King Fahd University of
 Petroleum \& Minerals
 Computer Engineering Dept

COE 540 -Computer Networks
Term 072
Dr. Ashraf S. Hasan Mahmoud
Rm 22-148-3
Ext. 1724
Email: ashraf@kfupm.edu.sa

Lecture Contents

1. Channels and Models
2. Error Detection
3. ARQ: Retransmission Strategies
4. Framing
5. Standard DLCs

Reading Assignment \#2

You are required to read the following Sections:
> 2.7, 2.8, 2.9 and 2.10 of Gallager's textbook
> The material is required for subsequent quizzes and exam

Channels and Models

- Channels
- Digital - accepts/generates bit stream
- Analog - accepts waveforms
- Modem: a box that maps digital information into an analog waveform
- Conventionally, \qquad Channel $h(t)$

- $s(t)$ - analog channel input
- $r(t)$ - analog channel output
- Could be distorted, delayed, attenuated version of $s(t)$
- A good modulation/scheme maps the digital info into into $s(t)$ such that the signal impairments are minimal!

Filtering

- The medium works as a filter - it has its own $\mathrm{h}(\mathrm{t})$
- Properties of Linear-Time Invariant Filter:
- If input $s(t)$ yields output $s(t)$, then for any T, input $s(t-T)$ yields $s(t-T)$
- If $s(t)$ yields $r(t)$, then for any real number a, as((t) yields $\operatorname{ar}(\mathrm{t})$, and
- If $s 1(\mathrm{t})$ yields $\mathrm{r} 1(\mathrm{t})$ and $\mathrm{s} 2(\mathrm{t})$ yields $\mathrm{r} 2(\mathrm{t})$, then $\mathrm{s} 1(\mathrm{t})+\mathrm{s} 2(\mathrm{t})$ yields r1(t) $+\mathrm{r} 2(\mathrm{t})$

Transmitted Symbol

Received Symbol

$r^{\prime}(t)$ is the sum of the individual pulses

Intersymbol Interference

- One symbol is being received while the tail(s) of the preceding symbols are not finished
- A limit on channel bit rate
- Irreducible error floor
- A similar phenomena appears if there are multiple delayed copies of the same single transmitted symbol
- Multipath
- A real-problem for high speed transmission over wireless links - Why?

Convolution Relation

- BER - a curve that determines the relation between signal power and bit error rate
- Very important characterization tool for modulation/encoding techniques

Typical BER curve with no ISI or multipath

Convolution Integral

- For linear Systems:
- $h(t)$ is the system's impulse response - i.e. $\mathbf{r}(\mathbf{t})=\mathbf{h}(\mathbf{t})$ when $\mathbf{s}(\mathbf{t})=\delta(\mathbf{t})$
- $s(t)$ is system input signal
- $\mathbf{r}(\mathbf{t})$ is system output signal
$r(t)=\int_{-\infty}^{\infty} s(\tau) h(t-\tau) d \tau$
$r(t)=s(t) * h(t)$
$R(f)=S(f) H(f)$

Example 1: Convolution

- If $h(t)=$ ae $^{-a t}$ for $t>0$

```
=0 otherwise
```

where $a=2 / T$
A) Compute analytically and plot $r(t)$ for $s(t)=\Pi((t-T / 2) / T)$
B) Use Matlab to compute the required convolution - Plot the results and list your code
Hint: $\Pi(t / T)$ is the square pulse function of unit height, width equal to T, and centered around 0 .

Solution:

Revision - Fourier Transform

- A "transformation" between the time domain and the frequency domain

Time (t)	Frequency (f)	
$s(t)$	$\leftarrow \rightarrow$	$S(f)$

$$
s(t)=\int_{-\infty}^{\infty} S(f) e^{+j 2 \pi f t} d f
$$

Revision - Fourier Transform

- F.T. can be used to find the BANDWIDTH of a signal or system
- Bandwidth - system: range of frequencies passed (perhaps scaled) by system
- Bandwidth - signal: range of (+ve) frequencies contained in the signal

Revision - Fourier Transform (3)

- Remember for periodic signals (i.e. $s(t)=$ $s(t+T)$ where T is the period) \rightarrow Fourier Series expansion:
$s(t)=\frac{A_{0}}{2}+\sum_{n=1}^{\infty}\left[A_{n} \cos \left(2 \pi n f_{0} t\right)+B_{n} \sin \left(2 \pi n f_{0} t\right)\right]$
$A_{0}=\frac{2}{T} \int_{0}^{T} s(t) d t \quad B_{n}=\frac{2}{T} \int_{0}^{T} s(t) \sin \left(2 \pi n f_{0} t\right) d t$
$A_{n}=\frac{2}{T} \int_{0}^{T} s(t) \cos \left(2 \pi n f_{0} t\right) d t$

Revision - Fourier Transform (4-b)

- Famous pairs - sinc pulse ($\mathbf{A}=\mathbf{T}=1$)
- The plots for the $s(t)$ and the corresponding $S(f)$ are the blue curves on the next slide
- The sinc pulse is a special case of the raised cosine pulse!
- Note T = 1/W

$$
\begin{gathered}
S(t)=A \frac{\sin (\pi W t)}{(\pi W t)} \quad S(f)=\frac{A}{W} \prod(f / W) \\
2 / 23 / 2008 \\
\begin{aligned}
& S(f)=A / W \text { for }|f|<=W / 2 \\
&=0 \text { for }|f|>W / 2
\end{aligned} \text { pud }
\end{gathered}
$$

