King Fahd University of Petroleum \& Minerals
 Computer Engineering Dept

COE 202 - Fundamentals of Computer Engineering
Term 081
Dr. Ashraf S. Hasan Mahmoud
Rm 22-148-3
Ext. 1724
Email: ashraf@kfupm.edu.sa

Background Binary Addition - Adding Bits

- Adding Binary bits:
$0+0 \rightarrow 0$ and the carry is 0
$0+1 \rightarrow 1$ and the carry is 0
$1+0 \rightarrow 1$ and the carry is 0
$1+1 \rightarrow 0$ and the carry is 1
- Hence one can write the following truth table:
$A_{i}+B_{i} \rightarrow S_{i}$ and the carry is C_{i+1}
- Note that S_{i} and $\mathrm{C}_{\mathrm{i}+1}$ are two functions, each depends on A_{i} and B_{i}

A_{i}	B_{i}	S_{i}	C_{i+1}
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Background Binary Addition - Adding Bits (2)

- The functions S_{i} and $\mathrm{C}_{\mathrm{i}+1}$ are given by

$$
S_{i}=\overline{A_{i}} B_{i}+A_{i} \overline{B_{i}}=A_{i} \oplus B_{i}
$$

- and

$$
C_{i+1}=A_{i} B_{i}
$$

- Logic circuit is shown

This known as HALF Adder - It does not take into account incoming carry signal (see FULL Adder description - next)

Background - Binary Addition

- Adding n-bit binary numbers:
- Example: Add the following two numbers 101001 and 1101

$$
\begin{array}{rllllllll}
0 & 0 & 1 & 0 & 0 & 1 & 0 & & \leqslant \text { Carry generated } \\
& 1 & 0 & 1 & 0 & 0 & 1 & & \rightarrow \text { Number A } \\
+ & 0 & 0 & 1 & 1 & 0 & 1 & \rightarrow & \text { Number B } \\
- & 0 & 1 & 1 & 1 & 1 & 1 & 0 &
\end{array}
$$

- In general we have

$\mathrm{C}_{\mathrm{n}} \mathrm{S}_{\mathrm{n}-1} \mathrm{~S}_{\mathrm{n}-2} \ldots \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}$
- The binary number ($\left.C_{n} S_{n-1} S_{n-2} \ldots S_{2} S_{1} S_{0}\right)$ is the summation result

Full Adder Circuit

- But in cases like the previous example, we need to add two bits in addition to the carry signal coming adding the previous two bits
- Hence one can write the following truth table:
$A_{i}+B_{i}+C_{i} \rightarrow S_{i}$ and the carry is C_{i+1}

A_{i}	B_{i}	C_{i}	$\mathbf{S}_{\mathbf{i}}$	$\mathrm{C}_{\mathrm{i}+1}$
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Full Adder Circuit (2)

- The logic functions for S_{i} and the carry is $\mathrm{C}_{\mathrm{i}+1}$ are

Full Adder Circuit (4)

- The logic circuits for \mathbf{S}_{i} and the carry is $\mathrm{C}_{\mathrm{i}+1}$ are

Another symbol for the full adder block

7

Full Adder Circuit (5)

- Using the standard form, the circuit is

τ is the logic gate delay (including the inverter)
S_{i} output is available after 3τ delay
C_{i+1} output is available after 2τ delay

Ripple Carry Adder

- Using the FA block one can construct an n-bit binary adder as in

- The number $\left(C_{n} S_{n-1} S_{n-2} \ldots S_{2} S_{1} S_{0}\right)_{2}$ is equal to the summation of $\left(A_{n-1} A_{n-2} \ldots A_{2} A_{1} A_{0}\right)_{2}$ and ($B_{n-1} B_{n-2} \ldots$ $\left.B_{2} B_{1} B_{0}\right)_{2}$
- Note that C_{0} is set to zero to get the right result
- If C_{0} is set to 1 , Then the result is equal to $A+B+1$

