King Fahd University of Petroleum & Minerals Computer Engineering Dept

COE 202 – Fundamentals of Computer Engineering

Term 081

Dr. Ashraf S. Hasan Mahmoud

Rm 22-148-3

Ext. 1724

Email: ashraf@kfupm.edu.sa

10/13/2008

Dr. Ashraf S. Hasan Mahmoud

1

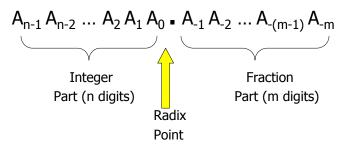
Number Systems – Base r

10/13/2008

Dr. Ashraf S. Hasan Mahmoud

Number Systems – Base r

• General number in base r is written as:



- Note that All A_i (digits) are less than r:
 - i.e. Allowed digits are 0, 1, 2, ..., r − 1 ONLY
- A_{n-1} is the MOST SIGNIFACT Digit (MSD) of the number
- A_{-m} is the LEAST SIGNIFICANT Digit (LSD) of the number

10/13/2008

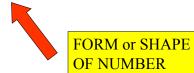
Dr. Ashraf S. Hasan Mahmoud

 A_{n-1} is the MSD of the integer part A_0 is the LSD of the integer part A_{-1} is the MSD of the fraction part A_{-m} is the LSD of the fraction part

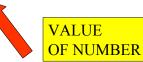
Number Systems – Base r

• The (base r) number

$$\mathsf{A}_{\mathsf{n}\text{--}\mathsf{1}}\,\mathsf{A}_{\mathsf{n}\text{--}\mathsf{2}}\,\ldots\,\mathsf{A}_{\mathsf{2}}\,\mathsf{A}_{\mathsf{1}}\,\mathsf{A}_{\mathsf{0}}\,\centerdot\,\mathsf{A}_{\mathsf{-1}}\,\mathsf{A}_{\mathsf{-1}}\,\mathsf{A}_{\mathsf{-2}}\,\ldots\,\mathsf{A}_{\mathsf{-(m-1)}}\,\mathsf{A}_{\mathsf{-m}}$$



is equal to



10/13/2008

Dr. Ashraf S. Hasan Mahmoud

Example – Decimal or Base 10

• For decimal system (base 10), the number (724.5)₁₀

is equal to

$$7X10^{2} + 2X10^{1} + 4X10^{0} + 5X10^{-1}$$

= $7 \times 100 + 2 \times 10 + 4 \times 1 + 5 \times 0.1$
= $700 + 20 + 4 + 0.5$

= 724.5

It is all powers of 10:

 $\begin{array}{c} \dots \\ 10^3 = 1000, \\ 10^2 = 100, \\ 10^1 = 10, \\ 10^0 = 1, \\ 10^{-1} = 0.1, \\ 10^{-2} = 0.01, \\ \dots \end{array}$

10/13/2008

Dr. Ashraf S. Hasan Mahmoud

5

Example -Base 5

- Base $5 \rightarrow r = 5$
- Allowed digits are: 0, 1, 2, 3, and 4 ONLY
- The number

 $(312.4)_5$

is equal to

$$3X5^{2} + 1X5^{1} + 2X5^{0} + 4X5^{-1}$$

= $3 \times 25 + 1 \times 5 + 2 \times 1 + 4 \times 0.2$
= $75 + 5 + 2 + 0.8$
= $(82.8)_{10}$

Therefore $(312.4)_5 = (82.8)_{10}$

It is all powers of 5:

 $5^{3} = 125,$ $5^{2} = 25,$ $5^{1} = 5,$ $5^{0} = 1$ $5^{-1} = 0.2$ $5^{-2} = 0.04,$

10/13/2008

Dr. Ashraf S. Hasan Mahmoud

A Third Example -Base 2

- Base 2 \rightarrow r = 2
 - This is referred to as the **BINARY SYSTEM**
- Allowed digits are: 0 and 1 ONLY
- The number

 $(110101.11)_2$

is equal to

$$1X2^{5} + 1X2^{4} + 0X2^{3} + 1X2^{2} + 0X2^{1} + 1X2^{0}$$

$$+ 1X2^{-1} + 1X2^{-2}$$

$$= 1 X 32 + 1 X 16 + 1 X 4 + 1 X 2 + 1 X 0.5$$

$$+ 1 X 0.25$$

$$= 32 + 16 + 4 + 1 + 0.5 + 0.25$$

$$= (53.75)_{10}$$
Therefore $(110101.11)_{2} = (53.75)_{10}$

It is all powers of 2:

 $2^{4} = 16$ $2^{3} = 8,$ $2^{2} = 4,$ $2^{1} = 2,$ $2^{0} = 1$ $2^{-1} = 0.5$ $2^{-2} = 0.25,$

10/13/2008

Dr. Ashraf S. Hasan Mahmoud

Decimal to Binary Conversion of Integer Numbers

- Conversion from base 2 to base 10 (for real numbers) See previous slide
- To convert a decimal integer to binary → decompose into powers of 2
 - Example: (37)₁₀ = (?)₂
 37 has ONE 32 → remainder is 5
 5 has ZERO 16 → remainder is 5
 5 has ZERO 8 → remainder is 5
 5 has ONE 4 → remainder is 1
 1 has ZERO 2 → remainder is 1
 1 has ONE 1 → remainder is 0

Therefore $(37)_{10} = (100101)_2$

10/13/2008

Dr. Ashraf S. Hasan Mahmoud

Decimal to Binary Conversion of Integer Numbers-cont'd

- Or we can use the following (see table):
- You stop when the division result is ZERO
- Note the order of the resulting digits
- Therefore $(37)_{10} =$ $(100101)_2$
- To check:

$$1X2^5+1X2+1=32+4+1=37$$

No	No/2	Remainder	
37	1 8	1 🗲	■ LSD
18	9	0	
9	4	1	
4	2	0	
2	_ 1	0	
1	0	1 🗲	MSD

In general: to convert a decimal integer to its equivalent in base r we use the Dr. Ashraf above procedure but dividing by r

10/13/2008

9

A Very Useful Table

- To represent decimal numbers from 0 till 15 (16 numbers) we need FOUR binary digits B₃B₂B₁B₀
- In general to represent N numbers, we need

	,
$\lceil \log_2 N \rceil$	bits

- Note than:
 - B₀ flipped or COMPLEMENTED at every increment
 - B₁ flipped or COMPLEMENTED every 2 steps
 - B₂ flipped or COMPLEMENTED every 4 steps
- B₃ flipped or COMPLEMENTED 10/13/2008 every 8 st

onc			
teps	Dr. Ashraf S.	Hasan	Mahmou

Decimal	Binary	Decimal	Binary
0	0000	8	1000
1	0001	9	1001
2	0010	10	1010
3	0011	11	1011
4	0100	12	1100
5	0101	13	1101
6	0110	14	1110
7	0111	15	1111
asan Mahmou	d		10

A Very Useful Table - cont'd

- Note that zeros to the left of the number do not add to its value
- When we need DIGITS beyond 9, we will use the alphabets as shown in Table
 - Example: base 16 system has 16 digits; these are: 0, , 1, 2, 3, ..., 8, 9, A, B, C, D, E, F
 - This is referred to as HEXADECIMAL or HEX number system

Decimal	Binary	Decimal	Binary
0	0000	8	1000
1	0001	9	1001
2	0010	10 → A	1010
3	0011	11 → B	1011
4	0100	12 → C	1100
5	0101	13 → D	1101
6	0110	14 → E	1110
7	0111	15 → F	1111

10/13/2008

Dr. Ashraf S. Hasan Mahmoud

11

Decimal to Binary Conversion of Fractions

- Example: $(0.234375)_{10} = (?)_2$
- Solution: We use the following procedure
- Note:
 - The binary digits are the integer part of the multiplication process
 - The process stops when the number is 0
- There are situations where the process DOES NOT end – See next slide
- Therefore $(0.234375)_{10} = (0.001111)_2$
- To check: $(0.001111)_2 = 1X2^{-3} + 1X2^{-4} + 1X2^{-5} + 1X2^{-6} =$

10/13(20).2234375)10

Dr. Ashraf S.