Revision - Fourier Transform (5)

- Famous pairs - Raised Cosine pulse ($\mathbf{A}=\mathbf{T}=1$), as a function of α

Revision - Fourier Transform (6)

- Raised Cosine Pulse: $0<\alpha<1 / \mathbf{T}$
- Note that $\mathbf{s}(\mathrm{t})=\mathbf{0}$ for $\mathrm{t}=\mathbf{n T} / \mathbf{2}$ where $\mathrm{n}=\mathbf{+} /-\mathbf{1 , 2}$,
" ${ }^{\prime}$
- Very good for forming pulses
- ZERO ISI for ideal situation
- $\quad B W$ for $s(t)=1 / T+\alpha$
- Maximum $=2 \times 1 / \mathrm{T}$ (for $\alpha=1 / \mathrm{T}$)
- \quad Minimum $=1 / T($ for $\alpha=0)$

Revision - Fourier Transform (7)

- Matlab code: Raised Cosine Pulse
clear all \% clear all variables
$\begin{array}{ll}\mathrm{A} & =1 ; \\ \mathrm{T} & =1 ;\end{array}$
$\mathrm{T}=1$;
alphas $=\left[\begin{array}{lll}0 & 0.5 & 1\end{array}\right]$;
or $k=1$: length(alphas)
alpha $=$ alphas(k);
$t=-2: 0.01: 2$;
\% define the time axis
$t\left(k_{1}\right)=((2 * A) / T) *(\cos (2 * p i * 21$ pha*t $)$
$\left(1-(4 *\right.$ alpha*t $\left.\left.) \wedge^{2}\right)\right)$, (sin $(2 *$ t
$(1-(4 *$ alphat $) \cdot 2)) \cdot *(\sin (2 *$ pi*t/T) $) /$
ne $s(t)$
$\mathrm{f}=-2.5: 0.05: 2.5$;
\% define the freq axis
f(k,) = zeros(size(f)) ;
$1=$ find (abs(f) <= (1/T-alpha));
S_f $(k, i)=A$;
$1=$ find ((abs(f) $<=(1 / T+$ alpha) $) \&$
S_f $(k, i)=A^{*}(\cos (p i /(4 * a l p h a) *$ (abs(f(i))-1/T+alpha))).^2; define $S(f)$

```
figure(1); % plot(t, s_t); % plot s(t)
itle('raised cosine pulse - A = T = 1')
xlabel('time - t');
ylabel('s(t));
egend('alpha = 0', 'alpha = 0.5', 'alpha = 1.0')
xis([-2 2 -0.5 2.2]).
grid
figure (2);
plot(f, S_f); % plot S(f)
*)
ylabel('S(f)');
legend('alpha = 0', 'alpha = 0.5', 'alpha = 1.0')
axis([-2.5 2.5 0 1.2]);
grid
```


Frequency Response

- $H(f)$ is known as the frequency response of the channel or system
- $h(t)$ is known as the impulse response of the channel or system
$h(t)=\int_{-\infty}^{\infty} \delta(\tau) h(t-\tau) d \tau$
$h(t)=\delta(t) * h(t)$

$H(f)=\Delta(f) H(f)$
This means $\Delta(f)=1 \forall f$

Example 2: Frequency Response

A) For $s(t)=\Pi(t / T)$, compute $S(f)$ - Use Matlab to plot |S(f)|
B) For $h(t)=a e^{-a t}$ for $t>0$ and equal to 0 otherwise, compute $H(f)-$ Use Matlab to plot |H(f)|

Hint: (A) is solved on slide 13 - Part (B)'s answer is in the textbook equation (2.3). For these two parts you have to be able to derive the results.

Solution:

Sampling Theorem

- Theorem: if a waveform $s(t)$ is low-pass limited to frequencies at most \mathbf{W} (i.e. $\mathbf{S}(\mathrm{f})=0$ for $|\mathrm{f}|>\mathrm{W}]$, then $\mathrm{s}(\mathrm{t})$ is completely determined by its values each 1/(2W) seconds
- One can write

$$
s(t)=\sum_{i=-\infty}^{\infty} s\left(\frac{i}{2 W}\right) \frac{\sin [2 \pi W(t-i /(2 W))]}{2 \pi W(t-i /(2 W))}
$$

More on Sinc and Raised Cosine Pulses

- Consider the sinc pulse and the raised cosine pulse shown on slides 14 and 15
- Both of these $s(t) s$ (the ideal sinc function and the raised cosine function) satisfies Nyquist criterion - i.e. zero ISI
- i.e. $s(i /(2 W))=0 \forall i \neq 0$
- However, raised cosine is a more "practical pulse" - can be easily generated in the lab!
- Figure 2.6 (Gallager) - shows that $s(t)$ is equal to weighted shifted copies of the sinc function graphical representation of the sampling theorem

More on Sinc and Raised Cosine Pulses - cont'd

Figure 2.6 Sampling theorem, showing a function $s(t)$ that is low-pass limited to frequencies at most W. The function is represented as a superposition of $(\sin x) / x$ functions. For each sample, there is-one such function, centered at the sample and with a scale factor equal to the sample value.