Ripple Carry Adder Delay

- Time to get the summation:
- Assume: If τ is the gate delay, then for a FA block, the \mathbf{S}_{i} output is available after 3τ while the $\mathrm{C}_{\mathrm{i}+1}$ output is available after 2τ - refer to FA structure
- Apply the inputs at $\mathbf{t}=\mathbf{0}$
- The $\mathbf{C}_{\mathbf{1}}$ signal is generated at $\mathbf{t}=\mathbf{2} \tau$
- The $\mathbf{C}_{\mathbf{2}}$ signal is generated at $\mathbf{t}=\mathbf{2 \times 2} \tau$
- The C_{3} signal is generated at $\mathrm{t}=\mathbf{3 X 2} \tau$
- ...
- The $\mathrm{C}_{\mathrm{n}-1}$ signal is generated at $\mathrm{t}=(\mathrm{n}-1) \times 2 \boldsymbol{\tau}$
- The S_{n} signal is generated at $t=(n-1) \times 2 \tau+3 \tau$
- The \mathbf{C}_{n} signal is generated at $\mathbf{t}=\mathbf{n X 2} \tau$
- Hence, total delay is $\mathbf{2 n} \tau$

Ripple Carry Adder Delay (2)

- The disadvantage:
- The outputs (C and S) of one stage carry and summation can not be generated till the outputs of the previous stage are generated (Ripple effect)
- Delay is linearly proportional to \mathbf{n} (size of binary number) - this is undesired
- This means longer delays for longer word sizes

Carry Lookahead Adder

- n is the size of the binary number - or the word size for the ALU
- Ripple carry adder - results in delay that increases linearly with size of binary number, n
- To design fast CPUs you need fast logic circuits
- It is desirable to get the summation with a fixed delay that does not depend on n
- The carry lookahead adder provides just that

Carry Lookahead Adder Design

- The reason for the long delay is the time to propagate the carry signal till it reaches the final FA stage
- Let's examine the FA logic again (refer to FA section)
- The carry signal at the $\boldsymbol{i}^{\text {th }}$ stage is given by

$$
C_{i+1}=A_{i} B_{i}+C_{i}\left(A_{i} \oplus B_{i}\right)
$$

which could be written as $C_{i+1}=G_{i}+P_{i} C_{i}$ if we define $G_{i}=A_{i} B_{i}$ and $P_{i}=A_{i} \oplus B_{i}$

- G_{i} and P_{i} are referred to as the generate and propagate signals, respectively

Carry Lookahead Adder Design (2)

- The new design for the FA block is as follows:

Carry Lookahead Adder Design (3)

- A partial Adder block

> If we use the standard form,

τ is the logic gate delay (including the inverter)
S_{i} output is available after 3τ delay
G_{i} output is available after τ delay
P_{i} output is available after τ delay

Carry Lookahead Adder Delay

- C_{0} (the carry signal for first stage) is set to zero
- C_{1} is equal to $G_{0}+P_{0} C_{0}$
- It takes 2τ to generate this signal
- C_{2} is equal to $\mathrm{G}_{1}+\mathrm{P}_{1} \mathrm{C}_{1}=\mathrm{G}_{1}+\mathrm{P}_{1}\left(\mathrm{G}_{0}+\right.$ $\left.P_{0} C_{0}\right)=G_{1}+P_{1} G_{0}+P_{1} P_{0} C_{0}$
- It takes 2τ to generate this signal
- C_{3} is equal to $\mathrm{G}_{2}+\mathrm{P}_{2} \mathrm{C}_{2}=\mathrm{G}_{2}+\mathrm{P}_{2}\left(\mathrm{G}_{1}+\right.$ $\left.P_{1} G_{0}+P_{1} P_{0} C_{0}\right)=G_{2}+P_{2} G_{1}+P_{2} P_{1} G_{0}+$ $\mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0} \mathrm{C}_{0}$
- It takes 2τ to generate this signal

Carry Lookahead Adder Delay (2)

