KFUPM - COMPUTER ENGINEERING DEPARTMENT

COE-202 - Fundamentals of Computer Engineering

SOLUTION for Assignment \# 1: Due Sunday Nov $23{ }^{\text {rd }}, 2008$ - in class.

1) Convert the following numbers from the given base to the bases indicated:
(a) Decimal 255.225 to binary, octal, and hexadecimal.
(b) Hexadecimal 2AC5.D to decimal, octal, and binary.
(c) Hexadecimal EF.C to base 5
(d) Binary 1010101111.01101 to base 3

Solution:

(a)						Note that the part of fraction (1100) repeats Therefore, $(255.225)_{10}=\left(11111111.001(1100)^{+}\right)_{2}$ In Octal: $(255.225)_{10}=\left(377.1(6314)^{+}\right)_{8}$ In Hex: $\left.(255.225)_{10}=(\text { F F.3(9) })^{+}\right)_{H}$
255/2	127	1	0.225×2	0.45	0	
127/2	63	1	$\frac{0.45 \times 2}{0.9 \times 2}$	$\frac{0.9}{1.8}$	1	
$\frac{63 / 2}{31 / 2}$	31	1	$\frac{0.9 \times 2}{0.8 \times 2}$	1.8	1	
15/2	7	,	0.6×2	1.2	1	
7/2	3	1	0.2×2	0.4	0	
$3 / 2$ $1 / 2$	1	1	$\frac{0.4 \times 2}{0.8 \times 2}$	0.8	${ }_{1}^{0}$	
			0.6×2	1.2	1	

(b) (2AC5.D)H:

In decimal: $2 \times 16^{3}+10 \times 16^{2}+12 \times 16^{1}+5 \times 16^{0}+13 \times 16^{-1}=(10949.8125)_{10}$
In binary: $(0010101011000101 \text {.1101 })_{2}$ - through direct translation of hex digits
In Octal: $(25305.64)_{8}$ - the binary digits takes in threes are translated to octal digits
(c) $(\text { EF.C })_{H}=14 \times 16^{1}+15 \times 16^{0}+12 \times 16^{-1}=(239.75)_{10}$

| $239 / 5$ | 47 | 4 | | 0.75×5 | 3.75 | 3 | | It is clear that the fraction digit 3 repeats. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $47 / 5$ | 9 | 2 | | 0.75×5 | 3.75 | 3 | | |
| Therefore, $(\mathrm{EF} . \mathrm{C})_{H}$ | $=(239.75)_{10}$ | | | | | | | |
| $9 / 5$ | 1 | 4 | | 0.75×5 | 3.75 | 3 | | |
| | $=\left(1424.3^{+}\right)_{5}$ | | | | | | | |

(d) $(001010101111.01101000) 2=(2 A F .68)_{H}$ $=2 \times 16^{2}+10 \times 16^{1}+15 \times 16^{0}+6 \times 16^{-1}+8 \times 16^{-2}=(687.40625)_{10}$

687/3	76	1	0.40625×3	1.21875	1	It is clear that the fraction part 10122201 repeats Therefore,$(687.40625)_{10}=\left(221110 .(10122201)^{+}\right)_{3}$	
229/3	$\frac{76}{25}$	$\frac{1}{1}$	$\frac{0.21875 \times 3}{0.65625 \times 3}$	0.65625	1		
25/3	25	1	0.65625x3	$\frac{1.96875}{2.90625}$	$\frac{1}{2}$		
8/3	2	2	0.90625×3	2.71875	2		
2/3	0	2	0.71875×3	2.15625	2		
			0.15625×3	0.46875	0		
			0.46875×3	1.40625	1		
			0.40625×3	1.21875	1		

2) Perform the following unsigned arithmetic operations using the designated bases without converting to decimal. Verify your result by converting the numbers to decimal and then performing the operation in decimal.
(a) $(10111011)_{2}-(01001111)_{2}$
(b) $(10 \mathrm{E})_{16}-(13 \mathrm{~F})_{16}$
(c) $(54)_{16} *(20)_{16}$
(d) $(11011.0111)_{2}+(11.1101)_{2}$

Solution:

(a)

1	0	1	1	1	0	1	1		\rightarrow	$\rightarrow 87$
-	0	1	0	0	1	1	1	1		\rightarrow
--	-	-	-	-	-	--	--			----
0	1	1	0	1	1	0	0		\rightarrow	108

One can check that $(1101100)_{2}=(108)_{10}$.
(b) $10 \mathrm{E}-13 \mathrm{~F}=$?