Bandpass Channels

- Definition: ?
- This means

$$
H(f)=\int^{\infty} h(t) d t=0
$$

- The impulse response for these channels

$$
\text { fluctuates around } 0 \text { - i.e. +ve area }=- \text { ve area }
$$

- This phenomenon is called "ringing"
- NRZ is not appropriate for bandpass channels
- Manchester encoding is a better option
- Another way of looking at this: NRZ has a DC component which DOES NOT pass through the bandpass channel

Signals and Systems

- System bandwidth is determined by examining the Fourier transfer of the system function $h(t)$, H(f)
- Example (transmission) systems:

2/23/2008

Baseband vs. Bandband

- Baseband Signal:
- Spectrum not centered around non zero frequency
- May have a DC component
- Bandpass Signal:
- Does not have a DC component
- Finite bandwidth around or at f_{c}

Modulation

- Is used to shift the frequency content of a baseband signal
- Basis for AM modulation
- Basis for Frequency Division Multiplexing (FDM)

Modulation

- Consider the signal $s(t)$,

$$
s_{m}(t)=s(t) \times \cos (2 \pi f t)
$$

The spectrum for $s_{m}(t)$ is given by

$$
S_{m}(f)=1 / 2 X\left\{S\left(f-f_{c}\right)+S\left(f+f_{c}\right)\right\}
$$

Analog Communications

Modulation - Txer/Rxer

- At the receiver side:
$s_{d}(t)=s_{m}(t) X \cos \left(2 \pi f_{c} t\right)$
$=s(t) X \cos (2 \pi f t) X \cos (2 \pi f t)$
$=1 / 2 s(t)+1 / 2 s(t) X \cos (2 \pi 2 X f t)$
desired term
undesired term - signal centered around $2 \mathrm{f}_{\mathrm{c}}$ filtered out using the LPF

Dr. Ashraf S. Hasan Mahmoud $\cos \left(2 \pi f_{c} t\right)$

Nyquist Bandwidth

- For a noiseless channels of bandwidth $B_{\text {, }}$ the maximum attainable bit rate (or capacity) is given by

$$
C=2 B \log _{2}(M)
$$

Where M is the size of the signaling set

Shannon Capacity

- Capacity of a channel of bandwidth $B_{\text {, }}$ in the presence of noise is given by

$$
C=B \log _{2}(1+S N R)
$$

where SNR is the ratio of signal power to noise power - a measure of the signal quality

Example 3: Shannon Capacity

- Consider a GSM system with BW = 200 kHz. If SNR is equal to $\mathbf{1 5 d B}$, find the channel capacity?
- Solution:
$\mathrm{SNR}=15 \mathrm{~dB}=10^{\wedge(15 / 10)}=31.6$
$\mathrm{C}=200 \times 10^{3} \mathrm{X} \log _{2}(\mathbf{1 + 3 1 . 6})$
$=1005.6 \mathrm{~kb} / \mathrm{s}$

Note GSM operates at $\mathbf{2 7 3} \mathbf{~ k b} / \mathrm{s}$ which is $\mathbf{\sim} \mathbf{2 7 \%}$ of maximum capacity at SNR $=\mathbf{3 0} \mathrm{dB}$.

Eb/No Expression

- An alternative representation of SNR
- Consider the bit stream shown in figure - for bit of rate R, then each bit duration is equal to $T_{b}=1 / R$ seconds
- Energy of signal for the bit duration is equal to $A^{2} X T_{b}$, where its power is equal to bit energy / T_{b} or A^{2}.
- Noise power is equal to $N_{0} X B$ (refer to thermal noise section)
- Hence, SNR is given by signal power / noise power or SNR $=\frac{\text { signalpower }}{N_{0} B}=\frac{E_{b}}{N_{0}} \times \frac{R}{B}$
- One can also write
$\left(\frac{E_{b}}{N_{0}}\right)_{d B}=\operatorname{SignalPower}(d B W)-10 \log R-10 \log k-10 \log T$

Signal Elements or Pulses

- Unit of transmission - repeated to form the overall signal
- Shape of pulse determines the bandwidth of the transmitted signal
- Digital data is mapped or encoded to the different pulses or units of transmission
- Baud/Modulation or Symbol Rate (\mathbf{R}_{s})
- The bit rate $\mathrm{R}_{\mathrm{b}}=\mathrm{R}_{\mathrm{s}} \log _{2}(\mathrm{M})$
- Please refer to earlier examples of pulses and the corresponding BW

Digital Communications

Signal Elements or Pulses

Definitions of Pulses Encoded Signal: 01001110

Signal Elements or Pulses

Pluses Definitions

Encoded Signal: 01001110

- Note that each symbol or pulse caries 2 bits
- Symbol duration is $T_{s}=2 \mathrm{~T}_{\mathrm{b}}$
- Bit rate R equal to $1 / T_{b}$
- Symbol rate or baud rate R_{s} equal to $1 / T_{s} \rightarrow R=2 R_{s}$
- In general to encode n bits per pulse, you need 2^{n} pulses

Digital Signal Encoding Formats

- Nonreturn to Zero-Level (NRZ-L)
- $0=$ high level
- 1 = low level
- Nonreturn to Zero Inverted (NRZI)
- $0=$ no transition at beginning of interval
- 1 = transition at beginning of interval
- Bipolar-AMI
- $0=$ no line signal
- 1 = +ve or -ve level; alternating successive ones
- Pseudoternary
- $\mathbf{0}=+$ ve or -ve level; alternating for successive ones
- $1=$ no line signal
- Doubinary
- $0=$ no line signal
- 1 = +ve or -ve level; depending on number of separating $0 s$ (even - same polarity, odd - opposite polarity)
- Manchester
- $\mathbf{0}=$ transition from high to low in middle of interval
- $1=$ transition from low to high in middle of interval
- Differential Manchester: Always transition in middle of interval
- $0=$ transition at beginning of interval
- $\mathbf{1}=$ no transition at beginning of interval