No	NoX2	Integer Part	
0.234375	0.46875	0	•
0.46875	0.9375	0 MSD	
0.9375	1.875	1	
0.875	1.75	1	
0.75	1.5	1	
0.5	1.0	1	•
0		LSD	

In general: to convert a decimal fraction to its equivalent in base r we use the above procedure but multiplying by r

Decimal to Binary Conversion of Fractions – cont'd

• Example: $(0.513)_{10} = (?)_2$

Solution: As in previous slide

0.026 0.052 L10 0.104 0.208

No

0.513

Therefore $(0.513)_{10} = (0.100000110 \dots)_2$

If we chose to round to 1 significant figure \rightarrow (0.1)₂

Or to 7 significant figures → (0.1000001)₂

0.328 ...

0.416

0.832

0.664

Etc.

10/13/2008

Dr. Ashraf S. Hasan Mahmoud

13

Integer

Part

0

0

0

0

1

1

0

NoX2

1.026

0.052

0.104

0.208

0.416

0.832

1.664

1.328

0.656

Octal Number System

- Base r = 8
- Allowed digits are = 0, 1, 2, ..., 6, 7
- Example: the number $(127.4)_8$ has the decimal value $1X8^2 + 2X8^1 + 7X8^0 + 4X8^{-1}$
- $= 1 \times 64 + 2 \times 8 + 7 + 0.5$
- $=(87.5)_{10}$

It is all powers of 8:

 $8^4 = 4096$

 $8^3 = 512,$ $8^2 = 64,$

 $8^1 = 8,$ $8^0 = 1$

 $8^{-1} = 0.125$ $8^{-2} = 0.015625$

10/13/2008

Dr. Ashraf S. Hasan Mahmoud

Conversion between Octal and Binary

- **Example:** $(127)_8 = (?)_2$
- Solution: we can find the decimal equivalent (see previous slide) and then convert from decimal to binary

$(127)_8 = (87)_{10} \rightarrow (?)_2$
From long division
$(127)_8 = (87)_{10} = (1010111)_2$
To check:
1X2 ⁶ +1X2 ⁴ +1X2 ² +1X2 ¹ +1X2 ⁰
= 64 + 16 + 4 + 2 + 1
= 87

No	No/2	Remainder
87	43	1
43	21	1
21	10	1
10	5	0
5	2	1
2	1	0
1	0	1

10/13/2008

Dr. Ashraf S. Hasan Mahmoud

15

Conversion between Octal and Binary- cont'd

- **NOTE:** $(127)_8 = (1010111)_2$
- Lets group the binary digits in groups of 3 starting from the LSD

$$(1010111)_2 \rightarrow (001 \quad 010 \quad 111)_2$$

1 2 7

- That is the decimal equivalent of the first group 111 → 7

 of the second group 010 → 2

 of the third group 001 → 1
- Hence, to convert from Octal to Binary one can perform direct translation of the Octal digits into binary digits:
 ONE Octal digit ←→ THREE Binary digits

10/13/2008

Dr. Ashraf S. Hasan Mahmoud

Conversion between Octal and Binary – cont'd

- To convert from Binary to Octal, Binary digits are grouped into groups of three digits and then translated to Octal digits
- Example: $(1011101.10)_2 = (?)_8$
- Solution:

$$(1011101.10)_2 = (001\ 011\ 101\ .\ 100)_2$$

= $(1\ 3\ 5\ .\ 4)_8$
= $(135.4)_8$

Note:

We can add zeros to the left of the number or to the right of the number after the radix point to form the groups

10/13/2008

Dr. Ashraf S. Hasan Mahmoud

17

Conversion From Decimal to Octal

- Problem: What is the octal equivalent of (32.57)₁₀?
- Solution:
- a) We can covert $(32.57)_{10}$ to binary and then to Octal or
- b) We can do:

32₁₀
$$\Rightarrow$$
 32/8 = 4 and remainder is 0 \Rightarrow 0
4/8 = 0 and remainder is 4 \Rightarrow 4
hence, 32₁₀ = 40₈
(0.57)₁₀ \Rightarrow 0.57 X 8 = 4.56 \Rightarrow 4
0.56 X 8 = 4.48 \Rightarrow 4
0.48 X 8 = 3.84 \Rightarrow 3
0.84 X 8 = 6.72 \Rightarrow 6

hence, $(0.57)_{10} = (0.4436)_8$

What is (0.4436)₈ rounded for -Two fraction digits? -One fraction digit?

Therefore, $(32.57)_{10} = (40.4436)_8$

10/13/2008

Dr. Ashraf S. Hasan Mahmoud

Hexadecimal Number Systems

- Base r = 16
- Allowed digits: 0, 1, 2, ..., 8, 9, A, B, C, D, E, F
- The values for the alphabetic digits are as show in Table

	Hex	Value
• Example 1:	Α	10
$(B65F)_{16} = BX16^3 + 6X16^2 + 5X16^1 + FX16^0$	В	11
= 11X4096 + 6X256 + 5X16 + 15	С	12
$= (46687)_{10}$	D	13
• Example 2:	F	14
$(1B.3C)_{16} = 1X16^{1} + BX16^{0} + 3X16^{-1} + CX16^{-2}$	F	15
= 16+11+3X0.0625+12X0.00390625		13

10/13/2008

Dr. Ashraf S. Hasan Mahmoud

19

Conversion Between Hex and Binary

• **Example:** $(1B.3C)_{16} = (?)_2$

 $=(27.234375)_{10}$

Solution: we can find the decimal equivalent (see previous slide) and then convert from decimal to binary

$$(1B)_{16} = (27)_{10} \rightarrow (?)_2$$

From long division
 $(1B)_{16} = (27)_{10} = (11011)_2$
 $(0.3C)16 = (0.234375)_{10} = (0.001111)_2$

→ Therefore $(1B.3C)_{16} = (11011.001111)_2$

Verify This Result

10/13/2008

Dr. Ashraf S. Hasan Mahmoud

Conversion Between Hex and Binary – cont'd

Note:

1

 $(1B.3C)_{16} = (11011.\ 001111)_2$ from previous example Lets group the binary bits in groups of 4 starting from the radix point, adding zeros to the left of the number or to the right as needed

→ (0001 1011 . 0011 1100)

1 1 1 1

 Hence, to convert from Hex to Binary one can perform direct translation of the Hex digits into binary digits: ONE Hex digit ←→ FOUR Binary digits

10/13/2008

Dr. Ashraf S. Hasan Mahmoud

21

Conversion between Hex and Binary – cont'd

- To convert from Binary to Hex, Binary digits are grouped into groups of four digits and then translated to Hex digits
- Example: $(1011101.10)_2 = (?)_{16}$
- Solution:

$$(1011101.10)_2 = (0101 \ 1101 \ . \ 1000)_2$$

= $(5 \ D \ . \ 8 \)_{16}$
= $(5D.8)_{16}$

Note:

We can add zeros to the left of the number or to the right of the number after the radix point to form the groups