- C_{4} is equal to $\mathrm{G}_{3}+\mathrm{P}_{3} \mathrm{C}_{3}=\mathrm{G}_{3}+\mathrm{P}_{3}\left(\mathrm{G}_{2}+\right.$ $\left.P_{2} G_{1}+P_{2} P_{1} G_{0}+P_{2} P_{1} P_{0} C_{0}\right)=G_{3}+P_{3} G_{2}+$ $P_{3} P_{2} G_{1}+P_{3} P_{2} P_{1} G_{0}+P_{3} P_{2} P_{1} P_{0} C_{0}$
- It takes 2τ to generate this signal
- In general, $\mathrm{C}_{\mathbf{i + 1}}$ is given by
$C_{i+1}=G_{i}+P_{i} G_{i-1}+P_{i} P_{i-1} G_{i-2}+\ldots+P_{i} P_{i-1} \ldots P_{1} G_{0}+P_{i} P_{i-1} \ldots P_{1} P_{0} C_{0}$

Carry Lookahead Adder

- Block Diagram for 4-bit CLA

Carry Lookahead Adder Delay (3)

- Any carry signal depends only on C_{0} and the generate (G) and propagate (\mathbf{P}) functions only - It does not depend on the previous carry signal (except C_{0} which is readily available)
- The generate (G) and propagate (\mathbf{P}) signals can be generated simultaneously with one gate delay τ - for all stages
- Hence all carry signals at all stages can be available after 3τ delay

Carry Lookahead Adder Delay (4)

- Total Delay:
- Assume all inputs (A, B, and C_{0}) were available at $t=0$
- All \mathbf{G} and P functions will be available at $t=\tau$
- All carry signals ($\mathrm{C}_{1} \ldots \mathrm{C}_{\mathrm{n}-1} \mathrm{C}_{\mathrm{n}}$) will be available at $\mathrm{t}=$ $\tau+2 \tau=3 \tau$
- The $\mathbf{S}_{\mathrm{n}-1}$ signal will be available at $\mathbf{t}=\mathbf{3} \tau+\mathbf{3} \tau=\mathbf{6} \tau$
- Note delay to get summation is FIXED and does NOT depend on word size \mathbf{n} - desirable feature

Carry Lookahead Adder - Refined

- One Last issue to solve:

C4 signal requires gates with 5 inputs
$\mathrm{C}_{5}, \mathrm{C}_{6}$, etc will require gates with > 5 inputs - This is undesirable (higher delay)

- Note the structure of function for $\mathrm{C}_{4}=\mathrm{G}_{3}+\mathrm{P}_{3} \mathrm{G}_{\mathbf{2}}+$ $P_{3} P_{2} G_{1}+P_{3} P_{2} P_{1} G_{0}+P_{3} P_{2} P_{1} P_{0} C_{0}$
- Let $G_{0-3}=\mathbf{G}_{3}+P_{3} G_{2}+P_{3} P_{2} \mathbf{G}_{1}+P_{3} P_{2} P_{1} \mathbf{G}_{0} \rightarrow$ group generate function
- Let $\mathbf{P}_{0-3}=P_{3} P_{2} P_{1} P_{0} \rightarrow$ group propagate function
- Then C_{4} can be written as
$\mathrm{C}_{4}=\mathrm{G}_{0-3}+\mathrm{P}_{0-3} \mathrm{C}_{0}$
- Hence the function for C_{4} is very similar to that for C_{1} - but it uses group generate/propagate functions as opposed to generate/propagate 22functions

Carry Lookahead Adder - Refined (2)

- 4-bit CLA block

[^0]
Carry Lookahead Adder General

- Block Diagram for 16-bit CLA

- C_{16} (and all other carry signals) are available two gate delays after the time needed to generate the group generate/propagate signals.
- Group propagate signal requires one gate delay - while group generate requires two gate delays - Hence, C_{16} is available 5 gate delays after A, B and C_{0} are applied as inputs (assuming standard forms)

n-Bit Adder General

- Diagram used in most text books
- Could be ripple carry adder or carry lookahead adder

Binary Numbers - Review

- Computers use fixed n-bit words to represent binary numbers
It is the user (programmer) who makes the distinction whether the number is signed or unsigned
- Example:
main() \{
unsigned int X, Y;
int W, Z;
\}
- X and Y are defined as unsigned integers while \mathbf{W} and Z are defined as signed integers