Spectrum Characteristics of Digital Encoding Schemes

spectal
Digital Communications
density
(1.4

2/23/2008

Digital Data - Analog Signals

- Digital data (bits) transmitted using analog signals:
- E.g. computer-modem-PSTN
- Subscriber-to-PSTN connection designed to carry analog (voice) signal from 300 Hz to 3400 Hz
- 56K Modem - encodes data and generates a signal occupying the same range for voice signals \rightarrow one line - one signal
- DSL Modem - encodes data and generates signal occupying higher range than that usually occupied by voice \rightarrow one line - two signals

Amplitude Shift Keying (ASK)

- Analog pulses (signal elements) used are:

$$
s(t)= \begin{cases}A \cos \left(2 \pi f_{c} t\right) & \text { bit }=1 \\ 0 & \text { bit }=0\end{cases}
$$

- Spectrum of overall signal is centered around f_{c}
- Application: on voicegrade lines used up to 1200 bps

Frequency Shift Keying (FSK)

- Analog pulses (signal elements) used are:

$$
s(t)= \begin{cases}A \cos \left(2 \pi f_{1} t\right) & \text { bit }=1 \\ A \cos \left(2 \pi f_{2} t\right) & \text { bit }=0\end{cases}
$$

- Spectrum of overall signal is centered around \mathbf{f}_{1} and $\mathrm{f}_{\mathbf{2}}$

This is called BFSK

Frequency Shift Keying (FSK) (2)

- Application: full duplex
- Direction 1: $\mathbf{f 1} \mathbf{= 1 0 7 0} \mathbf{~ H z}, \mathbf{f 2} \mathbf{= 1 2 7 0} \mathbf{~ H z}$
- Direction 2: f1 = 2025 Hz, f2 = 2225 Hz
- Less susceptible to errors (compared to ASK) used for rates up to 1200 bps on voice-grade lines
- Also used for high frequency (3 to $\mathbf{3 0} \mathbf{~ M H z) ~}$ radio transmission
- LANs - coaxial cables

spectrum of signal
transmitted in one direction
spectrum of signal
transmited in opposite direction

Phase Shift Keying (PSK)

- Analog pulses (signal elements) used are:

$$
s(t)= \begin{cases}A \cos \left(2 \pi f_{c} t+\pi\right) & \text { bit }=1 \\ A \cos \left(2 \pi f_{c} t\right) & \text { bit }=0\end{cases}
$$

- Spectrum of overall signal is centered around f_{c}
- Example of 2-phase (binary) system

This is called BPSK

Multi-Level ASK

- ASK is also known as digital PAM - refer to PAM used for PCM encoding
- The transmitted symbols:

$$
s_{i}(t)=A_{i} \cos \left(2 \pi f_{c} t\right), i=1,2, \ldots, M \quad 0 \leq t \leq T_{s}
$$

where
$A_{i}=(2 i-1-M) d, \quad i=1,2, \ldots, M$
2d is distance between adjacent signal amplitudes
M is number of different signal elements (the alphabet size) $=2^{\text {L }}$
L is number of bits per signal element or symbol
T_{s} is the symbols duration.

- The energy for $\mathrm{s}_{\mathrm{i}}(\mathrm{t}), \mathrm{E}_{\mathrm{i}}$, is given by $\mathrm{A}_{\mathrm{i}}{ }^{2} \mathbf{T}_{\mathrm{s}} / \mathbf{2}$

Multi-Level ASK - Examples

- Examples:
- M = 2 - Binary ASK
$A 1=-d, A 2=d$
- M = 4-4-level ASK
$A 1=-3 d, A 2=-d, A 3=d, A 4=3 d$
- M = 8-8 level ASK

$A_{i} \vee\left(T_{s} / 2\right)=\sqrt{E_{i}}$

$A 1=-7 d, A 2=-5 d, A 3=-3 d, A 4=-d$,
$A 5=d, A 6=3 d, A 7=5 d, A 8=7 d$

Multi-Level PSK

- The transmitted symbols:

$$
\begin{aligned}
s_{i}(t) & =A \cos \left(2 \pi f_{c} t+\theta_{i}\right), i=1,2, \ldots, M \quad 0 \leq t \leq T_{s}, \\
& =A\left\{\cos \left(\theta_{i}\right) \cos \left(2 \pi f_{c} t\right)-\sin \left(\theta_{i}\right) \sin \left(2 \pi f_{c} t\right)\right\}
\end{aligned}
$$

where

$$
\theta_{i}=2 n(i-1) / M, \quad i=1,2, \ldots, M .
$$

M is number of different signal elements (the alphabet size) $=\mathbf{2}^{\text {L }}$
L is number of bits per signal element or symbol T_{s} is the symbols duration.

- The energy for $s_{i}(t), E_{i}$ is given by $A^{2} \mathbf{T}_{s} / \mathbf{2}$

Multi-Level PSK - Examples

$\begin{aligned} & \text { - } M=2-B P S K \\ & \theta 1=0, \theta 2=\pi\end{aligned}$

- M = 4 - QPSK
$\theta 1=0, \theta 2=n / 2$,
$\theta 3=n, \theta 4=3 n / 2$,

- M = 8-8-PSK
$\theta 1=0, \theta 2=n / 4, \quad \theta 3=n / 2, \quad \theta 4=3 n / 4$,
$\theta 5=n, \theta 6=5 п / 4, \theta 7=3 \pi / 2, \theta 8=7 n / 4$

Note the grey coding!
Adjacent symbols are different by 1 bit only.