10/13/2008

Dr. Ashraf S. Hasan Mahmoud

Sample Exam Problem

• **Problem**: What is the radix r if

$$((33)_r + (24)_r) \times (10)_r = (1120)_r$$

Solution:

$$(33)_r = 3r + 3,$$

$$(24)_r = 2r + 4,$$

$$(10)_{r} = r,$$

$$(1120)_r = r^3 + r^2 + 2r$$

therefore:

$$[(3r+3)+(2r+4)] X r$$

$$= r^3 + r^2 + 2r \rightarrow r^3 - 4 r^2 - 5 r = 0$$
, or

$$r(r-5)(r+1)=0$$

This means, the radix r is equal to 5

10/13/2008

Dr. Ashraf S. Hasan Mahmoud

23

Number Ranges - Decimal

Consider a decimal integer number of n digits:

$$A_{n-1}A_{n-2}...A_1A_0$$
 where $A_i \in \{0,1,2,...,9\}$

Smallest integer is $0_{n-1}0_{n-2}...0_10_0 = 0$

Largest integer is $9_{n-1}9_{n-2}...9_19_0 = 10^n - 1$

Example: for n equal to $3 \rightarrow 3$ digits integer decimals; the maximum integer is 999 or $10^3 - 1$

10/13/2008

Dr. Ashraf S. Hasan Mahmoud

Number Ranges - Decimal - cont'd

• Consider a decimal fraction of m digits: $0.A_{\text{-1}}A_{\text{-2}}...A_{\text{-(m-1)}}A_{\text{-m}} \ \ \text{where} \ A_{\text{i}} \in \{0,1,2,\,...,\,9\}$

Smallest non-zeros fraction is $0.0_{\text{-}1}0_{\text{-}2}...0_{\text{-}(m-1)}1_{\text{-}m}=10^{\text{-}m}$ Largest fraction is $0.9_{\text{-}1}9_{\text{-}2}...9_{\text{-}(m-1)}9_{\text{-}m}=1-10^{\text{-}m}$

Example: for m equal to 3 → 3 digits decimal fraction;

The minimum fraction is 10^{-3} or 0.001The maximum number is $1 - 10^{-3}$ or 0.999

10/13/2008

Dr. Ashraf S. Hasan Mahmoud

25

Number Ranges – Base-r Numbers

Consider a base-r integer of n digits:

$$A_{n-1}A_{n-2}...A_1A_0$$
 where $A_i \in \{0,1,2, ..., r-1\}$

Smallest integer is $0_{n-1}0_{n-2}...0_10_0=0$ Largest integer is $(r-1)_{n-1}(r-1)_{n-2}...(r-1)_1(r-1)_0=r^n-1$

Example: for r = 5, n = 5 a digits base-5 integer;

The maximum integer is $(444)_5$ or $(5^3 - 1)_{10}$ To check:

the decimal equivalent of $(444)_5$ is $4X5^2+4X5^1+4=(124)_{10}$ or simply $5^3-1=(124)_{10}$ or simply Dr. Ashraf S. Hasan Mahmhud

Number Ranges - Base-r Numbers

Consider a base-r fraction of m digits:

$$0.A_{\text{-}1}A_{\text{-}2}...A_{\text{-}(m\text{-}1)}A_{\text{-}m} \ \ \text{where} \ A_{i} \in \{0,1,2,\ ...,\ r\text{-}1\}$$

Smallest non-zero fraction is

$$(0.0_{-1}0_{-2}...0_{-(m-1)}1_{-m})_r = (r^{-m})_{10}$$

Largest fraction is

$$(0.(r\text{-}1)_{\text{-}1}(r\text{-}1)_{\text{-}2}...(r\text{-}1)_{\text{-}(m\text{-}1)}(r\text{-}1)_{\text{-}m})_r = (1-r\text{-}m)_{10}$$

Example: for r = 5 and m equal to $3 \rightarrow 3$ digits base-5 fraction;

The maximum number is $(0.444)_5$ or $1 - 5^{-3} = 0.992$

10/13/2008

Dr. Ashraf S. Hasan Mahmoud

27

Number Ranges - Base-r Numbers - cont'd

Integer Min		Decimal (r=10)	Binary (r = 2)	Octal (r = 8)	Hex (r = 16)	
Integer	Min	$0_{n-1}0_{n-2}0_10_0$ = 0	$0_{n-1}0_{n-2}0_10_0$ = 0	$0_{n-1}0_{n-2}0_10_0$ = 0	$0_{n-1}0_{n-2}0_10_0$ = 0	
		= 0	= 0	= 0	= 0	
	Max	9 _{n-1} 9 _{n-2} 9 ₁ 9 ₀	$(1_{n-1}1_{n-2}1_11_0)_2$	$(8_{n-1}8_{n-2}8_18_0)_8$	$(F_{n-1}F_{n-2}F_1F_0)_{16}$	
		$= 10^{n} - 1$	$= (2^{n} - 1)_{10}$	$= (8^{n} - 1)_{10}$	$= (16^{n} - 1)_{10}$	
fraction	Min	$0.0_{-1}0_{-2}0_{-(m-1)}1_{-m}$	$(0.0_{-1}0_{-2}0_{-(m-1)}1_{-m})_2$	$(0.0_{-1}0_{-2}0_{-(m-1)}1_{-m})_8$	$(0.0_{-1}0_{-2}0_{-(m-1)}1_{-m})_{16}$	
		= 10 ^{-m}	$= (2^{-m})_{10}$	$= (8^{-m})_{10}$	$= (16^{-m})_{10}$	
	Max	$0.9_{-1}9_{-2}9_{-(m-1)}9_{-m}$ = $1 - 10^{-m}$	$(0.1_{-1}1_{-2}1_{-(m-1)}1_{-m})_2$	$(0.7_{-1}7_{-2}7_{-(m-1)}7_{-m})_8$	$(0.F_{-1}F_{-2}F_{-(m-1)}F_{-m})_{16}$	
		1 10	$= (1 - 2^{-m})_{10}$	$= (1 - 8^{-m})_{10}$	$= (1 - 16^{-m})_{10}$	

10/13/2008

Dr. Ashraf S. Hasan Mahmoud

Exercises

What is 8⁴ equal to in octal?

$$(8^4)_{10} = (10000)_8$$

What is 2⁵ equal to in binary?

$$(2^5) = (100000)_2$$

- What is 16⁴ 1 equal to in Hex?
- What is 2³ 2⁻² equal to in Binary?
- What is 16⁵ 16⁴ equal to in Hex?
- What is 3⁴ 3⁻² equal to in base-3?
- What is $2^4 2^{-2}$ equal to in base-3?

10/13/2008

Dr. Ashraf S. Hasan Mahmoud

29

Addition and Subtraction of (Unsigned) Numbers

10/13/2008

Dr. Ashraf S. Hasan Mahmoud

Binary Addition of UNSIGEND Numbers

• Consider the following example: Find the summation of (1100)₂ and (11001)₂

Solution:

Augend 01100
Addend +11001
-----sum 100101
← Carry
110000 ← Carry

- Note that
 - 0+0=0, 0+1=1+0=1, and 1+1=0 and the carry is 1
 - If the maximum no of digits for the augend or the addend is n, then the summation has either n or n+1 digits

31

• This procedure works even for non-integer binary numbers

10/13/2008 Dr. Ashraf S. Hasan Mahmoud

Binary Subtraction of UNSIGEND Numbers

 Consider the following example: Subtract (10010)₂ from (10110)₂

Solution:

Minuend 10110 Subtrahend -10010 ------Difference 00100

- Note that
 - (10110)₂ is greater than (10010)₂ → The result is POSITIVE
 - 0-0 = 0, 1-0 = 1, and 1-1 = 0
 - The difference size is always less or equal to the size of the minued or the subtrahend
 - This procedure works even for non-integer binary numbers

10/13/2008 Dr. Ashraf S. Hasan Mahmoud 32

Binary Subtraction – cont'd

 Consider the following example: Subtract (10011)₂ from (10110)₂

Solution:

00110 ← Borrow
Minuen 10110
Subtrahend -10011
-----Difference 00011

- Note that
 - (10110)₂ is greater than (10011)₂ → result is positive
 - 0-1= 1, and the borrow from next significant digit is 1
 - This procedure works even for non-integer binary numbers

10/13/2008 Dr. Ashraf S. Hasan Mahmoud

33

Binary Subtraction – cont'd

 Consider the following example: Subtract (11110)₂ from (10011)₂

Solution:

00110 ← Borrow

Minuen 10011 → 11110

Subtrahend -11110 → -10011

Difference -01011 ← 01011

- Note that
 - $(10011)_2$ is smaller than $(11110)_2 \rightarrow$ result is negative
 - This procedure works even for non-integer binary numbers

10/13/2008 Dr. Ashraf S. Hasan Mahmoud 34

Binary Multiplication of UNSIGEND Numbers

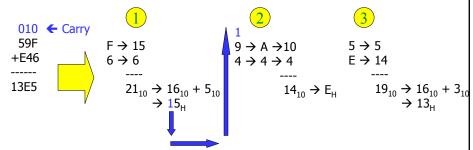
• Consider the following example: Multiply (1011)₂ by (101)₂

Solution:

10/13/2008 Dr. Ashraf S. Hasan Mahmoud

Sums and Products in Base r (Unsigned Numbers)

- For sums and Products in base-r (r > 2) systems
 - · Memorize tables for sums and products
 - Convert to Dec → perform operation → convert back to base-r
- **Example**: Find the summation of $(59F)_{16}$ and $(E46)_{16}$?



• This procedure is used for any base-r

36

Sums and Products in Base-r – cont'd

- **Example**: Find the multiplication of $(762)_8$ and $(45)_8$?
- Solution:

```
3310 ← Carry (for 4)
                            Octal Decimal
 4310 Carry (for 5)
                                                       Octal
                                   = 10 \rightarrow 8 + 2
                                                       = 12
                            5X2
  762
                            5X6+1=31 \rightarrow 24+7
                                                       = 37
 X 45
                            5X7+3=38 \rightarrow 32+6
                                                       = 46
                            4X2 = 8 \rightarrow 8 + 0
                                                       = 10
 4672
                            4X6+1=25 \rightarrow 24+1
                                                       = 31
3710
                            4X7+3=24+7
                                                       = 37
43772
```

Therefore, product = (43772)₈
_{10/13/2008} Dr. Ashraf S. Hasan Mahmoud</sub>

37

Decimal Codes

10/13/2008

Dr. Ashraf S. Hasan Mahmoud

Decimal Codes

- There are 2ⁿ <u>DISTINCT</u> n-bit binary codes (group of n bits)
 - n bits can count 2ⁿ numbers
- For us, humans, it is more natural to deal with decimal digits rather than binary digits
- 10 different digits → we can use 4 bits to represent any digit
 - 3 bits count 8 numbers
 - 4 bits count 16 numbers → to represent 10 digits we need 4 bits at least

10/13/2008

Dr. Ashraf S. Hasan Mahmoud

39

Binary Coded Decimal (BCD)

 Let the decimal digits be coded as show in table

Decimai Digit	Code	Decimai Digit	Code	
0	0000	5	0101	
1	0001	6	0110	
2	0010	7	0111	
3	0011	8	1000	

0100

Then we can write

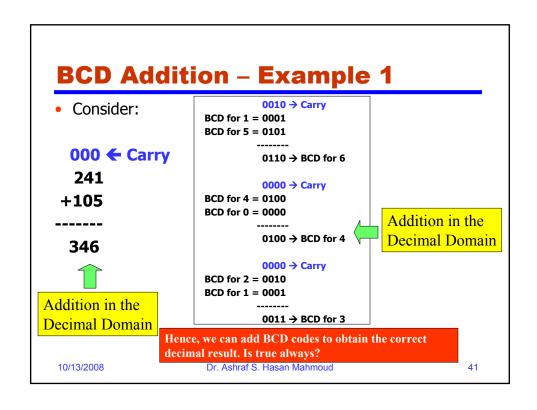
numbers as

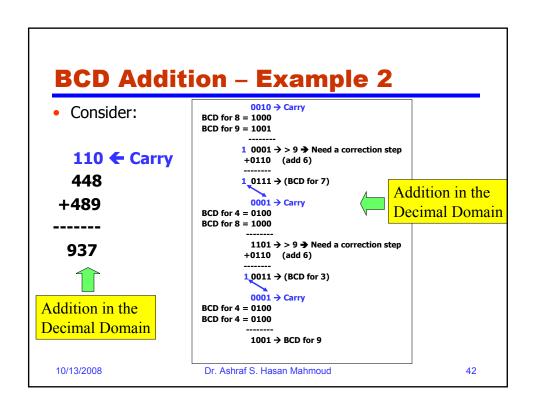
 $(396)_{10} = (0011\ 1001\ 01\overline{10})_{BCD}$ Since 3 \rightarrow 0011, 9 = 1001, 6 = 0110

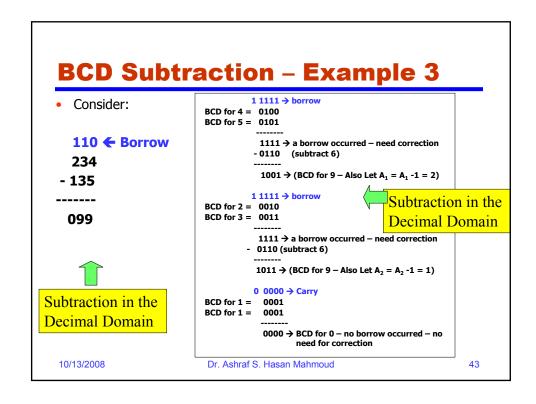
Although we are using the equal sign – but they are not equal in the mathematical sense; this is JUST a code

Note that $(396)_{10} = (110001100)_{Dr. Ashraf S^2 Hasan Mahmoud} \neq (0011 1001 0110)_{BCD}$

40







BCD Addition – Summary

- BCD codes: decimal digits are assigned 4 bit codes
- We can perform additions using the BCD digits
 - If the result of adding two BCD digits is greater than 9, a correction step is required in order produce the correct BCD digit
 - To correct: add 6
 - If a carry is produced → move it to next BCD digits addition

10/13/2008

Dr. Ashraf S. Hasan Mahmoud

Alphanumeric Codes

- We have
 - 10 decimal digits
 - 26 X 2 (English) letters: capital and small case
 - Some special characters {; , . : + etc}
- If we assign each character of these a binary code, then computers can exchange alphanumeric information (letters, numbers, etc) by exchanging binary digits
- One binary code is the American Standard Code for Information Interchange (ASCII)

10/13/2008

Dr. Ashraf S. Hasan Mahmoud

45

ASCII

- A 7-bits code → 128 distinct codes
 - 96 printable characters (26 upper case letter, 26 lower case letters, 10 decimal digits, 34 non-alphanumeric characters)
 - 32 non-printable character
 - Formatting effectors (CR, BS, ...)
 - Info separators (RS, FS, ...)
 - Communication control (STX, ETX, ...)
- Computers typically use words sizes that are multiples of 2
 - Usually 8 bits are used for the ASCII code with the 8th (left most bit) bit set to zero, OR
 - The ASCII code is extended → Extended ASCII (platform dependant)
- A good reference about ASCII and Extended ASCII is found at http://www.cplusplus.com/doc/papers/ascii.html