Addition of Unsigned Numbers Review

- For n-bit words, the UNSIGNED binary numbers range from $\left(0_{n-1} 0_{n-2} \cdots 0_{1} 0_{0}\right)_{2}$ to $\left(1_{n-1} \mathbf{1}_{n-2} \cdots 1_{1} \mathbf{1}_{0}\right)_{2}$
i.e. they range from 0 to $\mathbf{2}^{\mathbf{n - 1}}$
- When adding A to B as in:
$C_{n} C_{n-1} C_{n-2} \ldots C_{2} C_{1} C_{0}$ \& Carry generated
$\begin{array}{lllllll}A_{n-1} & A_{n-2} & \ldots & A_{2} & A_{1} & A_{0} & \Rightarrow\end{array}$
$+B_{n-1} B_{n-2} \ldots B_{2} B_{1} B_{0} \quad \Rightarrow$ Number B
$-----------------$
$\mathrm{C}_{\mathrm{n}} \mathrm{S}_{\mathrm{n}-1} \mathrm{~S}_{\mathrm{n}-2} \ldots \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}$
- If C_{n} is equal to ZERO, then the result DOES fit into n -bit word ($\mathrm{S}_{\mathrm{n}-1} \mathrm{~S}_{\mathrm{n}-2} \ldots \mathrm{~S}_{\mathbf{2}} \mathrm{S}_{1} \mathrm{~S}_{\mathbf{0}}$)
- If C_{n} is equal to ONE, then the result DOES NOT fit into n-bit word

Subtraction of Unsigned Numbers - Review

- How to perform A - B (both defined as unsigned)?
- Procedure:

1. Add the the $\mathbf{2}^{\prime} \mathrm{s}$ complement of B to \mathbf{A}; this forms A + (2n -B)
2. If $(A>=B)$, the sum produces end carry signal $\left(C_{n}\right)$; discard this carry
3. If $A<B$, the sum does not produce end carry signal $\left(C_{n}\right)$; result is equal to $\mathbf{2}^{\mathrm{n}}-(B-A)$, the $\mathbf{2}^{\prime} \mathrm{s}$ complement of $B-A-$ Perform correction:

- Take 2's complement of sum
- Place -ve sign in front of result
- Final result is $-(A-B)$

Subtraction of Unsigned Numbers - Review (2)

- Example: $X=1010100$ or (84) 10,,$Y=1000011$ or $(67)_{10}-$ Find $X-Y$ and $Y-X$
- Solution:
A) $X-Y$:
$X=1010100$
2's complement of $Y=0111101$
Sum = 10010001
Discard C_{n} (last bit) $=0010001$ or (17) $)_{10} \leftarrow X-Y$
B) Y - X: $\quad X=1000011$

2's complement of $X=0101100$
Sum = 1101111
C_{n} (last bit) is zero \rightarrow need to perform correction $Y-X=-(2 ' s$ complement of 1101111) $=\mathbf{- 0 0 1 0 0 1}$

2's Complement Review

- For n-bit words, the 2's complement SIGNED binary numbers range from $-\left(2^{\mathrm{n}-1}\right)$ to $+\left(2^{\mathrm{n}-1}-1\right)$ e.g. for 4-bit words, range $=\mathbf{- 8}$ to +7
- Note that MSB is always 1 for -ve numbers, and 0 for + ve numbers

2's Complement Review (2)

- Consider the following Example:

How to represent $\mathbf{- 9}$ using 8 -bit word?
A) Using signed magnitude:
$(+9)_{10}=(00001001)_{2} \rightarrow(-9)_{10}=(10001001)_{2}$
The most significant bit is 1 (-ve number)
B) Using 1's complement:
$M=\mathbf{2 n}^{\mathbf{n}} \mathbf{- 1}, \mathbf{- 9}$ in 1s complement $=\mathrm{M}-9=(11111111)_{2}-$ $(\mathbf{0 0 0 0 1 0 0 1})_{2}=(11110110)_{2}$
C) Using 2's complement:
$\mathrm{M}=\mathbf{2 n}^{\mathrm{n}},-9$ in 2 s complement $=\mathrm{M}-9=(\mathbf{1 0 0 0 0 0 0 0 0})_{2}-$ $(\mathbf{0 0 0 0 1 0 0 1})_{2}=(11110111)_{2}$

- Or simply:

1's complement: invert bits of number
2's complement: invert bits of number and add one to it

Subtraction of Signed Numbers

- Consider			
+6	00000110	-6	11111010
$+13$	00001101	+13	00000011
+19	00010011	+7	00000111
+6	00000110	-6	11111010
13	11110011	-13	11110011
-7	1111100	----	11101

- Any carry out of sign bit position is DISCARDED
- -ve results are automatically in 2's complement form (no need for an explicit -ve sign)!