Multi-Level FSK (MFSK)

- Analog pulses (signal elements) used are:

$$
s_{i}(t)=A \cos \left(2 \pi f_{i} t\right) \quad 1 \leq i \leq M
$$

- Where
- $f_{i}=f_{c}+(2 i-1-M) f_{d}$
- f_{c} : carrier frequency
- f_{d} : the difference frequency
- M: number of different signal elements (the alphabet size) $=\mathbf{2}^{\text {L }}$
- L: number of bits per signal element or symbol

MFSK Example - M = 4

- Example - M = 4
- $\mathbf{f 1}=\mathrm{fc}-\mathbf{3 f d} \rightarrow \mathbf{0 0}$
- $\mathbf{f 2}=\mathrm{fc}-\mathrm{fd} \rightarrow \mathbf{0 1}$
- $\mathbf{f 3}=\mathrm{fc}+\mathrm{fd} \rightarrow \mathbf{1 0}$
- $\mathbf{f 4}=\mathrm{fc}+\mathbf{3 f d} \boldsymbol{\rightarrow} \mathbf{1 1}$

Note this scheme does not utilize grey coding!!

Performance - cont'd

- Theoretical bit error rate for (a) Multilevel FSK and (b) Multilevel PSK.

(a)

Dr. Ashraf S. Hasan Mahmoud
(b)

52

Quadrature Amplitude Modulation (QAM)

- Popular analog signaling technique - used in ADSL
- A combination of ASK and PSK
- Example signal constellations:

16 QAM

4 QAM (similar to QPSK with $\theta 1=\pi / 4, \theta 2=3 \pi / 4$, $\theta 3=-3 \pi / 4, \theta 4=-\pi / 4$ refer to slide 47

Quadrature Amplitude Modulation (QAM)

- Signal given by:

$$
s(t)=d_{1}(t) \cos \left(2 \pi f_{c} t\right)+d_{2}(t) \sin \left(2 \pi f_{c} t\right)
$$

Example 4: QAM

Problem: The figure below shows the QAM demodulator corresponding to the to the QAM modulator shown in previous slide. Show that this arrangement DOES recover the two signals d1(t) and d2(t), which can be combined to recover the original signal.

Example: QAM - Solution

Solution:

$$
s(t)=d 1(t) \cos \left(\omega_{c} t\right)+d 2(t) \sin \left(\omega_{c} t\right)
$$

Use the following identities:

$$
\cos (2 \alpha)=2 \cos ^{2}(\alpha)-1 ; \sin ^{2}(\alpha)=2 \sin (\alpha) \cos (\alpha)
$$

For upper branch:

$$
\begin{aligned}
s(t) X \cos \left(\omega_{c} t\right) & =d 1(t) \cos \left(2 \omega_{c} t\right)+d 2(t) \sin \left(\omega_{c} t\right) \cos \left(\omega_{c} t\right) \\
& =(1 / 2) d 1(t)+(1 / 2) d 1(t) \cos \left(2 \omega_{c} t\right)+(1 / 2) d 2(t) \sin \left(2 \omega_{c} t\right)
\end{aligned}
$$

Use the following identities:

$$
\cos (2 \alpha)=1-2 \sin ^{2}(\alpha) ; \sin ^{2}(\alpha)=2 \sin (\alpha) \cos (\alpha)
$$

For lower branch:

$$
\begin{aligned}
s(t) X \sin \left(\omega_{c} t\right) & =d 1(t) \cos \left(\omega_{c} t\right) \sin \left(\omega_{c} t\right)+d 2(t) \sin \left(2 \omega_{c} t\right) \\
& =(1 / 2) d 1(t) \sin \left(2 \omega_{c} t\right)+(1 / 2) d 2(t)-(1 / 2) d 2(t) \cos \left(2 \omega_{c} t\right)
\end{aligned}
$$

All terms at $2 \omega_{c}$ are filtered out by the low-pass filter, yielding:

$$
y 1(t)=(1 / 2) d 1(t) ; y 2(t)=(1 / 2) d 2(t)
$$

Frequency Division Multiplexing (FDM)

$$
\begin{gathered}
x(t)=s_{1}(t) X \cos \left(2 \pi f_{c 1} t\right)+s_{2}(t) X \cos \left(2 \pi f_{c 2} t\right)+ \\
s_{3}(t) X \cos \left(2 \pi f_{c 3} t\right)
\end{gathered}
$$

$-\mathrm{x}(\mathrm{t})$ is transmitted on the media
-The three spectra are not overlapping if $f_{c 1}$, $f_{c 2}$, and $f_{c 3}$ are chosen appropriately -Original composite signals $s_{1}(t), s 2(t)$, and $s 3(t)$ can be recovered using bandpass filters with appropriate bandwidths centered at $f_{c 1}$, $f_{c 2}$, and $f_{c 3}$, respectively.