10/13/2008

Dr. Ashraf S. Hasan Mahmoud

ASCII - cont'd

- A 7-bits code → 128 distinct codes
- The American Standard Code for Information Interchange (ASCII) uses seven binary digits to represent 128 characters as shown in the table.

```
00 NUL| 01 SOH| 02 STX| 03 ETX| 04 EOT| 05 ENQ| 06 ACK| 07 BEL
08 BS | 09 HT | 0A NL | 0B VT | 0C NP | 0D CR | 0E SO | 0F SI
10 DLE| 11 DC1| 12 DC2| 13 DC3| 14 DC4| 15 NAK| 16 SYN| 17 ETB
18 CAN| 19 EM | 1A SUB| 1B ESC| 1C FS | 1D GS | 1E RS | 1F US
20 SP | 21 ! | 22 " | 23 # | 24 $ | 25 % | 26 & | 27
28 (| 29 ) | 2A * | 2B + | 2C , | 2D - | 2E . | 2F
30 0 | 31 1 | 32 2 | 33 3 | 34 4 | 35 5 | 36 6 | 37
38 8 | 39 9 | 3A : | 3B ; | 3C < | 3D = | 3E > | 3F
40 @ | 41 A | 42 B | 43 C | 44 D | 45 E | 46 F | 47
48 H | 49 I | 4A J | 4B K | 4C L | 4D M | 4E N | 4F
   P | 51 Q | 52 R | 53 S | 54
                               T | 55
                                      U | 56 V | 57
58 X | 59 Y | 5A Z | 5B [ | 5C \ | 5D ] | 5E ^ | 5F
    `| 61 a | 62 b | 63 c | 64 d | 65 e | 66 f | 67
68 h | 69 i | 6A j | 6B k | 6C l | 6D m | 6E n | 6F
70 p | 71 q | 72 r | 73 s | 74 t | 75 u | 76 v | 77 w
78 x | 79 y | 7A z | 7B { | 7C
```

10/13/2008

Dr. Ashraf S. Hasan Mahmoud

47

Unicode

 Unicode describes a 16-bit standard code for representing symbols and ideographs for the world's languages.

First 256 Codes for Unicode^a

Co	Control		Control ASCII						Control		Latin 1					
000	001	002	003	004	005	006	007	008	009	00A	00B	00C	00D	00E	00F	
0 CTRL	CTRL	SPACE	0	@	Р	`	р	CTRL	CTRL	NB SP	0	À	Đ	à	D	
1 CTRL	CTRL	1	1	Α	Q	а	q	CTRL	CTRL	1	\pm	Á	Ñ	á	ñ	
2 CTRL	CTRL		2	В	R	Ь	Г	CTRL	CTRL	¢	2	Â	Ò	â	ò	
3 CTRL	CTRL	#	3	C	S	С	S	CTRL	CTRL	£	3	Ã	Ó	ã	ó	
4 CTRL	CTRL	S	4	D	T	d	t	CTRL	CTRL	п	1	Ä	Ô	ä	ô	
5 CTRL	CTRL	%	5	E	U	e	u	CTRL	CTRL	¥¥	μ	Å	Õ	å	õ	
6 CTRL	CTRL	&	6	F	V	f	v	CTRL	CTRL	- 1	1	Æ	Ö	æ	ö	
7 CTRL	CTRL	'	7	G	W	g	W	CTRL	CTRL	§		Ç	\times	ç	÷	
8 CTRL	CTRL	(8	Н	X	h	X	CTRL	CTRL	-	,	È	Ø	è	Ø	
9 CTRL	CTRL)	9	I	Y	i	y	CTRL	CTRL	©	i	É	Ù	é	ù	
A CTRL	CTRL	*	:	J	Z	j	Z	CTRL	CTRL	a	0	Ê	Ú	ê	ú	
B CTRL	CTRL	+	;	K]	k	{	CTRL	CTRL	«	>>	Ë	Û	ë	û	
C CTRL	CTRL	,	<	L	\	1		CTRL	CTRL	\neg	1 1/4	Ì	Ü	ì	ü	
D CTRL	CTRL	-	=	M	1	m	}	CTRL	CTRL	-	1/2	Í	Y	í	ý	
E CTRL	CTRL		>	N	^	n	~ ~	CTRL	CTRL	®	3/4	Î	þ	î	þ	
F CTRL	CTRL	/	?	О	-	0	CTRL	CTRL	CTRL	-	ć	Ĭ	В	ï	ÿ	

*Unicode, Inc., The Unicode Standard: Worldwide Character Encoding, Version 1.0, Volume 1, © 1990, 1991 by Unicode, Inc. Reprinted by permission of Addison-Wesley Publishing Company, Inc.

Wesley Publishing Company, Inc 10/13/2008

Dr. Ashraf S. Hasan Mahmoud

Problems of Interest

Problem List:

10/13/2008

Dr. Ashraf S. Hasan Mahmoud

49

Signed Numbers Representations

10/13/2008

Dr. Ashraf S. Hasan Mahmoud

Machine Representation of Numbers

- Computers store numbers in special digital electronic devices called REGISTERS
- REGISTERS consist of a fixed number of storage elements
- Each storage element can store one BIT of data (either 1 or 0)
- A register has a FINITE number of bits
 - Register size (n) is the number of bits in this register
 - N is typically a power of 2 (e.g. 8, 16, 32, 64, etc.)
 - A register of size n can represent 2ⁿ distinct values
 - Numbers stored in a register can be either signed or unsigned

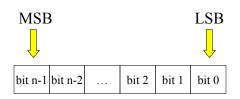
10/13/2008

Dr. Ashraf S. Hasan Mahmoud

51

N-bit Register

N-storage elements



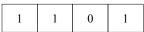
- Each storage element capable of holding ONE bit (either 1 or −0
- n-bits can represent 2ⁿ distinct values
 - For example if unsigned integer numbers are to be represented, we can represent all numbers from 0 to 2ⁿ-1 (recall the number ranges for n-bits)
 - If we use it to represent signed numbers, still it can hold 2ⁿ different numbers we will learn about the ranges of these numbers in the coming slides

10/13/2008

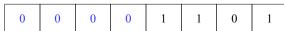
Dr. Ashraf S. Hasan Mahmoud

N-bit Register - cont'd

 Using a 4-bit register, (13)₁₀ or (D)_H is represented as follows:



 Using an 8-bit register, (13)₁₀ or (D)_H is represented as follows:



- Note that ZEROS are used to pad the binary representation of 13 in the 8-bit register
- We are still using UNSIGNED NUMBERS

10/13/2008

Dr. Ashraf S. Hasan Mahmoud

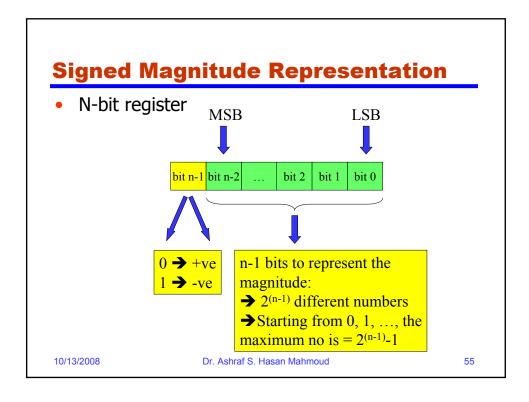
53

Signed Number Representation

- To report a "signed" number, you need to specify its:
 - Magnitude (or absolute value), and
 - Sign (positive or negative)
- There are to main techniques to represent signed numbers
 - 1. Signed Magnitude Representation
 - 2. Complement Method

10/13/2008

Dr. Ashraf S. Hasan Mahmoud



Signed Magnitude Representation – Example 1:

- Show how +6, -6, +13, and -13 are represented using a 4-bit register
- Solution: Using a 4-bit register, the leftmost bit is reserved for the sign, which leaves 3 bits only to represent the magnitude
- → The largest magnitude that can be represented = 2⁽⁴⁻¹⁾ -1 = 7 < 13</p>
 Hence, the numbers +13 and -13 can NOT be represented using the 4-bit register