It is clear that 13 F is greater than 10E. Therefore, $(10 \mathrm{E})_{H}-(13 \mathrm{~F})_{H}=-\left[(13 F)_{H}-(10 E)_{H}\right]=-(031)_{H}$.
To check, $(10 E)_{H}=(270)_{10},(13 F)_{H}=(319)_{10} \rightarrow 270-319=-49=-(31)_{H}$.
(c) $(54)_{H} \times(20)_{H} \rightarrow$

To check, $(54)_{H}=(84)_{10},(20)_{H}=(32)_{10} \rightarrow 84 \times 32=(2688)_{10}$ which is equal to $(A 80)_{H}$.
(d)

To check, $(11111.0100)_{2}$ is indeed equal to sum (31.25) $)_{10}$.
3) In each of the following cases, determine the radix r :
(a) $(121)_{r}=(25)_{10}$
(b) $(345)_{r}=(180)_{10}$

Solution:
(a) $(121)_{r}=(25)_{10} \rightarrow r^{2}+2 r+1=25 \rightarrow r^{2}+2 r-24=0 \rightarrow(r+6)(r-4)=0$;

Therefore, $r=4$.
The required base is 4 .
(b) $(345)_{r}=(180)_{10} \rightarrow 3 r^{2}+4 r-175=0 \rightarrow r 2+4 / 3 r-175 / 3=0 \rightarrow(r+81 / 3)(r-7)=0$;

Therefore, $r=7$.
The required base is 7 .
4) Show how the decimal integers +120 and -120 would be represented in signed magnitude, 1 's complement, and 2's complement notation using 8 bits and 10 bits, respectively.

Solution

	8 bits		10 bits	
	+120	-120	+120	-120
Signed magnitude	01111000	11111000	0001111000	1001111000
1's complement	01111000	10000111	0001111000	1110000111
2's complement	01111000	10001000	0001111000	1110001000

5) Perform the operations $M+N, M-N$, and $N-M$ using both radix and diminished radix complement systems using the specified number of digits. Specify when an overflow condition has occurred.
(a) $n=4, M=(\mathrm{A} 2 \mathrm{~B})_{16}, N=(56 \mathrm{C})_{16}$
(b) $n=3, M=(821)_{10}, N=(785)_{10}$
(c) $n=8, M=(10010)_{2}, N=(11011)_{2}$
(d) $n=6, M=(10010)_{2}, N=(10011)_{2}$

Solution:
(a) $n=4, M=(A 2 B)_{16}, N=(56 C)_{16}$
[1] 16's complement system:
$M^{\prime}=10000-M=10000-A 2 B=F 5 D 5 \rightarrow\left\{M=(2603)_{10}\right.$ and $\left.M^{\prime}=-(2603)_{10}\right\}$
$N^{\prime}=10000-N=10000-56 C=F A 94 \rightarrow\left\{N=(1388)_{10}\right.$ and $\left.N^{\prime}=-(1388)_{10}\right\}$
$M+N=0 A 2 B+056 C=0 F 97$ and the end carry is ZERO. No overflow
The result OF97 is correct. Note (2603) ${ }_{10}+(1388)_{10}=(3991)_{10}$ which is (F97) $)_{16}$ in $n=4$ and 16's complement system.
$M-N=M+N^{\prime}=0 A 2 B+F A 94=04 B F$ and the end carry is ONE. No overflow. Ignore carry.
The result O4BF is correct. Note $(2603)_{10}-(1388)_{10}=(1215)_{10}$ which is $(04 B F)_{16}$ in $n=4$ and 16 's complement system.
$N-M=N+M^{\prime}=056 C+F 5 D 5=F B 41$ and the end carry is ZERO. No overflow
The result FB41 is correct. Note (1388) ${ }_{10}-(2603)_{10}=-(1215)_{10}$ which is (FB41) ${ }_{16}$ in $\mathrm{n}=4$ and 16 's complement system.
[2] 15's complement system:
$M^{\prime}=$ FFFF $-M=$ FFFF $-A 2 B=F 5 D 4 \rightarrow\left\{M=(2603)_{10}\right.$ and $\left.M^{\prime}=-(2603)_{10}\right\}$
$N^{\prime}=10000-N=$ FFFF $-56 C=$ FA93 $\rightarrow\left\{N=(1388)_{10}\right.$ and $\left.N^{\prime}=-(1388)_{10}\right\}$
$M+N=0 A 2 B+056 C=0 F 97$ and the end carry is ZERO. No overflow - same as above.
The result OF97 is correct. Note (2603) ${ }_{10}+(1388)_{10}=(3991)_{10}$ which is (OF97) $)_{16}$ in $\mathrm{n}=4$ and 15 's complement system.
$M-N=M+N^{\prime}=O A 2 B+F A 93=04 B E$ and the end carry is ONE. No overflow.
Need to correct answer \rightarrow 04BE +1 (end carry) $=04 \mathrm{BF}$
The result 04BF is correct. Note (2603) $)_{10}-(1388)_{10}=(1215)_{10}$ which is $(04 B F)_{16}$.in $n=4$ and 15 's complement system.
$N-M=N+M^{\prime}=056 C+$ F5D4 $=$ FB40 and the end carry is ZERO. No overflow
The result FB4O is correct. Note (1388) $)_{10}-(2603)_{10}=-(1215)_{10}$ which is $(F B 40)_{16}$ in $n=4$ and 15 's complement system.
(b) $n=3, M=(821)_{10}, N=(785)_{10}$
[1] 10's complement system:
$M^{\prime}=1000-M=1000-821=179 \rightarrow\left\{M=-179\right.$ and $\left.M^{\prime}=179\right\}$
$N^{\prime}=1000-N=1000-785=215 \rightarrow\left\{N=-215\right.$ and $\left.N^{\prime}=215\right\}$
$M+N=821+785=606$ and the end carry is ONE. No overflow. Ignore carry