Frequency-Division Multiplexing
 - Transmitter

- $m_{i}(t)$: analog or digital information
- Modulated with subcarrier $\mathrm{f}_{\mathrm{i}} \rightarrow$ $\mathrm{s}_{\mathrm{i}}(\mathrm{t})$
- $\mathrm{m}_{\mathrm{b}}(\mathrm{t})$ composite baseband modulating signal
- $\mathrm{m}_{\mathrm{b}}(\mathrm{t})$ modulated by $\mathrm{f}_{\mathrm{c}} \rightarrow$ The overall FDM signal $s(t)$

Frequency-Division Multiplexing
 - Receiver

- $\mathrm{m}_{\mathrm{b}}(\mathrm{t})$ is retrieved by demodulating the FDM signal $\mathrm{s}(\mathrm{t})$ using carrier f_{c}
- $\mathrm{m}_{\mathrm{b}}(\mathrm{t})$ is passed through a parallel bank of bandpass filters - centered around f_{i}
- The output of the $i^{\text {th }}$ filter is the $i^{\text {th }}$ signal $s_{i}(t)$
- $m_{i}(t)$ is retrieved by demodulating $s_{i}(t)$ using subcarrier f_{i}

Frequency-Division Multiplexing - Example 5: Cable TV - cont'd

- Cable has BW ~ $500 \mathrm{MHz} \rightarrow 10$ s of TV channels can be carried simultaneously using FDM
- Table: Cable Television Channel Frequency Allocation (partial): 61 channels occupying bandwidth up to 450 MHz

Channel No	Band (MHz)	Channel No	Band (MHz)	Channel No	Band (MHz)
2	$54-60$	22	$168-174$	42	$330-336$
3	$60-66$	23	$216-222$	43	$336-342$
4	$66-72$	24	$222-234$	44	$342-348$
5	$76-82$	\ldots	\ldots	\ldots	\ldots
6	$82-88$				
7	$174-180$				
8	$180-186$				
9	$186-192$				
10	$192-198$				
11	$198-204$				
12	$204-210$				
13	$210-216$				
FM	$88-108$				
14	$120-126$				
15	$126-132$	\ldots			
16	\ldots				
\ldots					

Frequency-Division Multiplexing - Analog Carrier Systems

Synchronous Time-Division Multiplexing - Transmitter

- Digital sources $\mathrm{m}_{\mathrm{i}}(\mathrm{t})$ usually buffered
- A scanner samples sources in a cyclic manner to form a frame
- $\mathrm{m}_{\mathrm{c}}(\mathrm{t})$ is the TDM stream or frame \rightarrow frame structure is fixed
- Frame $m_{c}(t)$ is then transmitted using a modem \rightarrow resulting analog signal is $s(t)$

(b) TDM Frames

Synchronous Time-Division Multiplexing - Receiver

- TDM signal $s(t)$ is demodulated \rightarrow result is TDM digital frame $m_{c}(t)$
- $m_{c}(t)$ is then scanned into n parallel buffers;
- The ith buffer correspond to the original $m_{i}(t)$ digital information

Synchronous Time-Division Multiplexing - Bit/Character Interleaving

- TDM frame: sequence of slots - fixed structure - NOTE: no header/error control for this frame
- One or more slots per digital source
- The order of the slots dictated by the scanner control
- The slot length equals the transmitter buffer length:
- Bit: bit interleaving
- Used for synchronous sources - but can be used for asynchronous sources
- Character: character-interleaving
- Used for asynchronous sources
- Start/stop bits removed at tx-er and re-inserted at rx-er
- Synchronous TDM: time slots are pre-assigned to sources and FIXED
- If there is data, the slot is occupied
- If there is no data, the slot is left unoccupied

TDM Link Control

- TDM frame:
- No header and no error detection/control - these are per connection procedures
- Frame synchronization is required - to identify beginning and end of frame
- Added-digit framing: One control bit is added to each start of frame - all these bits from consecutive frame form an identifiable pattern (e.g. 1010101...)
- These added bits for framing are inserted by system $\boldsymbol{\rightarrow}$ control channel
- Frame search mode: Rx-er parses incoming stream until it recognizes the pattern \rightarrow then TDM frame is known
- Pulse stuffing:
- Different sources may have separate/different clocks
- Source rates may not be related by a simple rational number
- Solution: inflate lower source rates by inserting extra dummy bits or pulses to mach the locally generated clock speed

TDM - Example 7: Digital Carrier Systems

- Voice call is PCM coded $\rightarrow 8$ b/sample
- DS-0: PCM digitized voice call $-\mathrm{R}=64$ Kb/s

- Group 24 digitized voice calls into one \qquad frame as shown in figure \rightarrow DS-1: 24 DS-0s
- Note channel 1 has a digitized sample from $1^{\text {st }}$ call; channel 2 has a digitized sample from $2^{\text {nd }}$ calls; etc.

Notes:

1. The first bit is a framing bit, used for synchronization.
2. Voice channels:
-8-bit PCM used on five of six frames
-7-bit PCM used on every sixth frame; bit 8 of each channel is a signaling bit.
3. Data channels:

Channel 24 is used for signaling only in some schemes.
-Bits 1-7 used for 56 kbps service
Bits 2-7 used for 9.6, 4.8, and 2.4 kbps service.
Figure 8.9 DS-1 Transmission Format

T-1 Frame

$\mathrm{T}-1=8000 \mathrm{frames} / \mathrm{s}=8000 \times 193 \mathrm{bps}=1.544 \mathrm{Mbps}$

TDM - Example 8: Digital Carrier Systems (2)

Propagation Media

- Wired Media:
- Twisted pair
- Cable
- Optical fiber
- Wireless Media - microwave links, satellite, etc.
- Signal attenuation - loss of power due to media resistance
- Attenuation (dB) inversely proportional to distance
- Trade-off: repeater (to extend distance) and Bit rate
- Refer to textbook for characteristics of TP, coaxial, optical, radio frequency communications

Error Detection

- Error control over links involves:
- Error detection
- Error correction
- ARQ
- FEC
- Remember - DLC responsibility is to provide an error-free reliable packet stream to the next layer up.
- Error detection depends on PARITY CHECK

Single Parity Checks

- One bit added to the "data" string \rightarrow c bit
- 1 if the number of 1 's in the data string is odd
- 0 if the number of 1 's in the data string is even
- c is the sum, modulo 2 , of the data string bits
- Example:
- ASCII characters: 7 bits (code) +1 parity bit

- Why type of errors does this scheme detect?
- All odd number of errors - Does that depend on the length of the "data" string?
- All even number of errors are not detected

How Appropriate Single Parity Checks?