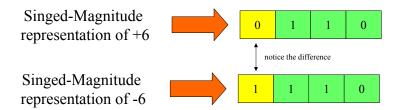
10/13/2008

Dr. Ashraf S. Hasan Mahmoud

Signed Magnitude Representation – Example 1: cont'd

Solution (cont'd):

However both –6 and +6 can be represented as follows:



10/13/2008

Dr. Ashraf S. Hasan Mahmoud

57

Signed Magnitude Representation – Example 2:

- Show how +6, -6, +13, and −13 are represented using an 8-bit register
- Solution: Using an 8-bit register, the leftmost bit is reserved for the sign, which leaves 7 bits only to represent the magnitude
 - → The largest magnitude that can be represented = 2⁽⁸⁻¹⁾ -1 = 127
 Hence, the numbers can be represented using the 8-bit register

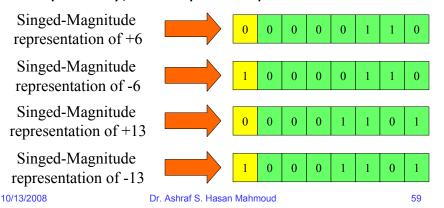
10/13/2008

Dr. Ashraf S. Hasan Mahmoud

Signed Magnitude Representation – Example 2: cont'd

Solution (cont'd):

Since 6 and 13 are equal to: 110 and 1101 respectively, the required representations are



Things We Learned About Signed- Magnitude Representation

- For an n-bit register
 - Leftmost bit is reserved for the sign (0 for +ve and 1 for -ve)
 - Remaining n-1 bits represent the magnitude
 - 2⁽ⁿ⁻¹⁾ different numbers:
 - minimum is zero and maximum is 2⁽ⁿ⁻¹⁾-1
- Two representations for zero: +0 and -0
- Range of numbers: from {2⁽ⁿ⁻¹⁾-1} to +{2⁽ⁿ⁻¹⁾-1}
 → symmetric range

10/13/2008

Dr. Ashraf S. Hasan Mahmoud

Complement Representation

- +ve numbers (+N) are represented exactly the same way as in signed-magnitude representation
- -ve numbers (-N) are represented by the complement of N or N'

How is the complement of N or N' defined?

N' = M - N where M is some constant

10/13/2008

Dr. Ashraf S. Hasan Mahmoud

61

Properties of the Complement Representation

 The complement of the complement of N is equal to N:

Proof: (N')' = M - (M - N) = -(-N) = NSame as with -ve numbers definition!

- The complement method representation of signed numbers simplifies implementation of arithmetic operations like subtraction:
- e.g.: A B can be replaced by A + (-B) or A + B' using the complement method

Therefore to perform subtraction using computers we complement and add the subtrahend

10/13/2008

Dr. Ashraf S. Hasan Mahmoud

How to Choose M?

Consider the following number:

$$X = X_{n-1} \dots X_2 X_1 X_0 \cdot X_{-1} X_{-2} \dots X_{-(m-1)} X_{-m}$$

(n integral digits – m fractional digits)

- Using the base-r number system, there can be two types of the complement representation
 - Radix Complement (R's Complement)
 - \rightarrow M = r^n
 - Diminished Radix Complement (R-1's Complement):

$$\rightarrow M = r^n - r^{-m}$$

$$= r^n - ulp$$

Recall that $r^n = 1_n 0_{n-1} ... 0_1 0_0$ = 1 followed by n zeros Recall that $r^m = 0... 00.00..01$ = unit in the least position

10/13/2008

Dr. Ashraf S. Hasan

How to Choose M? - cont'd

- Note that:
 - M = rⁿ r^{-m} is the LARGEST unsigned number that can be represented
 - From the definitions of M, Rs complement of N is equal to R-1's complement of N plus ulp

10/13/2008

Dr. Ashraf S. Hasan Mahmoud

Summary of Complement Method

• R's Complement:

Number System	R's Complement	Complement of X
Decimal	10's Complement	$X'_{10} = 10^n - X$
Binary	2's Complement	$X'_2 = 2^n - X$
Octal	8's Complement	$X'_8 = 8^n - X$
Hexadecimal	16's Complement	$X'_{16} = 16^n - X$

10/13/2008 Dr. Ashraf S. Hasan Mahmoud

65

Summary of Complement Method – cont'd

• R-1's Complement:

Number System	R-1's Complement	Complement of X
Decimal	9's Complement	$X'_9 = (10^n - 10^{-m}) - X$ = 9999.9999 - X
Binary	1's Complement	$X'_1 = (2^{n}-2^{-m}) - X$ = 1111.11 - X
Octal	7's Complement	$X'_7 = (8^n - 8^{-m}) - X$ = 777777 - X
Hexadecimal	15's Complement	$X'_{15} = (16^{n} - 16^{-m}) - X$ = FFFF.FFFF - X

10/13/2008

Dr. Ashraf S. Hasan Mahmoud

Example 1a:

- Find the 9's and 10's complement of 2357?
- Solution:

$$X = 2357 \Rightarrow n = 4$$

$$X'_{9} = (10^{4} - \text{ulp}) - X$$

$$= (10000 - 1) - 2357$$

$$= 9999 - 2357$$

$$= 7642$$

$$X'_{10} = 10^{4} - X$$

$$= 10000 - 2357$$

$$= 7643$$

Note that: $X + X'_9 = 2357 + 7642$ = 9999 = M While $X + X'_{10} = 2357 + 7643$ = 1 0000 = M

Or alternatively,

$$X'_{10} = X'_{9} + ulp = 7642 + 1 = 7643$$

10/13/2008

Dr. Ashraf S. Hasan Mahmoud

67

Example 1b:

- Find the 9's and 10's complement of 2895.786?
- Solution:

$$X = 2895.786$$
 → $n = 4$, $m = 3$
 $X'_9 = (10^4 - \text{ulp}) - X$
 $= (10000 - 0.001) - 2895.786$
 $= 9999.999 - 2895.786$
 $= 7104.213$
 $X'_{10} = 10^4 - X$
 $= 10000 - 2895.786$
 $= 7104.214$

Note that: $X + X'_9 = 2895.786 + 7104.213$
 $= 9999.999 = M$
While $X + X'_{10} = 2895.786 + 7104.214$
 $= 10000.000 = M$

Or alternatively,

$$X'_{10} = X'_{9} + ulp = 7104.213 + 0.001 = 7104.214$$

10/13/2008

Dr. Ashraf S. Hasan Mahmoud

Example 2a:

- Find the 1's and 2's complement of 110101010?
- Solution:

```
 \begin{array}{l} X = 110101010 \; \begin{tabular}{l} $ \times = 10000101010 \end{tabular} \rightarrow n = 9 \\ X'_1 = (2^9 - \text{ulp}) - X \\ &= (10000000000 - 1) - 110101010 \\ &= 111111111 - 110101010 \\ &= 001010101 \end{tabular} \qquad \begin{array}{l} \text{Note that: } X + X'_1 = 110101010 + 0010101010 \\ &= 111111111 = M \\ \text{While } X + X'_2 = 110101010 + 001010110 \\ &= 1000000000 = M \end{array}   \begin{array}{l} \text{Note that: } X + X'_1 = 110101010 + 0010101010 \\ &= 111111111 = M \\ \text{While } X + X'_2 = 110101010 + 001010110 \\ &= 10000000000 = M \end{array}   \begin{array}{l} \text{Note that: } X + X'_1 = 110101010 + 0010101010 \\ &= 111111111 = M \\ &= 10000000000 = M \end{array}   \begin{array}{l} \text{Note that: } X + X'_1 = 110101010 + 0010101010 \\ &= 111111111 = M \\ &= 10000000000 = M \end{array}   \begin{array}{l} \text{Note that: } X + X'_1 = 110101010 + 0010101010 \\ &= 111111111 = M \\ &= 10000000000 = M \end{array}
```

