
Dr. Ashraf S. Hasan Mahmoud Dec 14th, 2008

HW_2_coe_081_202_02.doc Page 1 of 3

KFUPM - COMPUTER ENGINEERING DEPARTMENT
COE-202 – Fundamentals of Computer Engineering

Assignment # 2: Due Sunday January 4th, 2008 – in class.

Problem 1) (20 points) Simplify the following Boolean functions to the form of sum-of-
products by finding all prime implicants and essential prime implicants and applying the
selection rule:

 a) F(W,X,Y,Z) = Σm(0,1,2,6,8,9,10,13)
 b) F(A,B,C,D) = ΠM(1,3,5,6,7,9,10,11,14)

Problem 2) (20 points) Simplify the following expressions in (1) sum-of-products and
(2) product-of-sums forms. Use the K-map method for the simplification:
 a) AC’ + B’D + A’CD + ABCD
 b) (A’ + B’ + D) (A’ + D’) (A + B + D’) (A + B’ + C + D)

Problem 3) (30 points) It is required to implement a 4-bit ripple carry adder using
LogiSim:
a) Implement the full adder circuit explained in class and shown in Figure P3a. Make this
as an “FA” circuit added to your project.
b) Add another circuit called “4-bit Ripple Carry Adder”. Use the FA block to construct
the 4-bit carry adder. Test your new circuit with few examples and verify that it is
performing the required function.
Provide screenshots for part (a) and part (b).
Hint: follow the instructions given in class and illustrated in
http://ozark.hendrix.edu/~burch/logisim/docs/2.1.0/guide/subcirc/using.html

Half adder
Ai
Bi

Ci+1

Si

Ci

Half adder
Half adder

Ai
Bi

Ci+1

Si

Ci

Half adder

FA Ci

Si

Ai Bi

Ci+1
FA Ci

Si

Ai Bi

Ci+1

Figure P3a: Full adder circuit. Figure P3b: Full adder block

diagram.

Problem 4) (50 points) It is required to implement a 4-bit Carry Lookahead Adder
(CLA) using LogiSim:
a) Implement the partial adder circuit explained in class and shown in Figure P4a. Make
this as a “PA” circuit added to your project.
b) Add another circuit called “4-bit Carry Lookahead Adder”. Use the PA block to
construct the 4-bit carry look ahead adder plus the required logic (AND and OR gates) to

Dr. Ashraf S. Hasan Mahmoud Dec 14th, 2008

HW_2_coe_081_202_02.doc Page 2 of 3

generate the required carry signals. The construction procedure is as explained in class
notes, and as shown in Figure P4c. Test your new circuit with few examples and verify
that it is performing the required function.
Provide screenshots for part (a) and part (b).

Ci+1

Ai
Bi

Si

Ci

Pi

Gi

Ci

PA: Partial Adder

FA: Full Adder

Ci+1

Ai
Bi

Si

Ci

Pi

Gi

Ci

PA: Partial Adder

FA: Full Adder

PA
Ci

Si

Ai Bi

Gi

Pi
PAPA

Ci

Si

Ai Bi

Gi

Pi

Figure 4a: Partial adder logic. Figure 4a: Partial adder block.

C0PA

S0

A0 B0

P0

G0

PA
C1

S1

A1 B1

P1

G1

PA
C2

S2

A2 B2

P2

G2

PA

S3

A3 B3

C3P3

G3
C4

C1 = G0 + P0C0
C2 = G1 + P1G0 + P1P0C0
C3 = G2 + P2G1+ P2P1G0 + P2P1P0C0
C4 = G3 + P3G2 + P3P2G1+ P3P2P1G0 + P3P2P1P0C0

C0PA

S0

A0 B0

P0

G0

PAPA

S0

A0 B0

P0

G0

P0P0

G0G0

PAPA
C1

S1

A1 B1

P1

G1

P1P1

G1G1

PAPA
C2

S2

A2 B2

P2

G2

P2P2

G2G2

PAPA

S3

A3 B3

C3P3

G3

P3P3

G3G3
C4

C1 = G0 + P0C0
C2 = G1 + P1G0 + P1P0C0
C3 = G2 + P2G1+ P2P1G0 + P2P1P0C0
C4 = G3 + P3G2 + P3P2G1+ P3P2P1G0 + P3P2P1P0C0

Figure 4c: Construction of 4-bit CLA.

Problem 5) (50 points) It is required to design a 4-bit ripple-borrow subtractor to find
the subtraction X-Y for the two unsigned numbers, X=X3-X0, and Y=Y3-Y0.
a) (25 points) Design a 1-bit full subtractor. The 1-bit full subtractor performs the
following operation: D = X – bin – Y. Where D is the output, X, bin (borrow in), and Y
are the input. Plot the truth table, and design the required circuit. Using a block diagram
show how it can be used to construct the 4-bit ripple-borrow subtractor.
b) (25 points) Implement the 4-bit ripple-borrow subtractor in LogiSim and verify its
operation. Provide several printouts displaying the required operation with selected
examples of subtracting 4-bit numbers.

Problem 6) (50 points) Design a combinational circuit that receives a 4-bit signed
number in 2’s complement representation and returns the absolute value of the number
i.e., the output returned should be 3-bit. Show all steps of design and implement your
design in LogiSim. Submit several printouts displaying the function of your design.

Problem 7) (20 points) Construction of a 4-to-16 line decoder with enable input using
five 2-to-4 line decoders with enable inputs. Do not use other logic gates.

Dr. Ashraf S. Hasan Mahmoud Dec 14th, 2008

HW_2_coe_081_202_02.doc Page 3 of 3

Problem 8) (50 points) Construction of a 15-to-1 line multiplexer

a) Construct a 15-to-1 line multiplexer with two 8-to-1 line multiplexers. The
corresponding figure depicts the multiplexer block and its functional table. Minimize the
added logic required to have selection codes 0000 through 1110.

b) Use LogiSim to construct an 8-to-1 line multiplexer. Save the block under the name
8x1MUX. Use two of such blocks plus added logic gates to implement the final 15-to-1
line multiplexer using LogiSim. Submit both the designs for the 8-to-1 block and the 15-
to-1 line multiplexer. Highlight on the submitted screen shots the operation of the 15-to-1
multiplexer

Hint: See the supplied figures: P8a, P8b, and P8c.

15-to-1
line multiplexer

S0

S1
S2

S3

I0

I1

I14

O

15-to-1
line multiplexer

S0

S1
S2

S3

I0

I1

I14

O

15-to-1
line multiplexer

S0

S1
S2

S3

I0

I1

I14

O

The required functional table:
S0, S1, S2, and S3 are the four
select lines for the 15-to-1 line
multiplexer, and O is the output
line. I0, I1, …, I14 are the 15
input lines to select from.

I140111

I131011

I120011

I111101

I100101

I91001

I80001

I71110

I60110

I51010

I40010

I31100

I20100

I11000

I00000

OS3S2S1S0

I140111

I131011

I120011

I111101

I100101

I91001

I80001

I71110

I60110

I51010

I40010

I31100

I20100

I11000

I00000

OS3S2S1S0

8-to-1
line multiplexer

S0

S1
S2

I0

I1

I7

O

8-to-1
line multiplexer

S0

S1
S2

I0

I1

I7

O

Figure P8a: 15-to-1 line
multiplexer block.

Figure P8b: 15-to-1 line
multiplexer functional table.

Figure P8c: 8-to-1 line
multiplexer block.