The result 606 is correct. Note $-179+(-215)=-394$ which is 606 in $n=3$ and 10 's complement system.
$M-N=M+N^{\prime}=821+215=036$ and the end carry is ONE. No overflow. Ignore carry.
The result 036 is correct. Note $-179-(-215)=36$ which is 036 in $n=3$ and 10's complement system.
$N-M=N+M^{\prime}=785+179=964$ and the end carry is ZERO. No overflow
The result 964 is correct. Note $-215-(-179)=-36$ which is 964 in $n=3$ and 10 's complement system.
[2] 9's complement system:
$M^{\prime}=999-M=999-821=178 \rightarrow\left\{M=-178\right.$ and $\left.M^{\prime}=178\right\}$
$N^{\prime}=999-N=999-785=214 \rightarrow\left\{N=-214\right.$ and $\left.N^{\prime}=214\right\}$
$M+N=821+785=606$ and the end carry is ONE. No overflow. Ignore carry - same as above.
The result 606 is correct. Note $-178+(-214)=-392$ which is 606 in $n=3$ and 9 's complement system.
$M-N=M+N^{\prime}=821+214=035$ and the end carry is ONE. No overflow.
Need to correct result $\rightarrow 035+1$ (end carry) $=036$.
The result 036 is correct. Note $-178-(-214)=36$ which is 036 in $n=39$'s complement system. $N-M=N+M^{\prime}=785+178=963$ and the end carry is ZERO. No overflow The result 963 is correct. Note $-214-(-178)=-36$ which is 963 in $n=3$ and 9 's complement system.
(c) $n=8, M=00010010, N=00011011 \rightarrow\{M=18, N=27\}$
[1] 2's complement system:
$M^{\prime}=100000000-00010010=11101110 \rightarrow\left\{M=18, M^{\prime}=-18\right\}$
$N^{\prime}=100000000-00011011=11100101 \rightarrow\left\{N=27, N^{\prime}=-27\right\}$
$M+N=(00010010)_{2}+(00011011)_{2}=(00101101)_{2}$ and the end carry is ZERO. No overflow The result (00101101$)_{2}$ is correct. Note $18+27=45$ which is $(00101101)_{2}$ in $n=8$ and 2 's complement system.
$M-N=M+N^{\prime}=(00010010)_{2}+(11100101)_{2}=(11110111)_{2}$ and the end carry is ZERO. No overflow.
The result $(11110111)_{2}$ is correct. Note $18-27=-9$ which is $(11110111)_{2}$ in $n=8$ and 2 's complement system.
$N-M=N+M^{\prime}=(00011011)_{2}+(11101110)_{2}=(00001001)_{2}$ and the end carry is ONE. No overflow. Ignore the carry
The result $(00001001)_{2}$ is correct. Note $27-18=9$ which is $(00001001)_{2}$ in $n=8$ and 2 's complement system.
[2] 1's complement system:
$M^{\prime}=11111111-00010010=11101101 \rightarrow\left\{M=18, M^{\prime}=-18\right\}$
$N^{\prime}=11111111-00011011=11100100 \rightarrow\left\{N=27, N^{\prime}=-27\right\}$
$M+N=(00010010)_{2}+(00011011)_{2}=(00101101)_{2}$ and the end carry is ZERO. No overflow The result (00101101$)_{2}$ is correct. Note $18+27=45$ which is $(00101101)_{2}$ in $n=8$ and 2 's complement system.
$M-N=M+N^{\prime}=(00010010)_{2}+(11100100)_{2}=(11110110)_{2}$ and the end carry is ZERO. No overflow.