- What "type" of errors are expected in communication generally?

VRC/LRC Parity Check

- Extension of simple parity: Vertical Redundancy Check (VRC) and Longitudinal Redundancy Check (LRC)

VRC/LRC Parity Check (2)

- Can detect all odd errors - same as the simple parity check
- Can detect any combination of even error in characters that DO NOT result in even number of errors in a column
- Excess Redundancy: $13 /(35+13)=$
- There could be undetected errors - How?

Linear Codes

- Code: the mathematical transformation to generate the code word (data + parity check)
- Effectiveness of the code:
- Minimum distance of the code - def $=$ smallest number of errors that can convert one code word to another
- The burst detecting capability - def $=$ smallest integer B such that a code can detect all burst of length B or less
- Probability of an undetected error $\sim 2^{-\mathrm{L}}$ (How? See textbook page 61)
- If a code a minimum distance of $\mathrm{d} \rightarrow$ then the code can be used to correct any combination of fewer than $\mathrm{d} / 2$ error (textbook problem 2.10).

Asynchronous Transmission

- Simple / Cheap
- Efficiency: transmit 1 start bit +8 bit of data +2 stop bits \rightarrow Efficiency $=8 / 11=72 \%$ (or overhead $=3 / 11$ = 28\%)
- Good for data with large gaps (e.g. keyboard, etc)

(a) Character format

Synchronous Transmission

- What if there is a STEADY STREAM of bits between Tx-er and Rx-er
- Still use the start/stop bits \rightarrow low efficiency
- Use synchronous transmission
- Synchronous Techniques:
- Provide SEPARATE clock signal
- Expensive and only good for short distances
- Depend on data encoding to extract clock info
- E.g. Manchester encoding

Synchronous Frame Format

- Typical Frame Structure

- For large data blocks, synchronous transmission is far more efficient than asynchronous:
- E.g. HDLC frame 48 bits are used for control, preamble, and postamble - if 1000 bits are used for data \rightarrow efficiency $=99.4 \%$ (or overhead $=0.6 \%$)

Error Detection

Prob [n bits in error in frame] $=\binom{K}{n}(B E R)^{n}(1-B E R)^{K-n}$

Error Detection - cont'd

- Hence, for a frame of K bits,
Prob [frame is correct] $=\operatorname{Prob}$ [0 bits in error]

$$
=(1-B E R)^{\mathrm{K}}
$$

Prob [frame is erroneous] = Prob[1 OR MORE bits in error]

$$
=1-\operatorname{Prob}[0 \text { bits in error] }
$$

$$
=1-(1-\mathrm{BER})^{\mathrm{K}}
$$

Or
Prob [frame is erroneous] $=\operatorname{Prob}$ [1 bit in error] + $\operatorname{Prob}[2$ bits in error] + ... + $\operatorname{Prob}[\mathrm{K}$ bits in error]
= 1 - Prob[0 bits in error]
$=1-(1-B E R)^{K}$

Error Detection (2)

Cyclic Redundancy Check (CRC)

Processing: compute FCS (for some
given an $\mathrm{L}+1$ bit polynomial g)

K-bit block of data \quad L-bit file check sequence

$\mathrm{K}+\mathrm{L}$ bit frame to be transmitted $=\mathrm{x}$

- Modulo 2 arithmetic (like XOR) is used to generate the FCS:
- $0 \pm 0=0 ; 1 \pm 0=1 ; 0 \pm 1=1 ; 1 \pm 1=0$
- $1 \times 0=0 ; 0 \times 1=0 ; 1 \times 1=1$

CRC - Mapping Binary Bits into Polynomials

- Consider the following K-bit word or frame and its polynomial equivalent:

$$
s_{K-1} s_{K-2} \ldots s_{2} s_{1} s_{0} \rightarrow S_{K-1} D^{K-1}+s_{K-2} D^{K-2}+\ldots+s_{1} D^{1}+s_{0}
$$

where $\mathrm{s}_{\mathrm{i}}(\mathrm{K}-1 \leq \mathrm{i} \leq 0)$ is either 1 or 0

- Example1: an 8 bit word $s=11011001$ is represented as $s(D)=D^{7}+D^{6}+D^{4}+D^{3}+1$

CRC - Mapping Binary Bits into Polynomials = cont'd

- Example2: What is D4M(D) equal to?
$D^{4} M(D)=D^{4}\left(D^{7}+D^{6}+D^{4}+D^{3}+1\right)=D^{11}+D^{10}+D^{8}+D^{7}+D^{4}$, the equivalent bit pattern is 110110010000 (i.e. four zeros added to the left of the original M pattern)
- Example3: What is $D^{4} M(D)+\left(D^{3}+D+1\right)$?
$D^{4} M(D)+\left(D^{3}+D+1\right)=D^{11}+D^{10}+D^{8}+D^{7}+D^{4}+D^{3}+D+1$, the equivalent bit pattern is 110110011011 (i.e. pattern $1011=D^{3}+D+1$ added to the left of the original M pattern)

