 4-bit ripple-borrow subtractor to find 
the subtraction X-Y for the two unsigned numbers, X=X3-X0, and Y=Y3-Y0.  
a) (25 points) Design a 1-bit full subtractor. The 1-bit full subtractor performs the 
following operation: D = X – bin – Y. Where D is the output, X, bin (borrow in), and Y 
are the input. Plot the truth table, and design the required circuit. Using a block diagram 
show how it can be used to construct the 4-bit ripple-borrow subtractor.  
b) (25 points) Implement the 4-bit ripple-borrow subtractor in LogiSim and verify its 
operation. Provide several printouts displaying the required operation with selected 
examples of subtracting 4-bit numbers. 
 
 
Problem 6) (50 points) Design a combinational circuit that receives a 4-bit signed 
number in 2’s complement representation and returns the absolute value of the number 
i.e., the output returned should be 3-bit. Show all steps of design and implement your 
design in LogiSim. Submit several printouts displaying the function of your design. 
 

Problem 7) (20 points) Construction of a 4-to-16 line decoder with enable input using 
five 2-to-4 line decoders with enable inputs. Do not use other logic gates. 
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Problem 8) (50 points) Construction of a 15-to-1 line multiplexer  

a) Construct a 15-to-1 line multiplexer with two 8-to-1 line multiplexers. The 
corresponding figure depicts the multiplexer block and its functional table. Minimize the 
added logic required to have selection codes 0000 through 1110.  

b) Use LogiSim to construct an 8-to-1 line multiplexer. Save the block under the name 
8x1MUX. Use two of such blocks plus added logic gates to implement the final 15-to-1 
line multiplexer using LogiSim. Submit both the designs for the 8-to-1 block and the 15-
to-1 line multiplexer. Highlight on the submitted screen shots the operation of the 15-to-1 
multiplexer 

Hint: See the supplied figures: P8a, P8b, and P8c. 
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The required functional table: 
S0, S1, S2, and S3 are the four 
select lines for the 15-to-1 line 
multiplexer, and O is the output 
line. I0, I1, …, I14 are the 15 
input lines to select from. 
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Figure P8a: 15-to-1 line 
multiplexer block. 

Figure P8b: 15-to-1 line 
multiplexer functional table. 

Figure P8c: 8-to-1 line 
multiplexer block. 

 