The result $(11110110)_{2}$ is correct. Note $18-27=-9$ which is $(11110110)_{2}$ in $n=8$ and 1 's complement system.
$N-M=N+M^{\prime}=(00011011)_{2}+(11101101)_{2}=(00001000)_{2}$ and the end carry is ONE. No overflow. Need to correct result $\rightarrow(00001000)_{2}+1$ (end carry) $=(0000 \text { 1001 })_{2}$
The result $(00001001)_{2}$ is correct. Note $27-18=9$ which is $(00001001)_{2}$ in $n=8$ and 1's complement system.
(d) $n=6, M=010010, N=010011$
[1] 2's complement system:
$M^{\prime}=1000000-010010=101110 \rightarrow\left\{M=18, M^{\prime}=-18\right\}$
$N^{\prime}=1000000-010011=101101 \rightarrow\left\{N=19, N^{\prime}=-19\right\}$
$M+N=(010010)_{2}+(010011)_{2}=(100101)_{2}$ and $C n=1$ and $C n+1=0$ (i.e. the end carry is ZERO) \rightarrow OVERFLOW
The result (100101$)_{2}$ is NOT correct. Note $18+27=45$ which is CAN NOT be represented in $n=6$ and 2 's complement system. The maximum positive number in this system is equal to $+\left(2^{n-1}-1\right)=+31$. $M-N=M+N^{\prime}=(010010)_{2}+(101101)_{2}=(111111)_{2}$ and the end carry is ZERO. No overflow. The result (11 1111) $)_{2}$ is correct. Note $18-19=-1$ which is $(111111)_{2}$ in $n=6$ and 2 's complement system.
$N-M=N+M^{\prime}=(010011)_{2}+(101110)_{2}=(000001)_{2}$ and the end carry is ONE. No overflow. Ignore the carry.
The result (00000001$)_{2}$ is correct. Note 19-18 = 1 which is $(00000001)_{2}$ in $n=6$ and 2 's complement system.
[2] 1's complement system:
$M^{\prime}=111111-010010=101101 \rightarrow\left\{M=18, M^{\prime}=-18\right\}$
$N^{\prime}=111111-010011=101100 \rightarrow\left\{N=19, N^{\prime}=-19\right\}$
$M+N=(010010)_{2}+(010011)_{2}=(100101)_{2}$ and $C n=1$ and $C n+1=0$ (i.e. the end carry is ZERO) \rightarrow OVERFLOW
The result (10 0101) $)_{2}$ is NOT correct. Note $18+27=45$ which is CAN NOT be represented in $n=6$ and 1's complement system. The maximum positive number in this system is equal to $+\left(2^{n-1}-1\right)=+31$. $M-N=M+N^{\prime}=(010010)_{2}+(101100)_{2}=(111110)_{2}$ and the end carry is ZERO. No overflow. The result (11 1110) $)_{2}$ is correct. Note $18-19=-1$ which is $(111110)_{2}$ in $n=6$ and 1 's complement system.
$N-M=N+M^{\prime}=(010011)_{2}+(101101)_{2}=(000000)_{2}$ and the end carry is ONE. No overflow. Need to correct result $\rightarrow(000000)_{2}+1$ (end carry) $=(000001)_{2}$
The result $(00000001)_{2}$ is correct. Note $19-18=1$ which is $(00000001)_{2}$ in $n=6$ and 1 's complement system.
6) A microcontroller uses 16 -bit registers. Give the following in both binary and decimal:
(a) The maximum unsigned integer number that can be stored.
(b) The smallest (negative) number and the largest (positive) number that can be stored using the sign-magnitude notation.
(c) The smallest (negative) number and the largest (positive) number that can be stored using the 2 's complement notation.