Or alternatively,

$$X'_2 = X'_1 + ulp = 001010101 + 1 = 001010110$$

10/13/2008

Dr. Ashraf S. Hasan Mahmoud

69

Example 2b:

- Find the 1's and 2's complement of 1010.001?
- Solution:

X = 1010.001 → n = 4, m = 3

$$X'_1 = (2^4 - \text{ulp}) - X$$

= (10000 -0.001) - 1010.001
= 1111.111 - 1010.001
= 0101.110
 $X'_2 = 2^4 - X$
= 10000 - 1010.001
= 0101.111

Or alternatively,

$$X'_2 = X'_1 + ulp = 0101.110 + 0.001 = 0101.111$$

10/13/2008

Dr. Ashraf S. Hasan Mahmoud

Notes On 1's and 2's Complements Computation:

 1's complement can be obtained by bitwise complementing the bits of X

Examples (from previous slide)

$$X = 1010.001 \rightarrow X'_1 = 0101.110$$

- 2's complement of X can be obtained by:
 - 1. Adding ulp to its 1's complement, or upl is added $X = 1010.001 \implies X'_1 = 0101.110 \implies X'_2 = 0101.111$

2. Scanning X from right to left, copy all digits including first 1, complement all remaining digits

10/13/2008

71

Example 3a:

- Find the 7's and the 8's complement of the following octal number 6770?
- Solution:

$$X = 6770 \Rightarrow n = 4$$
 $X'_7 = (8^4 - ulp) - X$
 $= (10000 - 1) - 6770$
 $= 7777 - 6770$
 $= 1007$
 $X'_8 = 8^4 - X$
 $= 10000 - 6770$
 $= 1010$
Or alternatively,
 $X'_8 = X'_7 + ulp = 1007 + 1 = 1010$

10/13/2008

Dr. Ashraf S. Hasan Mahmoud

Example 3b:

- Find the 7's and the 8's complement of the following octal number 541.736?
- Solution:

```
X = 541.736 → n = 3, m = 3

X'_7 = (8^3 - \text{ulp}) - X

= (10000 - 0.001) - 541.736

= 777.777 - 541.736

= 236.041

X'_8 = 8^3 - X

= 10000 - 541.736

= 236.042

Or alternatively,

X'_8 = X'_7 + \text{ulp} = 236.041 + 0.001 = 236.042
```

10/13/2008

Dr. Ashraf S. Hasan Mahmoud

73

Example 4a:

- Find the 15's and the 16's complement of the following Hex number 3FA9?
- Solution:

$$X = 3FA9 \rightarrow n = 4$$

 $X'_{15} = (16^4 - ulp) - X$
 $= (10000 - 1) - 3FA9$
 $= FFFF - 3FA9$
 $= C056$
 $X'_{16} = 16^4 - X$
 $= 10000 - 3FA9$
 $= C057$
Or alternatively,
 $X'_{16} = X'_{15} + ulp = C056 + 1 = C057$

10/13/2008

Dr. Ashraf S. Hasan Mahmoud

Example 4b:

- Find the 15's and the 16's complement of the following Hex number 9B1.C70?
- Solution:

```
X = 9B1.C70 → n = 3, m = 3

X'_{15} = (16^3 - ulp) - X

= (1000 - 0.001) - 9B1.C70

= FFF.FFF - 9B1.C70

= 64E.38F

X'_{16} = 16^3 - X

= 1000 - 9B1.C70

= 64E.390

Or alternatively,

X'_{16} = X'_{15} + ulp = 64E.38F + 0.001 = 64E.390
```

10/13/2008

Dr. Ashraf S. Hasan Mahmoud

75

Complement Representation – Example 5:

- Show how +53 and -53 are represented in 8-bit registers using signed-magnitude, 1's complement and 2's complement?
- Solution:

Note that 53 = 32 + 16 + 4 + 1,

Therefore using 8-bit signed-magnitude:

- +53 **→ 0**0110101 -53 **→ 1**0110101
- To find the representation in complement method:

10/13/2008

Dr. Ashraf S. Hasan Mahmoud

Complement Representation – Example 5: cont'd

Solution: cont'd

To find the representation in complement method. $(53)_{10} = (00110101)_2$ when written in 8-bit binary

1's complement → 11001010 (inverting every bit)

2's complement \rightarrow 11001011 (adding ulp to X'_1)

10/13/2008

Dr. Ashraf S. Hasan Mahmoud

77

Complement Representation – Example 5: cont'd

Solution: cont'd

Putting all the results together in a table

Note:

- +53 representation is the same for all methods
- For +53, the leftmost bit is 0 (+ve number)
- For -53, the leftmost bit is 1 (-ve number)

	+53	-53
Signed- Magnitude	00110101	10110101
1's Complement	00110101	11001010
2's Complement	00110101	11001011

10/13/2008

Dr. Ashraf S. Hasan Mahmoud

Example 6:

 For the shown 4-bit representations, indicate the corresponding decimal value in the shown representation

10/13/2008

Dr. Ashraf S. Hasan Mahmoud

79

Example 6: cont'd

- Signed-Magnitude and 1's complement are symmetrical representations with TWO representations for ZERO
- Range from signedmagnitude and 1's complement is from -7 to +7
- 2's complement representation is not symmetrical
- Range for 2's complement is from -8 to +7 – with one representation for ZERO

	Unsigned	Signed- Magnitude	1's Complement	2's Complement
0000	0	0	0	0
0001	1	1	1	1
0010	2	2	2	2
0011	3	3	3	3
0100	4	4	4	4
0101	5	5	5	5
0110	6	6	6	6
0111	7	7	7	7
1000	8	-0	-7	-8
1001	9	-1	-6	-7
1010	10	-2	-5	-6
1011	11	-3	-4	-5
1100	12	-4	-3	-4
1101	13	-5	-2	-3
1110	14	-6	-1	-2
1111	15	-7	-0	-1

10/13/2008

Dr. Ashraf S. Hasan Mahmoud

Summary

• The following table summarizes the properties and ranges for the studied signed number representations

	Signed- Magnitude	1's Complement	2's Complement
Symmetric	Y	Y	N
No of Zeros	2	2	1
Largest	2 ⁽ⁿ⁻¹⁾ -1	2 ⁽ⁿ⁻¹⁾ -1	2 ⁽ⁿ⁻¹⁾ -1
Smallest	-{2 ⁽ⁿ⁻¹⁾ -1}	-{2 ⁽ⁿ⁻¹⁾ -1}	-2 ⁽ⁿ⁻¹⁾

10/13/2008

Dr. Ashraf S. Hasan Mahmoud

81

Exercise

Find the binary representation in signed magnitude, 1's complement, and 2's complement for the following decimal numbers: +13, -13, +39, +1, -1, +73, and -73. For all numbers, show the required representation for 6-bit and 8-bit registers

10/13/2008

Dr. Ashraf S. Hasan Mahmoud

10's Complement

• For n = 1 and 2

	X' ₁₀ (n=1)	X' ₁₀ using+/- in decimal	
	0	0	
	1	1	
	2	2	
	3	3	
	4	4	
	5	-5	
	6	-4	
	7	-3	
	8	-2	
10/1	9	-1	Ashraf S. H

X' ₁₀ (n=2)	X' ₁₀ using+/- in
	decimal
00	0
01	1
02	2
09	9
10	10
11	11
12	12
49	49
50	-50
51	-49
52	-48
98	-2
99	-1

8's Complement

• For n = 1 and 2

X' ₈ (n=1)	X' ₈ using+/- in decimal
0	0
1	1
2	2
3	3
4	-4
5	-3
6	-2
7	-1

10/13/2008	Dr. Ashraf S. H

X' ₈ (n=2)	X' ₈ using+/- in decimal
00	0
01	1
02	2
07	7
10	8
11	9
12	10
36	30
37	31
40	-32
41	-31
70	-8
71	-7
76	-2
77	-1