Subtraction of Signed Numbers
 (2)

- Subtraction of two signed binary number when negative numbers are in 2's complement is simple: How to do A-B?

Take the 2's complement of the subtrahend B (including the sign bit) and add it to the minuend A (including the sign bit). A carry out of the sign bit position is discarded

Minuend $\quad \rightarrow \mathrm{A}$
Subtrahend $\quad \rightarrow$ - B
------------ $\quad \rightarrow$ D

Subtractor - Background

- What is the number B equal to?

B is equal to A

Subtractor - Background (2)

- What is the number B equal to?

B is equal to 1 's complement of A

$$
\left(B_{i}=A_{i}^{\prime}\right)
$$

Subtractor - Background (3)

- What is the number B equal to?

B is equal to 2 's complement of A
$(B=-v e A)$

Subtractor

- What is the number S equal to?

$$
\begin{aligned}
& S \text { is equal to } B+(-A) \\
& \text { Or } \quad S=B-A
\end{aligned}
$$

Adder-Subtractor

- What is the number S equal to?

$$
\begin{array}{cl}
\text { If (Control }=0) & S=A+B \\
\text { Else }(\text { Control }=1) & S=B-A
\end{array}
$$

Overflow Conditions

- Computers use fixed word sizes to represent numbers
- Overflow flag: result addition or subtraction does NOT fit the fixed word size
- Examples: consider 8-bit words and using signed numbers

carries:	10000000	ca	01100000
+70	01000110	-70	10111010
+80	01010000	-80	10110000
-----	-----------	----	
+150	10010110	-150	01101010

- Note both operation produced the wrong answer -because +150 or -150 are OUTSIDE the range of allowed number (only from -128 to +127)!

Note that when $\mathrm{C}_{\mathrm{n}-1}$ and C_{n} are different the results is outside the allowed range of numbers

Overflow Conditions (2)

- When n-bit word is used to represent UNSINGED binary numbers:
- Carry signal $\left(C_{n}\right)$ resulting from adding the last two bits (A_{n-1} and B_{n-1}) detects an overflow
If $\left(C_{n}==0\right)$ then \{
// no carry and no overflow, but correction step is required for //subtraction
correction_step: final result $=-1 \mathrm{x} 2$'s complement of result;
\}
else \{
// overflow for addition, but no correction step is
//required for subtraction
process_overflow;
\}

Overflow Conditions (3)

- When n-bit word is used to represent SINGED binary numbers:
- Carry signal into $\mathrm{n}-1$ position $\left(\mathrm{C}_{\mathrm{n}-1}\right)$ and the one resulting from adding the last two bits (A_{n-1} and B_{n-1}) determine an overflow \rightarrow Let overflow bit $V=C_{n-1}$ XOR C_{n}

```
If (V == 0) then {
    // no overflow, and addition/subtraction result is correct
    ;
}
else {
    // overflow has occurred for addition/subtraction, result
    // requires n+1 bits
    process_overflow;
}
```


Overflow Conditions - Summary

	Unsigned	Signed
Overflow Condition	$C_{n}=1$ (no correction required)	$V=C_{n}$ XOR $C_{n-1}=1$

Overflow Detection logic for Addition and Subtraction

2-Bit Binary Multiplier

A Bigger Binary Multiplier

- Consider the multiplication of $B=B_{3} B_{2} B_{1} B_{0}$ by A $=A_{2} A_{1} A_{0}$

4-Bit by 3-Bit Binary Multiplier

- For J multiplier bit and K multiplicand bit:
- JXK AND gates
- (J-1) K-bit adders to produce a product of J+K bits
- In the shown circuit:
- $\mathbf{J}=\mathbf{3}$ (multiplier $=\mathbf{A}_{2} \mathbf{A}_{1} \mathbf{A}_{0}$)
- $K=4$ (multiplicand $=$ $B_{3} B_{2} B_{1} B_{0}$)
- Hence we need $3 \times 4=12$ AND gates and (3-1) Adders
- Multiplication result in 3+4 bits
 Try to multiply 2 signed numbers

Decimal Arithmetic - Adding 2 BCD digits

When the BCD Sum is Greater Than 9?