CRC Calculation

- $x=(K+L)$-bit frame to be tx-ed, $L<K$
- $s=K$-bit message, the first K bits of frame T
- $\mathrm{c}=\mathrm{L}$-bit FCS, the last L bits of frame T
- $g=$ pattern of $L+1$ bits (a predetermined divisor)

Note: $\quad g=(L+1)$ bit divisor
$-x(D)$ is the polynomial (of $K+L-1^{\text {st }}$ degree or less) representation of frame x
$-s(D)$ is the polynomial (of $\mathrm{K}-1^{\text {st }}$ degree or less) representation of message s
$-c(D)$ is the polynomial (of L-1 ${ }^{\text {st }}$ degree or less) representation of FCS
$-g(D)$ is the polynomial (of $L^{\text {th }}$ degree) representation of the divisor P
$-x(D)=D^{L} s(D)+c(D)-$ refer to previous example

CRC Calculation (2)

- Design: frame x such that it divides the pattern g with no remainder?
- Solution: Since the first component of x, s, is the data part, it is required to find c (or the FCS) such that x divides g with no remainder

Using the polynomial equivalent:
$x(D)=D^{L} s(D)+c(D)$
One can show that $c(x)=$ remainder of $[D-s(D)] / g(D)$
i.e if $D+s(D) / g(x)$ is equal to $z(D)+r(D) / g(D)$, then $c(D)$ is set to be equal to $\mathrm{r}(\mathrm{X})$.

Note that:
Polynomial of degree K+L
------------------ = polynomial of degree K + remainder polynomial of degree L-1
Polynomial of degree L
2/23/2008

CRC Calculation - Procedure

1. Shift pattern s by L bits to the lift
2. Divide the new pattern $D^{L} s(D)$ by the pattern g
3. The remainder of the division R (L bits) is set to be the FCS or $\mathrm{c}(\mathrm{D})$
4. The desired frame x is $D^{L} s(D)$ plus the c(D)

CRC Calculation Example

Message $s=1010001101$ ($\mathbf{1 0}$ bits) $\rightarrow k=10$
$s(D)=D^{9}+D^{7}+D^{3}+D^{2}+1 \rightarrow D^{5} s(D)=D^{14}+D^{12}+D^{8}+D^{7}+D^{5}$

$g(D)=D^{5}+D^{4}+D^{2}+1$
Find the frame T to be transmitted?
Solution:

$\rightarrow \mathrm{c}$ is equal to 01110

- Frame $\mathrm{x}=101000110101110$
- As an exercise, verify that x(D) divided by $g(D)$ has no remainder

CRC Calculation - The previous example BUT using Polynomials - cont'd

- Message $s=1010001101$ (10 bits)
$\Rightarrow s(D) \quad=D^{9}+D^{7}+D^{3}+D^{2}+1$
$\rightarrow \quad \rightarrow D^{5} s(D)=D^{14}+D^{12}+D^{8}+D^{7}+D^{5}$
- Pattern g = 110101
$\Rightarrow g(D)=D^{5}+D^{4}+D^{2}+1$
- $c(D)=D^{3}+D^{2}+D$
- $z(D)=D^{9}+D^{8}+D^{6}+D^{4}+D^{2}+D$
- $\quad x(X)=D^{5} s(D)+c(D)$

$$
=D^{14}+D^{12}+D^{8}+D^{7}+D^{5}+D^{3}+D^{2}+D
$$

or
$T=101000110101110$

- Exercise: Verify that $\mathbf{z (D)} \mathbf{g (D) + c (D) = D ^ { 5 } s (D) , ~ (D)}$

CRC - Receiver Procedure

- Tx-er transmits frame x
- Channel introduces error pattern E
- Rx-er receives frame $\mathbf{y}=\mathbf{x} \oplus \mathbf{E}$ (note that if $\mathrm{E}=$ $000 . .000$, then y is equal to x, i.e. error free transmission)
- $\quad \mathbf{y}$ is divided by g , Remainder of division is R
- if R is ZERO, $R x$-er assumes no errors in frame; else Rx-er assumes erroneous frame
- If an error occurs and \mathbf{y} is still divisible by $\mathbf{P} \rightarrow$ UNDETECTABLE error (this means the E is also divisible by g)

Some Properties

- All single-bit errors are detected
- Proof in textbook page 63 (problem 2.3)
- All double-bit errors are detected, if $g(D)$ is chosen to be primitive polynomial and the string s is of length less or equal to $2^{\mathrm{L}-1}$
- Proof in the textbook page 63/64
- Any odd number of errors, as long as $\mathrm{P}(\mathrm{x})$ contains a factor (D+1)
- See problem 2.14

Some Popular CRC Polynomials

- CRC-12: D12+D11+D3+D2+D+1
- CRC-16: D16+D15+D2+1
- CRC-CCITT: D16+D12+D5+1
- CRC-32:

D32+D26+D23+D22+D16+D12+D11+D10+D8+D7+D 5+D4+D2+D+1

- CRC-12 - used for transmission of streams of 6-bit characters and generates a 12-bit FCS
- CEC-16 and CRC-CCITT - used for transmission of 8-bit characters in USA and Europe - result in 16-bit FCS
- CRC-32 - used in IEEE802 LAN standards

CRC - Shift Register
 Implementation - Example