Solution:

$n=16, R=2$
(i) maximum unsigned integer $=(1111111111111111)=2^{16}-1=65535$.
(ii) For signed magnitude representation - MSB is reserved for sign \rightarrow remaining $=15$ bits for magnitude
\rightarrow smallest negative integer $=-\left(2^{15}-1\right)=-32767$
\rightarrow largest positive integer $=+\left(2^{15}-1\right)=+32767$
(iii) Using Z's complement:
smallest negative integer $=-2^{16-1}=32768$,
largest positive integer $=+\left(2^{16-1}-1\right)=32767$
7) Prove the following Identities using Boolean algebraic manipulation:
a) $x^{\prime} y^{\prime}+x y+x \prime y=x^{\prime}+y$
b) $x^{\prime} y+x y^{\prime}+x y+x^{\prime} y^{\prime}=1$
c) $x y^{\prime}+y^{\prime} z^{\prime}+x^{\prime} z^{\prime}=x y^{\prime}+x^{\prime} z^{\prime}$

Solution:

a) LHS $=x^{\prime} y^{\prime}+x y+x^{\prime} y=x^{\prime} y^{\prime}+x y+x^{\prime} y+x^{\prime} y=x^{\prime}\left(y^{\prime}+y\right)+y\left(x^{\prime}+x\right)$

$$
=x^{\prime}+y
$$

= RHS
b) LHS $=x^{\prime} y+x y^{\prime}+x y+x^{\prime} y^{\prime}=x^{\prime}\left(y+y^{\prime}\right)+x\left(y^{\prime}+y\right)=x^{\prime}+x=1$
$=$ RHS
c) LHS $=x y^{\prime}+y^{\prime} z^{\prime}+x^{\prime} z^{\prime}=x y^{\prime} z+x y^{\prime} z^{\prime}+x y^{\prime} z^{\prime}+x^{\prime} y^{\prime} z^{\prime}+x^{\prime} y^{\prime} z^{\prime}+x^{\prime} y z^{\prime}$
$=x y^{\prime} z+x y^{\prime} z^{\prime}+x^{\prime} y^{\prime} z^{\prime}+x^{\prime} y z^{\prime}$
$=x y^{\prime}\left(z+z^{\prime}\right)+x^{\prime} z^{\prime}\left(y^{\prime}+y\right)=x y^{\prime}+x^{\prime} z^{\prime}$
= RHS
8) Simplify the following expressions to a minimum number of "literals" using Boolean algebraic manipulation
a) $\mathrm{ABC}+\mathrm{A}^{\prime} \mathrm{B}+\mathrm{ABC}^{\prime}$
b) $(x+y)^{\prime}\left(x^{\prime}+y^{\prime}\right)$
c) $\left(\mathrm{BC}^{\prime}+\mathrm{A}^{\prime} \mathrm{D}\right)\left(\mathrm{AB}{ }^{\prime}+\mathrm{CD}^{\prime}\right)$

Solution:
a) $A B C+A^{\prime} B+A B C^{\prime}=A B\left(C+C^{\prime}\right)+A^{\prime} B=A B+A^{\prime} B=\left(A+A^{\prime}\right) B=B$
b) $x^{\prime} y^{\prime} \cdot x^{\prime}+x^{\prime} y^{\prime} \cdot y^{\prime}=x^{\prime} y^{\prime}+x^{\prime} y^{\prime}=x^{\prime} y^{\prime}$
c) $A B^{\prime} B C^{\prime}+A B^{\prime} A^{\prime} D+A^{\prime} D A B^{\prime}+A^{\prime} D C D^{\prime}=0+0+0+0=0$
9) Using De-Morgan's theorem to derive the complement (F ') of the function $\mathrm{F}=\mathrm{xy}+\mathrm{z}$

Using algebraic manipulations verify (for this function) that $\mathrm{F}^{\prime} \mathrm{F}^{\prime}=0$ as well as $\mathrm{F}+\mathrm{F}^{\prime}=1$

Solution:
a) $\mathrm{F}^{\prime}=(x y+z)^{\prime}=(x y)^{\prime} z^{\prime}=\left(x^{\prime}+y^{\prime}\right) z^{\prime}$
b) $\mathrm{FF}^{\prime}=(x y+z)\left(x^{\prime}+y^{\prime}\right) z^{\prime}=x y z^{\prime}\left(x^{\prime}+y^{\prime}\right)=0+0=0$

$$
\begin{aligned}
F+F^{\prime} & =(x y+z)+\left(x^{\prime}+y^{\prime}\right) z^{\prime}=x y+z+x^{\prime} z^{\prime}+y^{\prime} z^{\prime}=x y+x^{\prime} z^{\prime}+\left(z+y^{\prime}\right)\left(z+z^{\prime}\right) \\
& =x y+x^{\prime} z^{\prime}+z+y^{\prime}=\left(x+y^{\prime}\right)\left(y+y^{\prime}\right)+x^{\prime} z^{\prime}+z=x+y^{\prime}+x^{\prime} z^{\prime}+z=\left(x+x^{\prime}\right)\left(x+z^{\prime}\right)+y^{\prime}+z \\
& =x+z^{\prime}+y^{\prime}+z=1
\end{aligned}
$$