1. When the sum of two digits generates a carry (see previous example)
OR
2. Sum of the two digits is $1010,1011,1100$, 1101, 1110, 1111 (See problem 3-11 page 170)

- If the sum is denoted by $Z_{3} z_{2} z_{1} z_{0}$ then $F=Z_{1} Z_{3}+Z_{2} Z_{3}$ is equal to 1 only if the number $Z_{3} Z_{2} Z_{1} Z_{0}$ is an invalid BCD digit
- Hence, to detect an invalid summation result where a correction (adding 6 is required) we need:

$$
F=\text { carry }+Z_{1} Z_{3}+Z_{2} Z_{3}
$$

Circuit/Block Diagram of BCD Adder

Decimal Arithmetic - Adding 2 BCD Numbers?

- Consider the previous example:

Example

- Design a circuit to sum three 4-bit binary numbers.
- Hint: Use two blocks of 4-bit adders plus any needed logic

Example: cont'd

- Solution:
- Inputs:
- First 4-bit number
- Second 4-bit number
$X=X 3 X 2 X 1 X 0$
- Third 4-bit $\mathbf{Y}=\mathbf{Y} 3 Y 2 Y 1 Y 0$ $\mathbf{Z}=\mathbf{Z 3 Z 2 Z 1 Z 0}$
- Output:

X3 X2 X1 X0
Y3 Y2 Y1 Y0
Z3 Z2 Z1 Z0
F5 F4 F3 F2 F1 F0 \rightarrow What is the size of out output? Why?

- Procedure: Add X to Y first - get the result and then add it to Z
- Step 1: Addition of X and Y
- A 4-bit adder is required. This addition will result in a sum and a possible carry, as follows:

X3 X2 X1 X0
Y3 Y2 Y1 Y0

Note that the input carry Cin $=0$ in this 4-bit adder

Example: cont'd

- Solution:
- Step 2: Addition of \mathbf{S} and \mathbf{Z}
- This resulting partial sum (i.e. S3S2S1S0) will be added to the third 4-bit number Z3Z2Z1Z0 by using another 4-bit adder as follows, resulting in a final sum and a possible carry:

S3 S2 S1 S0
Z3 Z2 Z1 Z0

D4 F3 F2 F1 F0
where F3F2F1F0 represents the final sum of the three inputs X, Y, and Z. Again, in this step, the input carry to this second adder will also be zero

- Notice that in Step 1, a carry C4 was generated in bit position 4, while in Step 2, another carry D4 was generated also in bit position 4. These two carries must be added together to generate the final Sum bits of positions 4 and 5 (F4 and F5).
- Adding C4 and D4 requires a half adder. Thus, the output from this circuit will be six bits, namely F5 F4 F3F2F1F0

Example: cont'd

- Solution:

- Function:

$$
\begin{array}{llll}
\mathrm{X} 3 & \mathrm{X} 2 \mathrm{X} 1 \mathrm{X0} \\
\mathrm{Y} 3 & \mathrm{Y} 2 & \mathrm{Y} 1 & \mathrm{Y} 0 \\
\mathrm{Z} 3 & \mathrm{Z} 2 & \mathrm{Z1} & \mathrm{Z} 0
\end{array}
$$

F5 F4 F3 F2 F1 F0

[^0]: Accepts two 4-bit numbers A and B with initial carry signal C_{0} Generates 4-bit summation in addition to group generate/functions To do 4-bit additions - one needs to add logic to generate C_{4} signal using $\mathrm{G}_{0-3}, \mathrm{P}_{0-3}$, and C_{0}