16's Complement

• For n = 1 and 2

1	.,, , ,,		1
	X' ₁₆ (n=1)	X' ₁₆ using+/- in	
		decimal	
	0	0	
	1	1	
	2	2	
	3	3	
	4	4	
	5	5	
	6	6	
	7	7	
	8	-8	
	9	-7	
	А	-6	
	В	-5	
	С	-4	
	D	-3	
	Е	-2	
	F	-1	
10/13/2	2008	Dr. As	hraf S. Has

X' ₁₆ (n=2)	X' ₁₆ using+/- in decimal
00	0
01	1
0E	14
0F	15
10	16
11	17
1F	31
20	32
21	33
7E	126
7F	127
80	-128
81	-127
F0	-16
F1	-15
FD	-3
FE	-2
FF	-1

Operations On Binary Numbers

10/13/2008

Dr. Ashraf S. Hasan Mahmoud

Operation On Binary Numbers

- Assuming we are dealing with n-bit binary numbers
 - UNSIGNED, or
 - SIGNED (2's complement)
- A subtraction can always be made into an addition operation A – B = A + (-B) or A + (B')
 - Compute the 2's complement of the subtrahend and added to the minuend

10/13/2008

Dr. Ashraf S. Hasan Mahmoud

87

Operations on Binary Numbers

The GENERAL OPERATION looks like:

- Note that although we start with n-bit numbers, we can end up with a result consisting of n+1 bits
 - Remember we are using n-bit registers!!
 - What to do with this extra bit (C_n)?

10/13/2008

Dr. Ashraf S. Hasan Mahmoud

Addition of Unsigned Numbers - Review

- For n-bit words, the n-bit UNSIGNED binary numbers range from $(0_{n-1}0_{n-2}...0_10_0)_2$ to $(1_{n-1}1_{n-2}...1_11_0)_2$
 - i.e. they range from 0 to 2ⁿ⁻¹
- When adding A to B as in:

- If C_n is equal to ZERO, then the result DOES fit into n-bit word (S_{n-1} S_{n-2} ... S₂ S₁ S₀)
- If C_n is equal to ONE, then the result DOES NOT fit into n-bit word → An "OVERFLOW" indicator!

10/13/2008

Dr. Ashraf S. Hasan Mahmoud

89

Subtraction of Unsigned Numbers

- How to perform A B (both defined as n-bit unsigned)?
- Procedure:
 - Add the the 2's complement of B to A; this forms A + (2ⁿ B)
 - 2. If (A >= B), the sum produces end carry signal (C_n) ; discard this carry
 - If A < B, the sum does not produce end carry signal (C_n); result is equal to 2ⁿ – (B-A), the 2's complement of B-A – Perform correction:
 - Take 2's complement of sum
 - Place –ve sign in front of result
 - Final result is –(A-B)

10/13/2008

Dr. Ashraf S. Hasan Mahmoud

Subtraction of Unsigned Numbers - NOTES

- Although we are dealing with unsigned numbers, we use the 2's complement to convert the subtraction into addition
- Since this is for UNSIGEND numbers, we have to use the –ve sign when the result of the operation is negative

10/13/2008

Dr. Ashraf S. Hasan Mahmoud

91

Subtraction of Unsigned Numbers – Example (1)

```
• Example: X = 1010100 or (84)_{10}, Y = 1000011 or (67)_{10} - Find X-Y and Y-X
```

Solution:

n = 7

```
A) X - Y: X = 1010100

2's complement of Y = 0111101

Sum = 10010001

Discard C_n (last bit) = 0010001 \text{ or } (17)_{10} \leftarrow X - Y

B) Y - X: Y = 1000011
```

2's complement of X = 0101100 Sum = 1101111

C_n (last bit) is zero → need to perform correction Y - X = -(2's complement of 1101111) = -0010001

10/13/2008

Dr. Ashraf S. Hasan Mahmoud

Subtraction of Unsigned Numbers – Example (2) – Base 10

- Example: $X = (72532)_{10}$, $Y = (3250)_{10}$ Find X-Y and Y-X
- Solution:

A)
$$X - Y$$
: $X = 72532$

10's complement of Y = 96750

Sum = 169282

Discard C_n (last bit) = $(69282)_{10} \leftarrow X - Y$

B) Y - X: Y = 3250

10's complement of X = 27468

Sum = 30718

 C_n (last bit) is zero \rightarrow need to perform correction

Y - X = -(10's complement of 30718) = -69282

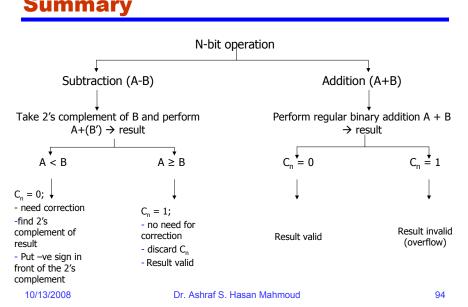
The same procedure can be used for any base R system.

10/13/2008

Dr. Ashraf S. Hasan Mahmoud

93

n-bit Unsigned Number Operations - Summary



2's Complement Review

- For n-bit words, the 2's complement SIGNED binary numbers range from $-(2^{n-1})$ to $+(2^{n-1}-1)$ e.g. for 4-bit words, range = -8 to +7
- Note that MSB is always 1 for -ve numbers, and 0 for +ve numbers

10/13/2008

Dr. Ashraf S. Hasan Mahmoud

95

Addition/Subtraction of n-bit Signed Numbers by Example (1)

```
Consider
      01 1000
                      111 0000
                  -6 11 1010
  +6 00 0110
+ 13 00 1101 +13 00 1101
+19 01 0011
                  +7 00 0111
                                    C_n = 1 \rightarrow discarded
                     110 0100
      00 1100
  +6 00 0110
                  -6 11 1010
 13 11 0011
                 - 13 11 0011
                                    C_n = 1 \rightarrow discarded
 - 7 11 1001
                 -19 101101
```

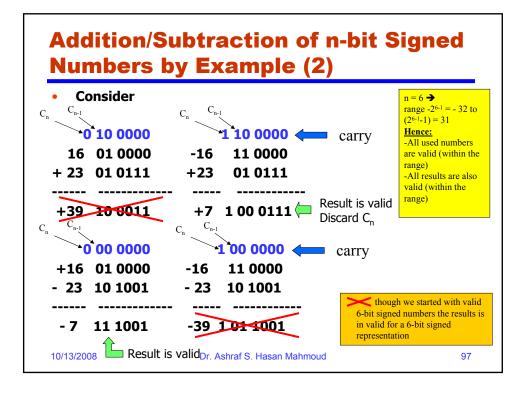
n=6 \rightarrow range -2⁶⁻¹ = -32 to $(2^{6-1}-1)=31$ Hence:
-All used numbers are valid (within the range)
-All results are also valid (within the range)

- Any carry out of sign bit position is DISCARDED
- -ve results are automatically in 2's complement form (no need for an explicit –ve sign)!

Are there cases when the results do not fit the n-bit register?

10/13/2008

Dr. Ashraf S. Hasan Mahr



Addition/Subtraction of n-bit Signed Numbers by Example (2) – cont'd

- NOTE:
- The result is invalid (not within range) only if C_{n-1} and C_n are different! → An OVERFLOW has occurred
- The result is valid (within range) if C_{n-1} and C_n are the same
 - If $C_n = 1$; it needs to be discarded
- If result is valid and –ve, it will be in the correct 2's complement form

10/13/2008

Dr. Ashraf S. Hasan Mahmoud