10) Derive the truth table and draw the logic diagram of the following function:
11) For the Boolean functions E and F, as given in the following truth table:
a) List the minterms and the maxterms of each function
b) List the minterms of \bar{E} and \bar{F}
c) List the minterms of $E+F$ and $E F$
d) Express E and F in the sum-of-minterms algebraic form
e) Simplify E and F to expressions with a minimum number of literals

X	Y	Z	E	F
0	0	0	1	0
0	0	1	1	0
0	1	0	1	1
0	1	1	0	1
1	0	0	0	0
1	0	1	1	0
1	1	0	0	1
1	1	1	0	1

Solution:
a) $E(X, Y, Z)=m 0+m 1+m 2+m 5$,
$F(X, Y, Z)=m 2+m 3+m 6+m 7$
$E(X, Y, Z)=$ M3.M4.M6.M7
$F(X, Y, Z)=$ MO.M1.M4.M5
b) $E^{\prime}(X, Y, Z)=m 3+m 4+m 6+m 7$
$F^{\prime}(X, Y, Z)=m 0+m 1+m 4+m 5$
c) $E+F=m 0+m 1+m 2+m 3+m 5+m 6+m 7$
$E . F=m 2$
d) $E(X, Y, Z)=\bar{X} \bar{Y} \bar{Z}+\bar{X} \bar{Y} Z+\bar{X} Y \bar{Z}+X \bar{Y} Z$,

$$
F(X, Y, Z)=\bar{X} Y \bar{Z}+\bar{X} Y Z+X Y \bar{Z}+X Y Z
$$

e) Using the K-maps below, we can find: $E(X, Y, Z)=\bar{Y} Z+\bar{X} \bar{Z}$, and $F(X, Y, Z)=Y$

12) Convert the following expressions into sum-of-products and product of sums forms:
a) $(A B+C)\left(B+C^{\prime} D\right)$
b) $X^{\prime}+X\left(X+Y^{\prime}\right)\left(Y+Z^{\prime}\right)$
c) $\left(\mathrm{A}+\mathrm{BC}{ }^{\prime}+\mathrm{CD}\right)\left(\mathrm{B}^{\prime}+\mathrm{EF}\right)$

Solution:
a) $(A B+C)\left(B+C^{\prime} D\right)=A B+A B C^{\prime} D+B C=A B\left(1+C^{\prime} D\right)+B C=A B+B C \rightarrow S O P$

$$
=B(A+C) \rightarrow P O S
$$

b) $X^{\prime}+X\left(X+Y^{\prime}\right)\left(Y+Z^{\prime}\right)=\left(X^{\prime}+X\right)\left(X^{\prime}+\left(X+Y^{\prime}\right)\left(Y+Z^{\prime}\right)=\left(X^{\prime}+X+Y^{\prime}\right)\left(X^{\prime}+Y+Z^{\prime}\right)=X^{\prime}+Y+Z^{\prime} \rightarrow S O P\right.$ and POS
c) $\left(A+B C^{\prime}+C D\right)\left(B^{\prime}+E F\right)=\left(A+B C^{\prime}+C\right)\left(A+B C^{\prime}+D\right)\left(B^{\prime}+E\right)\left(B^{\prime}+F\right)$
$=(A+C+B)\left(A+C+C^{\prime}\right)(A+D+B)\left(A+D+C^{\prime}\right)\left(B^{\prime}+E\right)\left(B^{\prime}+F\right)$
$=(A+B+C)(A+D+B)\left(A+C^{\prime}+D\right)\left(B^{\prime}+E\right)\left(B^{\prime}+F\right) \rightarrow P O S$
$\left(A+B C^{\prime}+C D\right)\left(B^{\prime}+E F\right)=A B^{\prime}+A E F+B C^{\prime} B^{\prime}+B C^{\prime} E F+C D B^{\prime}+C D E F$ $=A B^{\prime}+A E F+B C^{\prime} E F+B^{\prime} C D+C D E F \rightarrow P O S$

